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ARTICLE INFO ABSTRACT

Keywords: Sound attenuation along a waveguide is intensively studied for applications ranging from heating
acoustic liners and air-conditioning ventilation systems, to aircraft turbofan engines. In particular, the new
impedance control generation of Ultra-High-By-Pass-Ratio turbofan requires higher attenuation at low frequencies,
active noise control in less space for liner treatment. This demands to go beyond the classical acoustic liner concepts
nonreciprocal propagation and overcome their limitations. In this paper, we discuss an unconventional boundary operator,
passivity called Advection Boundary Law, which can be artificially synthesized by electroactive means,
nonlocally reacting such as Electroacoustic Resonators. This boundary condition entails nonreciprocal propagation,

meanwhile enhancing noise transmission attenuation with respect to purely locally-reacting

boundaries, along one sense of propagation. Because of its artificial nature though, its acoustical
passivity limits are yet to be defined. A thorough numerical study is provided to assess the
performances of the Advection Boundary Law, in absence of mean flow. An experimental test-

bench validates the numerical outcomes in terms of passivity limits, non-reciprocal propagation

and enhanced isolation with respect to local impedance operators. Guidelines are outlined to

properly implement the Advection Boundary Law for optimal noise transmission attenuation.

Moreover, the tools and criteria provided here can also be employed for the design and

characterization of other innovative liners.

1. Introduction

The acoustic problem of interest here, is the noise transmission mitigation in an open duct, by treatment of the
parietal walls with a so-called liner. Examples of industrial fields where this problem is particularly felt are the
Heating and Ventilation Air-Conditioning Systems (HVAC) and the turbofan aircraft engines. The new generation of
Ultra-High-By-Pass-Ratio (UHBR) turbofans, in order to comply with the significant restrictions on fuel consumptions
and pollutant emissions, present larger diameter, lower number of blades and rotational speed and a shorter nacelle.
These characteristics conflict with the equally restrictive regulations on noise pollution, as broadband noise becomes
more significant, and noise signature is shifted toward lower frequencies, which are much more challenging to be
mitigated. The acoustic liner technology applied nowadays for noise transmission attenuation at the inlet and outlet
portions of turbofan engines is the so-called Single or Multi-Degree-of-Freedom liner, whose working principle relates
to the quarter-wavelength resonance, and demands larger thicknesses to target lower frequencies. They are made of
a closed honeycomb structure and a perforated plate which is used to provide the dissipative effect, to add mass in
order to decrease the resonance frequency, and also to maintain the aerodynamic flow as smooth as possible on the
internal wall of the nacelle. As the honeycomb structure is impervious, propagation is prevented transversely to the
wall, therefore it can be considered as locally reacting as long as the incident field wavelength is much larger than the
size of the honeycomb cells [1].

A first interest for active control is the possibility to tune the resonators to different frequencies. Many adaptive
Helmholtz resonator solutions have been proposed by varying either the acoustic stiffness (i.e. the cavity as in [2]), or
the acoustic mass (i.e. the orifice area, as in [3]), or combining electroactive membranes with Helmholtz resonators
[4], but these techniques tended to present complex structure, excessive weight and high energy consumption [1].

Active Noise Cancellation (ANC) has provided alternative solutions for achieving higher attenuation levels. From the
seminal idea of Olson and May [5], first active impedance control strategies [6, 7] proposed an “active equivalent
of the quarter wavelength resonance absorber” for normal and grazing incidence problems, respectively. The same
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technique was slightly modified in [8], in the attempt to reproduce the Cremer’s liner optimal impedance for the first
duct modes pair [9, 10]. As such impedance could not be achieved in a broadband sense, this approach remained limited
to monotonal applications.

These are examples of impedance control achieved through secondary source approaches combined with passive liners,
but the collocation of sensor and actuator suggested also another avenue: the modification of the actuator (loudspeaker
or else) own mechano-acoustical impedance. The objective shifts from creating a “quiet zone” at a certain location,
to achieving an optimal impedance on the loudspeaker diaphragm. This is the Electroacoustic Resonator (ER) idea,
which have found various declinations, such as electrical-shunting [11], direct-impedance control [12] and self-sensing
[13]. In order to overcome the low-flexibility drawback of electrical shunting techniques, minimize the number of
sensors, meanwhile avoiding to get involved into the electrical-inductance modelling of the loudspeaker, a pressure-
based current-driven architecture proved to achieve the best absorption performances in terms of both bandwidth and
tunability [14]. It employs one or more pressure sensors (microphones) nearby the speaker, and a model-inversion
digital algorithm to target the desired impedance by controlling the electrical current in the speaker coil. Compared to
classical ANC strategies, the impedance control is conceived to assure the acoustical passivity of the treated boundary,
and hence the stability of the control system independently of the external acoustic environment [15]. Despite the
physiological time delay of the digital control, which can affect the passivity margins at high frequencies [16], such
ER strategy has demonstrated its efficiency for both room-modes damping [14, 17] and sound transmission mitigation
in waveguides [18, 19, 20, 21,22,23, 24, 25, 26]. The model-inversion algorithm has also been extended to contemplate
nonlinear target dynamics at low excitation levels [27, 28, 29].

All the afore-mentioned boundary treatments for noise mitigation were conceived in terms of target (locally-reacting)
behaviors. In [30], for the first time, a boundary operator involving the spatial derivative was targeted by distributed
electroacoustic devices. It was the first form of the Advection Boundary Law (ABL), then implemented on ER arrays
lining an acoustic waveguide in [31, 32, 33, 23, 24], where it demonstrated non-reciprocal sound propagation. Non-
reciprocal propagation is a highly desirable feature for many physical domains and applications [34]. In addition,
the non-reciprocity allows the ABL to potentially break through typical constraints on the transmission attenuation
of reciprocal media [35]. Nevertheless, because of its spatial non-locality, the conceptual categories defining the
passivity of a surface impedance (see [36]) do not apply to the ABL. From that, comes the need to reformulate ad-hoc
passivity conditions. Moreover, since the ABL lacks any analogue in nature, the physical interpretation of the ABL
performances is not immediate. In addressing such points, overlooked in the previous references, is the main motivation
and contribution of this manuscript.

Section 2 introduces the ABL from a theoretical point of view and provides a physical parallel which can help in the
interpretation of the ABL performances. We arrive to a general definition of the ABL, composed of a convolution
impedance operator {7 .., and a convection term proportional to the advection speed U,. In Section 3, the ABL is
analysed in open-field to retrieve the oblique incidence absorption coefficient, as function of U, and of the angle of
the incident field. In Section 4, the duct-mode eigenproblem is solved by Finite Elements (FEs) for the first modes
propagating in a 2D infinite waveguide lined on both sides by the ABL. A modal group velocity on the boundary is
defined, which allows to introduce the modal passivity, as a relaxed version of the absolute passivity criteria. Moreover,
the role played by the group velocity angle at the boundary gives the proper understanding of the physical mechanism
behind the enhanced attenuation achieved with the ABL. The scattering performances are computed in Setion 5 for
a 2D duct in the plane wave regime without flow, and a very good correlation is observed with respect to the duct
mode analysis. Then, in Section 6, we simulate a 3D waveguide lined by ERs synthesizing the ABL, confirming its
enhanced isolation performances, along with its passivity issues. In Section 6, we also present the control law employed
to enforce the ABL on the ERs. The effect of discrete pressure estimations by quasi-localized microphones, as well as
the impact of time delay in the control algorithm, are briefly discussed. Finally, in Section 7, experimental results are
provided to demonstrate the enhanced noise attenuation performances, the broadband nonreciprocal propagation, and
the passivity limits of the ABL. The main novelties of this paper stay into the full characterization of the ABL and in
the definition of a unique parameter to establish both passivity and noise isolation performances for grazing incidence
problems. The nice physical interpretation provided by such parameter, can have an important impact in future designs
of acoustic liners.
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A 0A

¥ n(y)

(a) (b)

Figure 1: A cylindrical waveguide along coordinate x, with cross section A of arbitrary shape. In (a), overview of the
waveguide. In (b), detail of the cross-section and its contour d.A. n(y) is the local exterior normal at each point of the
contour, with tangential coordinate y.

ﬂfict
(0 + Uy, 0,)%p = c20%p + c305p

T L = >

Boundary 9 -

ﬂail‘
a%p = cgV?p

Figure 2: Interface 0Q between two semi-infinite domains: ;. and Q. Q
indefinitely toward +x and —y. Q;
characterized by Eq. (3).

. 1S filled with non-convected air, and extends

.« extends indefinitely toward +x and +y, and is an anisotropic acoustic medium

2. Theoretical conception

The greatest difficulty for the parietal treatment of a waveguide is, antonomastically, that it applies on the parietal
walls d.A (see Fig. 1), whereas the noise propagates along the longitudinal axis x which is clearly parallel to d.4. Such
problem is usually referred to as grazing incidence problem. C. Bardos, G. Lebeau and J. Rauch [37] demonstrated
that a sufficient condition for the boundary to fully control the wave propagation is that every ray of the acoustic field
must interact with the boundary. But in case of the grazing incidence problem, there will always be some rays not
directly interacting with the boundary, therefore not controllable. This is also the reason why the effectiveness of any
liner in noise transmission attenuation, degrades if the cross-section area of the waveguide increases, as less number of
acoustic rays will directly interact with the boundary. Nevertheless, even if the grazing incidence problem is not fully
controllable, it should still be possible to determine an optimal liner behaviour achieving the maximum attenuation of
transmitted noise.

Morse [38], in 1939, recognized the normal surface impedance as the quantity characterizing the acoustic behaviour of
a locally reacting boundary. It is defined as the ratio of Laplace transform of the local sound pressure and the normal

velocity: Z (s) = p(s)/v(s), where s is the Laplace variable, set to jo (where j = \/—_1 ) in the stationary regime.
However, a generic boundary might present non-locally reacting, non-linear or even time-variant acoustical response,
and in that case the operator describing its acoustical behaviour cannot be reduced to an impedance transfer function.
The assumption of locally-reacting behaviour, and its consequent modelling by means of a surface impedance, is
common practice in acoustics. Therefore, optimization theories have often considered locally-reacting behaviours of
acoustic liners. This is the case for the Cremer’s optimal impedance [9], after retrieved by Tester [10]. Such impedance,
formulated in the frequency domain, does not correspond to any real function in time domain (by inverse Fourier
transformation), as it does not satisfy the so-called reality condition [36]. Attempts to achieve it in a broadband sense
[39] resulted in very large filters, limiting its practical implementation to single tones attenuation [40].
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To the authors knowledge, general spatial non-local operators have never been targeted for sound transmission
attenuation. Nevertheless, Morse himself [38], in 1939, introduced the locally reacting surface as a degeneration of a
more general interface d€2 (see Fig. 2) between two propagative media. The first one Q.. is characterized by the wave
equation in air:

air

aVip=07p inQy. (1)

with V2 the Laplacian operator and ¢, the sound speed. The other propagative domain, Qj;, (fictitious) is represented
by an anisotropic wave equation, which in 2D reads:

czdfp + cidip = 6t2p in Qs 2)

where ¢, and c,, are the phase speeds along the tangential x and normal y coordinates with respect to the boundary 0.
Observe that in [38], Eq. (2) is written in terms of refractive indices rather than phase speeds. Let us generalize such
anisotropic wave equation to take into account a convection speed U, along x, in Q¢;:

ci&ip + ciaip = (0, + Ubax)zp in Qe ®)

Following Morse, a locally reacting surface could be interpreted as the interface between air and a domain Qg;,

characterized by Eq. (3) with ¢, = U, < ¢y, such that both convection and propagation along x can be neglected. This
way, Eq. (3) degenerates into a 1D wave equation, where wave propagation in Q,, is allowed only along the normal
direction y to the surface dQ, with a phase speed equal to ¢,.. The boundary 0€2 would then be seen as a locally-reacting
surface by Q;,., with characteristic impedance pyjc ¢y, With pgie the density in Qg . For Qg extending to infinity along
the +y direction, then the characteristic impedance becomes the surface impedance of the locally-reacting surface 0€2.
By contemplating complex values of ¢, and/or py;, complex impedances would be reproduced on the interface 0€2.
Usually, non-locally reacting surfaces are attained because c, is different from zero in Eq. (3). It is the case of classical
passive non-locally reacting liners (as porous layers), where the y-dimension of Q;, is bounded by a rigid back wall
[41, 42].
In the following discussion, ;. will be considered as extending indefinitely from the boundary dQ toward both
coordinate directions (+x,+Y), as showed in Fig. 2 for the 2D case. The definition of a boundary operator corresponding
to a rear semi-infinite propagative domain is the so-called Dirichelet-to-Neumann (DtN) mapping [43], commonly
employed in computational methods for simulating unbounded radiation. The DtN approach is retrieved in [30] where,
by passing through the Fourier space, the pseudo-differential boundary operator (relating sound pressure and its normal
derivative), which maps a semi-infinite domain Q;., on the interface with Q,; , is computed in case of Q;., with same
propagation characteristics as €, (¢, = ¢, = ¢y, U, = 0). Following the same steps as [30], we can enlarge the
pseudo-differential operator presented in [30] to contemplate an anisotropic and convected propagation in Q. as the
one described by Eq. (3), and obtain:

¢,0,p=— [\/ (0, + Uy0, % — 202|p  on 0Q. @)

In case of Uy = 0 and ¢, = ¢, we retrieve the pseudo-differential operator for perfect absorption given in [30],
while in case of ¢, = U, = 0, we fall back into the local impedance operator. Observe that Eq. (4) gives the relationship
between pressure and its normal derivative, at the interface with a propagative and convected medium. Such relationship
is found by imposing the continuity of pressure and normal velocity between the two media [38, 30]. In real life, the
presence of convection and viscosity, would entail a vortex sheet [44, 45, 46] and the continuity of displacement, rather
than velocity, at the interface. Nevertheless, as long as we are referring to a fictitious domain €, , this can be assumed
inviscid and purely potential, and the continuity of velocity can be maintained as in [47].

Supposing ¢, = 0, Eq. (4) degenerates into:

¢,0,p = —(0, + Upd,)p on oQ. 5)
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Boundary 0Q: Zyoc(0y¢) * atvy = 0(p +Up0xp

Qair atzp = Cgvzp

Figure 3: ABL interfacing a semi-infinite domain.

Eq. (5) is the ABL. Therefore, we can finally interpret the ABL as the DtN map of a semi-infinite domain Qg;,
characterized by potential wave propagation only along the direction y normal to the boundary (as for locally reacting
surfaces), but where such propagation is convected along x with advection speed U,,. Note that in [30], ¢, was taken
as equal to ¢ and Eq. (5) was not introduced as a degeneration of the general boundary operator (here provided in Eq.
(4)) mapping a convected anisotropic domain on the boundary. Hence, the introduction of the ABL lacked of a proper
physical interpretation.

Using the Euler equation of acoustics projected along the y-axis (normal to 0€2), in absence of mean-flow [48]:

pOath = _ayps (6)

with v, the velocity along y (normal to the boundary), Eq. (5) writes:

PoCy0,0, = 0;p + Uyd,p  on 0Q. @)

Observe that, for Uj, = 0, Eq. (7) retrieves a locally reacting boundary of surface acoustic impedance Zj .. = pyc,.
To introduce a general complex local impedance Z; .(jw), we can define the corresponding differential operator in
time domain Z; .(d,) (same notation as [49]), convoluting (x) the local normal acceleration 00, So, Eq. (7) rewrites:

Z15c(0;) * 0,v, = 0;p+ Uyoyp 0On 0. (8)

In the following, the effects of such BC are investigated first analytically on a semi-infinite domain €, then
numerically on a waveguide of infinite and finite lengths, finally experimentally in a duct lined by programmable ERs.

3. Advection Boundary Law in open field

As a first case study, we compute the absorption coefficient of the ABL interfacing a semi-infinite air domain (an
open field), Q,;, = [—o0, 00] X [—00, 0], as in Fig. 3. The treated boundary extends on all the x axis.
Assuming a time-harmonic sound field in the usual complex notation (jwt), the incident wave can be expressed as:

ﬁi(t’ ,X,y) = pio(w)e]wt—Jk() cos 0; x—jk sin Giy, 9)

where p; is the complex representation of p; = Re{p;}, kg = /¢y is the wavenumber of a plane wave, c, is the speed
of sound, and 0, is the incident angle of the plane wave on the treated boundary. The reflected wave field is supposed
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to respect the classical Snell-Descartes law of refraction, according to which the reflected plane wave propagates with
a specular angle with respect to the incident one, i.e. 8, = —6,. The presence of a transport at the boundary gives no
reason to modify this assumption, in an analogous way to the case of air-flow in the acoustic domain [44], or to the
case of interface with a convected propagative medium [46].

Hence, the complex reflected wave from an ABL can be written as:

ﬁr(t’ , X, y) — R(jw)pioeja)t—jko cos 6;x+jk sin Giy’ (10)

with R the reflection coefficient at the oblique incidence 6;. The acoustic velocity v, normal to the boundary is obtained
by the Euler equation of acoustics projected along y (Eq. (6)), with p = p; + p,.. Replacing Eq.s (9) and (10) in p; and
p, respectively, we find the normal complex velocity on the boundary y = 0:

sin 6; L
D,(t,x) = “pio (1 - R(jw)) l@i—iko cos Opx (11)
PoCo

Also, the ABL of Eq. (8) can be applied to the total pressure p = p; + p, to give:

— Pio . jot—jkg cos 0;x
U(t,x):—,<l+M cose-><l+R w))el‘” Tk cos b;x (12)
7 Z oc(jo) b ' G

where M, = U, /c,. Equating Eq. (11) and (12), we find the reflection coefficient:

1—(1 — M, cos 0,»)11Loc(ja))/ sin 0;
R(w) = , 13)

1+(1 — M cos 0,»)11Loc(ja))/ sin 6;

where 1y () = pycy/ Z1 (o) is the normalized local mobility. Observe that for M, = 0, the reflection coefficient
of classical locally-reacting surfaces is retrieved. Eq. (13) suggests the possibility to define an effective normalized

mobility #.¢;(joo, My, 0;) =| 1—M, cos 8; |n; ..(jo), which is equivalent to the ABL operator for the far-field reflection

from an infinite boundary 0. Observe that #.¢; depends also on M, and 6;. In particular, it is interesting to notice that
for M, = —1,if 6; — O then n.;y = 2#y, Whereas if ; — & then 5, — 0. This result preliminarily demonstrates
the non-reciprocal propagation achieved by the ABL in grazing incidence, which is treated in the next sections.
Based on #,¢¢, we can write the absorption coefficient:

4 Re{nepe (j, 0;, M)/ sin 6;}
" ) : > (14)
’1 + neff(ia)v 9,‘, Mb)/ sin 9i
From Eq. (14), we can apply the classical passivity condition for locally-reacting boundaries [36] to #.¢¢ (jo, 6;, M}):
Re{ﬂeff(ja), 0;, Mb)} >0 ie. Re{r]LOCGa))} <1 — M, cos 0[) > 0. s)

Eq. (15) is valid as long as Re{#; ,.(jow)} > 0 (the local impedance operator should be passive) and M, < 1/ cos 6.
For the passivity to hold independently of the angle of incidence, it must be M, < 1. Such acoustical passivity condition
signifies that acoustic energy enters the boundary, rather than being radiated from it. Let us write the acoustic intensity
[48] normal to the boundary, 1 Vv
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-1 ‘ ‘
0 50 100 150
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Figure 4: ABL absorption coefficient versus 6;, in open field, for 5, ,. = 1 and various M, < 0.

2 2
~(w 0\l
I (@) = Re(5 @, 05,0} =( 1= 1R@)2 ) 222 Gho = @) 22 G, = a1, (@), (16)
Y 2 Y 2p0C0 2p0C0 Y
2
where I; (@) = “Z(;(—ac))l sin 0, is the component along y of the incident acoustic intensity, and the superscript * indicates
’ 0¢0

the complex conjugate. Therefore, for a given incident field, the normal component of the acoustic intensity gives the
absorption at the boundary.

The ABL absorption coefficient versus the angle of incidence is plotted in Fig. 4 for 5 .. = 1 and different values
of M, < 0. Notice that the range of angles of incidence 6; for which @ < 0, enlarges as | M| is increased above
1. Moreover, such loss of acoustical passivity for M, < —1, happens only for 7/2 < 0, < x, meaning that the
ABL is non-passive only for incident sound fields coming from the right side of Fig. 3, that is, for incident waves with
sgn(k,) = sgn(M,). The dependence upon the angle of incidence of ABL acoustical passivity is another unique feature
of the ABL with respect to classical liners. This angle-of-incidence dependency of ABL acoustical passivity manifests
in a duct-mode dependent stability, which is the subject of the next section.

4. Duct modes analysis in 2D waveguide

After having defined the passivity condition of the ABL on a semi-infinite domain, let us investigate the passivity
and attenuation performances into an acoustic waveguide starting from the duct mode analysis. Duct modes are
fundamental to understand the propagation characteristics in a waveguide. The general formulation of the duct-mode
eigen-problem is provided in Appendix A, along with the special treatment reserved to the ABL for the FE numerical
resolution of our eigen-problem. The FE mesh has been built sufficiently fine to have large number of elements in
the cross section and accurately resolve for each duct-mode shape of interest. We consider a 2D duct of section
width 2~ = 0.05 m, with both upper and lower walls lined by the ABL. According to the assumption of duct mode
eigen-solution p,,(t, w, x,y) = A, v,,(», w)el®IKem @)X the duct mode analysis consists in computing the duct-mode
eigenvalues (k, ,,) and eigenvectors (y,,), while A, can be normalized at will. The duct-mode representation of the
acoustic field, gives the occasion to define modal acoustic intensities and modal group velocities. In particular, the
local modal acoustic intensity vector is given by:
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Figure 5: Stability regions of duct-modes in the (Re{k, },Im{k,})-plane.

| R
Im(x’ Vs Cl)) = §Re{pm(1’ @, X, J’)Vm(t, w, X, Y)},

a7

where the superscript * indicates the complex conjugate, and v,, is the modal acoustic velocity, related to the modal
acoustic pressure p,, by the Euler equation of acoustics —pyjwv,, = Vp,,, where V is the gradient operator. We can

then compute the x and y components of I,,,:

1 Re{k,,,}
I x’ S — ZIm{kx’mx} - f @ 2 183
xm(%, Y, ®) =e e Ko [y, (3, )| (18a)
_ 2Im{k,,x)__ L
I, (x, @) = ™ xn) mRe{w,*;(y, ®)0, ¥,y w)} (18b)
We can now define the average acoustic intensity vector on the duct cross section:
1 [t
L, spe(x, @) = n / L, (x, y, w)dy. (19)
0
It is easy to verify that, for symmetric duct modes (for which y,,(h, @) = y,,(0, w)), we get foh L, ,(x,y,0)dy = 0.
So:
h Re{k,  } h
1 2Im{k 1 Reikym / 2
L, pve(®) = — Iy, @)dy |x = e2mikan)x — ,@)*dy )x, 20
mAve(®) = < /O xm(Y> @) y> Shpoey Ky A W (. @)|“dy (20)
where X is the unit vector along x.
We can now define the local modal group velocity as:
L,(x,y, @)
¢y, 0) = —————, (21
" Em,Ave(x’ w)
where E,, 4,,.(x, @) is the average modal Kinetic energy, defined as:
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h
Po
E pve(x, @) = ﬁA vy Vydy

_ eAmlkepx) < Ky pl?
2hpycy ks

(22)

h h
1
(. o)Pdy+ = [ 10,y (y.0)*dy ).
0 ké 0

We can then compute the average modal group velocity:

h
1 Jy Lu(x.y, 0)dy

h
1
-1 @)y =+
cm,AUe(w) h/() cm(x y a)) Yy h Em’Aue(X, CO)

Re{ky (@) S (3. )Py ) @3
e ’
kZ

k h h
0 =2 o s @) Pdy + 55 [y 0, v (r, @) 2dy
0

Observe that neither the local or the average modal group velocities depend upon x. From the average modal
group velocity expression, we can deduce that each duct mode propagates along x with a sign given by Re{k, ,,}, i.e.
Re{k, ,,}> 0 means a +x direction of propagation, and vice-versa. The Im{k, ,} instead, gives the attenuation (or
amplification) rate of the modal acoustic intensity along the duct mode x-propagation, as it can be seen from the Eq.
(20). The regions of duct-mode stability are illustrated in Fig. 5, for clarity. However, we are interested in defining a
unique dimensionless quantity able to characterize both the attenuation and stability of a duct mode. Inspired by the
work of Rice [50], we propose to consider the propagation angle of the local modal group velocity at the boundary,
given by:

Cn,m(w! yb)>’ (24)

0, ., (0) = atan(
b.m cx,m(a)’ yb)

where ¢, ,, is the local modal group velocity component along the normal n to the boundary, and y, is the value of
the y coordinate at the boundary. Clearly, a dissipative liner entails acoustic intensity that enters the boundary, i.e. a
positive ¢, ,,(w,y,) and a 0 < 8, < x. Therefore, we propose to define the following absolute acoustical passivity
criteria of a generic BC for in-duct grazing-incidence problems:

sinf ,,(w) >0, Vw>0 and Vme€ z. (25)

Such absolute passivity criteria could be relaxed to introduce a more general modal acoustic passivity criteria:

sin@,,(w) >0 V>0 and certain m € Z", (26)

Such quantity sin 6, ,, very well correlates also with the attenuation levels achieved by the ABL, as it will be
showed in the following. Observe that this quantity differs from the modal propagation angle considered by Rice [50]
to correlate with the acoustic liner performances. In [50], the modal propagation angle at the boundary was computed
from the wavenumber, and not from c,,. Indeed, the group velocity was considered only in case of air-flow in the
duct. Moreover, he proposed a geometric approach employing the open-field reflection coefficient computed for an
incident angle equal to such modal propagation angle, to estimate the attenuation rate along the duct, achieving good
approximation only for nearly hard walls (locally-reacting liners with #; . & 0). Moreover, the separation between
incident and reflected fields cannot be operated in a duct-mode analysis, therefore such open-field reflection coefficient
actually provides very poor estimations of the attenuation rates for general BCs of interest.

The solutions, both in terms of wavenumbers k, ,, and mode-shapes v, (y) reported here, are computed for a 2D
waveguide with cross section width 2 = 0.05 m (to conform with the experimental test-rig of Section 7), lined on both
sides by our ABL. The results will be accompanied by the plots of sin 8, ,, to demonstrate the perfect correlation of
duct-mode stability with the modal passivity criteria of Eq. (26), and the good correlation with the attenuation rate
given by Im{k, , }.
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4.1. Real local impedance (.
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Figure 6: Dispersion plots, in terms of real (top) and imaginary (bottom) parts of k_, relative to the first four duct modes
propagating in both senses, in case of boundary advection law with 7, =1 and M, = —1.

In this Section, the local impedance, and hence the local normalized mobility #; ., is considered as purely real.
In Fig.s 6 and 7 the first eight solutions in terms of wavenumbers and corresponding duct modes respectively, are
plotted. The frequency span is limited between 150 and 3000 Hz to focus on the same frequency range as the
experimental results. It is evident that the mode-shapes propagating towards +x present a shorter wavelength along y
with respect to those propagating toward —x. Moreover, one can notice that mode 17 is attenuated (Im{k, ;+} < 0),
while mode 17 is a plane wave (y" = 1, k, ;- = —k). This demonstrates the breaking of the reciprocity principle
[51] in the plane wave regime, as it will be clearer in the following.

In this paper we study just the first forward and backward propagating mode (1% and 17), as we are interested in
the isolation performances in the plane wave regime of a rigid duct. Indeed, the first modes are also the least attenuated
ones, therefore mostly ruling the noise transmission when the liner is applied in a segment of a rigid duct [52, 9].
Fig. 8 shows the frequency plots of sin 6, . Re{k, ,} and Im{k_ ,}, for modes m = 1* and m = 1. Looking at
Fig. 8b, we observe that for M, = —1, mode 1~ becomes a plane wave, while for M, < —1 we have non-stable duct
mode propagation, confirmed by a sin ¢, ;- < 0. Notice that the attenuation rate (Im{k, ;- }) follows the same trend
as sin@, |- < 0 with M, and also with frequency. Looking at Fig. 8a, notice the monotonic increase of both sin §,, |+
and Im{k, ;+} with | M|, confirming the good correlation between these two quantities, and the higher attenuation
performances achievable thanks to the ABL with M, < 0 with respect to local impedance operators (M, = 0).
Nevertheless, at high frequencies, Im{k, ;+} for M}, = —1.5 seems to almost coalesce with M, = —1 and M, = -0.5,
which is not the same for sin 8, ;+. We can then state that the correlation between sin §,, |+ and the attenuation rate is
very high at lower frequencies.

Fig. 9a shows the variation of the mode 1% shapes for various ABL Mach numbers M, < 0, at 500 Hz. Looking at
the mode-shapes y+ (), it is evident how the wavelength along y is significantly reduced for higher absolute values of
M, < 0. This means a higher normal derivative at the boundary, hence an increase in the modal group velocity along
y. The normalized vectors ¢+ at the boundary y, = h are also reported in Fig. 9a to illustrate their rotation with M
varying. For higher absolute values of M < 0, the modal group velocity at the boundary rotates towards the normal
to the boundary itself. Fig. 9b shows the mode 1~ shapes for various ABL Mach numbers M, < 0, at 500 Hz. Observe
that for M, = —1, y;- = 1 is a plane wave, with group velocity at the boundary directed toward —x. Notice also that
for M, = —1.5, ¢;-(h) has a slightly negative component along y. Indeed, for M, < —1, itis sin§, ;- < 0 and the
propagation of mode 1~ is unstable.
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Figure 9: Shapes of modes 1* (a) and 17 (b) at 500 Hz, and corresponding polar plots of the group velocities normalized
to 1, for 5. = 1 and different M, < 0.

Now, we want to check the effect of i .. = 1/{; . on the attenuation performances and passivity limits. In Fig. 10, the

spectra of sin 6, ,,, Re{k, ,,} and Im{k, , }, with varying 5 ,. and M} = —1, are plotted for mode m = 1*. Observe
that both sin 8, 1+ and [Im{k, ;+}| increases with 7y, though the tendency with frequency is different especially at
high frequencies as already noticed before. Moreover, #; . does not affect the stability of mode 1* for M, = —1. Fig.
10 shows the same plots but relative to mode 1~. Observe how #; .. has no impact on such mode in case of M, = —1.
Indeed, for M, = —1, mode 1~ is a plane wave independently of the value assumed by #; ..
. 1m 14
“ost 6
~__50¢ 3
-8 g :
<z 25 3 s
RS - 1000 2000 3000;
S Frequency (Hz) :
1 .5 ................................................................
~_ 0g
! *
=3 05
500 1000 1500 2000 2500 3000
Frequency (Hz)
(a)
Figure 10: Spectra of sin6,,, Re{k,,} and Im{k,,}, with varying 5, and M, = —1, for mode m = 1* (a). In (b) the

x,m
zoom of sinf, . close to 1.

In Fig. 12, the same quantities are plotted but for a fixed frequency (500 Hz), against #; . and for varying M, < 0,
for mode 1. Apparently, increasing #; .. improves the attenuation level of mode 1%, and its stability is preserved.
Fig. 12 reports the same plots but for mode 1~. Notice the plane wave solution (k, ;- = —k) for M, = —1 which is
independent from #; .. Also notice that the stability of mode 1~ is lost when M, < —1, independently of #; ., as long
as # o is purely real and positive. This result confirms the passivity limits found in open field (see Eq. (15)). Hence,
we can finally affirm that the ABL passivity limits in open-field (see Section 3) coincides with the absolute passivity
limits of the ABL in the guided grazing incidence problem, in case of purely real #; .

E. De Bono et al.: Preprint submitted to Elsevier Page 12 of 32

291

292

293

294

295

296

297

298

299

300

301

302

303



©Coo~NOOUhWN

OO0V UORADMDMDIDMDIMDIMIAMARAMDRNMDNWWWWOWWWWWWWNNNNNNNNNNRPERPREPRERPRERRERE
ORAWONPFPOOONOOUAWNPFPOOONOOUORARWNPFPOOONOOUORARWNRFRPOOONOUDMWNROOONOUODMWNEO

Advection BC no flow

. 0.1 14
g ° 10
o |
= 0 3
é% 25 ¢
~ 250 2
~— 0.1 '
& !
g 0 05
201

1000 2000 3000
Frequency (Hz)

Figure 11: Spectra of sin6, ,, Re{k,,} and Im{k_,}, with varying #;,. and M, = —1, for mode m = 1~
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Figure 12: Plots of sin#,,,, Re{k, , } and Im{k,,}, versus ., with varying M, <0, for mode m = 1* (a). In (b) the zoom
of sin@,,, close to the maximum value, and Im{k, ,} close to the minimum value.

In Fig. 14a, we report the mode 1% shapes for M, = —1 and varying 7., along with the modal group velocity
at the boundary. These plots help to visualize the effect of increasing #; ., which is very similar to the increase of
the absolute value of M, < 0, as long as mode 1% is concerned. Fig. 14a confirms that mode 1~ stays a plane wave
independently of #; .., as long as M, = —1.

From the duct mode analysis presented in this section, in case of purely real #; ., we can affirm that the ABL
absolute passivity limits coincide with the passivity limits in open field. The physical quantity sin§, ,,, other than
allowing to define a modal passivity criteria, very well correlates with the attenuation rates for mode 1%, and could
hence be employed for optimization purposes. Moreover, it can help in the interpretation of the physical mechanism
behind the enhancement of the attenuation rate achieved by the ABL with respect to purely local impedances. The
physical explanation of the influence of M, upon the modal propagation angle at the boundary results to be quite
intuitive, if compared to the instance of natural convection induced by air-flow blowing into a duct. In that case, waves
are naturally convected downstream, with the modal propagation angle increasing for upstream propagating modes
[50]. This phenomenon explains why, when the duct boundaries are treated by (reciprocal) acoustic liners, and in
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Figure 14: Shapes of modes 1* (a) and 1~ (b) at 500 Hz, and corresponding polar plots of the group velocities normalized
to 1, for M, = —1 and different 5.

presence of air-flow, the upstream propagation is more attenuated with respect to the downstream one. In our case,
there is no air-flow blowing in the duct. Nevertheless, we can induce an increase of the propagation angle of mode 1+
at the boundary, for a fixed #; ., by introducing an artificial boundary convection against the propagation of mode 17.
This is what an ABL does with M, < 0.

4.2. Complex local impedance ¢ .

In this Section, the local impedance component of the ABL is taken as a SDOF resonator, which is the case for
most of the actual tunable liners, as the ERs. The mass and stiffness terms of {j . are taken proportional to the acoustic
mass and stiffness of the open-circuit ER prototype employed in the experimental test-bench of Section 7, while the
resistance term is taken as a fraction of the characteristic air impedance pc,. This convention follows the one provided
in [16]. Hence:
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Model parameters M, R, K, BI/S,
Units kg/m> Pas/m Pa/m Pa.A™!
Values 0.342 133 2.96 x 10° 846
Table 1

Model parameters of the ER. The values of R, and B!/.S, are provided for results shown in Sections 6 and 7.

6oy = - ( Mo+ R, + X4 @7
Loc _pOCO d) d ]w ’

where R; = r;pgcy is the desired resistance, while the desired reactive components are defined as M, = uy, M,
and K; = ugK,, with M, and K|, the acoustic mass and stiffness of the open-circuit ER prototype employed in the
experimental test-bench of Section 7. Their values are reported in Table 1. The resonance frequency of ¢; . can be
varied by tuning either the stiffness yiy or the mass u,, parameters, as f; = fo\/Hg /M. With f; being the resonance
frequency of the open-circuit ER (468 Hz). Reducing i, = pg, or increasing r, allows to reduce the quality factor
of the SDOF resonator.
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Figure 15: Dispersion plots, in terms of real (top) and imaginary (bottom) parts of k,, relative to the first eight duct
modes in case of ABL with complex ¢ . (jo) given by Eq. (27). The control parameters are set to y,, = ux =0.5, r, =1,
and M, = —1. In dashed red is the line Re{k,} =0

Fig. 15 shows the dispersion plots of k,(w) for up, = ux = 0.5, r; = 1, and M, = —1. The modes are not
labelled referring to their sense of propagation (positive or negative) as the Re{k, } happens to change its sign with
frequency, while sign of Im{k,} is unaltered. Mode 1b corresponds to the backward propagating plane wave always
present for M, = —1. Mode 1a is the first mode propagating toward +x. Nevertheless, Re{k, |,} becomes negative
between approximately 500 and 870 Hz, which means a reverse in the direction of propagation. In such frequency
range, Re{k, } and Im{k _} present the same sign, which means unstable propagation. Therefore, we can state that, for
Uy = Hxg = 05,r; = 1and M, = —1, the ABL does not fulfil the modal passivity criteria for any mode, except
for mode 1. Hence, the absolute passivity conditions Re{{; .} > 0 and | M| < 1, sufficient in case of open-field or
purely resistive {} .., will not be sufficient in case of reactive ¢ ... As this phenomenon does not happen for purely real
{Loc (see Section 4.1), neither in case of locally-reacting boundary (M, = 0), we expect that the ABL could restore
modal passivity by reducing the reactive character of {j .., or by decreasing M. It is interesting to highlight that such
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Figure 16: Spectra of sin6,,, real and imaginary parts of k,,, for mode 1a (a) or 1b (b), with M, varying. The other
parameters are set to y,, = ux = 0.5, r, = 1, and the duct cross section width is 4 = 0.05 m. The dashed red lines separate
passive and non passive conditions.

non-passive behaviour cannot be detected in open-field, suggesting also the influence of the cross-section dimension
in the duct-modes stability.

Fig. 16a shows the spectra of sin 6, |, and of the real and imaginary parts of k |+, with varying M, < 0. Increasing
| M| leads to higher values of Im{k, ;,} around resonance (as in case of purely resistive {1 ). Though, for M, = —
and —1.5, the Re{k, ;,} changes its sign in a frequency range starting just above resonance. The higher | M, |, the larger
is such frequency band of non-passive behaviour. Indeed, while for M, = —1 passivity is restored at about 900 Hz, in
case of M, = —1.5, passivity is never restored in the frequency range under study. It is remarkable the correlation of
sin 0, ;,, with both the acoustical passivity and the attenuation rate. Indeed, the frequency bandwidth where Re{k, ;,}
changes its sign, coincides perfectly with the bandwidth where sin8,;, < 0. Moreover, in the passivity regions,
sin @y, 1, is higher when Im{k, ;,} presents larger values, thus confirming the correlation with the attenuation rate. In
Fig. 16b, the same modal quantities are plotted with varying M < 0, but for mode 1b. Notice the plane wave solution
for M, = —1. For M, = —1.5, the Im{k, ;,} becomes negative as the Im{k, |-} in case of purely real {7 . (check
Fig. 8b). Nevertheless, the Re{k, ;+} changes its sign, therefore restraining the non-passive behaviour up to about 950
Hz. After this frequency, passivity gets restored. Once again, check the perfect correlation of the dispersion solutions
with the values of sin 6, ;,, both in terms of passive bandwidth and attenuation rates. Fig. 17 shows the effect of the
quality factor of {; .. upon the modal quantities of mode 1a, for M, = —1. In particular, Fig. 17a shows the effect of
the reactive terms u,, = pg, while Fig. 17b shows the effect of the resistive one r;. As expected, by reducing the
quality factor of {7 .. (by decreasing y,, = pg and/or augmenting r;), we can restore the acoustical passivity. Once
again, both passivity limits and attenuation rates are perfectly captured by sin 0, ,,.

Finally, we want to check the effect of the duct cross-section width A. In Fig. 18, A is halved and doubled with
respect to the default value, demonstrating that such non-passive behaviour is strictly related to the duct cross-section
size. The narrower the duct cross-section is, the larger is the bandwidth of passivity loss. It is also interesting to
remark that sin 0, ; ,, despite perfectly capturing the frequency ranges of non-passive behaviour, is not able to capture
the variation of attenuation level (Im{k, ;,}) with A. It looks like the boundary modal group velocity (which gives
sin 0 ,) is not informed by the variation of the duct cross section size, except if & leads to a change of direction of
propagation. A deeper analysis of the modal group velocity ¢, on the boundary, and the effect of 4 upon it, is out of
the scope of the present paper, but it will be retrieved in a future study. Nevertheless, as 4 is not a parameter related to
the boundary operator, the quantity sin 6, ,, can still be employed for liner optimization purposes.
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Figure 17: Spectra of siné,,, real and imaginary parts of k_,, for mode la, with varying p,, = uy (a) or r, (b). The
default parameters are set to u,, = ux = 0.5, r, =1, M, = —1, and the duct cross section width is 2 = 0.05 m. The

dashed red lines separate passive and non passive conditions.
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Figure 18: Spectra of sin6,,,, real and imaginary parts of k,, for mode la, with varying h. The control parameters are
set to py, = px =0.5, r, =1 and M, = —1. The dashed red lines separate passive and non passive conditions.

S. Scattering simulations in 2D waveguide

In this section the ABL is analysed in terms of scattering performances in the plane wave regime. The liner is
considered to extend for an axial length L = 0.3 m in a 2D acoustic waveguide of cross-section height 2 = 0.05 m,
without flow. Such dimensions correspond to the experimental setup that will be presented in Section 7. The scattering
problem is illustrated in Fig. 19, where the reflection Rg and transmission Tg coefficients are defined for incident field
directed toward either +x or —x. The subscript g is employed to differentiate the present grazing incidence from the
oblique incidence scattering of Section 3. The ABL is applied continuously on the boundary of the waveguide in the
lined segment. The scattering matrix is defined in Eq. (28) for the plane wave regime of a hard-walled duct.

+ + -
p] R‘g T

4

PT
pg] . 28)

The superscript signs + or — in Eq. (28), indicate the direction of propagation of the incident plane wave (toward
either +x or —x). The results in terms of scattering matrix coefficients, have been obtained by FE simulations in
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Figure 19: Lining segment and scattering coefficients definition in a 2D waveguide lined on both sides.

Comsol. As in the duct mode analysis, the FE mesh has been built sufficiently fine to fully resolve both longitudinal
and transversal pressure field up to f,,,, = 3 kHz. The scattering coefficients T+ and R* are computed, by exciting
first the left and then the right termination. In the scattering problem, high noise isolation toward +x (—x) corresponds
to low values of TgJr (Tg‘). The acoustical passivity, in the plane wave regime, corresponds to positive values of both
af and a .

As in the duct mode analysis, we differentiate the case of purely real or resonant ¢; . in the ABL.

5.1. Real local impedance ¢; .

The scattering performances are presented in terms of power scattering coefficients for both positive and negative
propagation. The power scattering coefficients are defined from the power balance [41] which, in case of plane waves,
reduces to:

l=a*+ |Tgi|2+ |R§|2, (29)

where R, and a, are the reflection and absorption coefficients in grazing incidence, respectively. From |Tg’—’|2, it

is possible to compute the Transmission Loss (TL;)L,-M, = lOloglo(l/ng”i|2), and the Insertion Loss IL:g—* =
(TLY) Liner = (TL®) Rigig- As (T L) ;g;q = 0 in simulations, I L* = (T LY) -

Fig. 20a shows the power scattering coefficients in case of {; ,. = 1, for M, continuously varying from 0 to —2.
Coherently with the duct mode 1% solution reported in Section 4.1, increasing the absolute value of M, < 0, brings
about an increase in the 1 L;, especially at low frequencies. Observe that such increase of I L; is accompanied by
a significant increment of the back-reflection and, less intuitively, by a reduction of absorption. This means that,
in such configuration of waveguide with both upper and lower sides lined by the ABL, excited by plane waves
propagating against the boundary advection speed, most energy is reflected back rather being absorbed. In case of
negative propagation, i.e. plane waves propagating concordant with M, perfect transmission is assured for M, = —1,
while for M, < —1, the loss of passivity (ocg‘1 < 0) of the ABL manifests itself by |Tg‘ | > 1 in agreement with
the change of sign of Im{k, ;+} showed in Fig. 8b. The passivity limits are highlighted by dashed black line in Fig.
20. These results are totally coherent with the results of Section 4.1 both in terms of attenuation performances and
passivity. Moreover, perfect non-reciprocal propagation is achieved for M, = —1, as I L, = 0, while I L; is very
high. This, also, is in agreement with the dispersion solutions of Section 4.1.

5.2. Complex local impedance ;.

As in Section 4.2, we consider here the scattering problem in case of {j . assuming the SDOF resonator form of
Eq. (27), with default mass and stiffness coefficients 1y, = ux = 0.5, and resistance term r; = 1. Fig. 21a shows the
effect of varying M, in case of incoming field from the left duct termination, indicated by + superscript. As expected,
increasing the absolute value of M, < 0, improves isolation (augments 1 L;). But, after the resonance of (j ., a“g*
becomes negative for M, = —1, up to about 870 Hz. This loss of passivity corresponds to a reflection coefficient
higher than 1, in agreement with the change of sign of Re{k, ;,} in Fig. 16a, which becomes negative at about 500

Hz, and comes back to be positive at about 870 Hz. Notice the interesting correlation between an unstable propagation
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Figure 20: Scattering coefficients in a 2D waveguide of cross section width 4 = 0.05 m with lined segment of length L = 0.3
m, lined on both sides by the boundary advection law with ¢ . =1, and varying M,.
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Figure 21: Scattering coefficients for excitation coming from the left (a) or right (b) termination, in a 2D waveguide of
cross section height 2 = 0.05 m with lined segment length L = 0.3 m, and ABL applied on both sides of the duct, with
Hy = Mg =05, r, =1 and varying M,.

of mode 1a toward —x in the range 500 — 870 Hz, and the reflection coefficient higher than 1 in the same frequency
range. Since the duct mode instability manifests as a backward propagation, this translates into higher acoustic energy
reflected backward. Also for M, = —1.5 in Fig. 16a, we have non-passive behaviour, as expected, corresponding
once again to a |RT| > 1. Nevertheless, passivity is restored around 870 Hz, then lost again in a narrow bandwidth
around 1000 Hz, and definitively retrieved till 3 kHz. This behaviour is not simply related to the duct mode 1a solution,
which, in fact, shows unstable propagation from 500 till 3 kHz, in case of M), = —1.5. Indeed, both modes 1a and
1b participate in the scattering problem. In particular, mode 15 (check Fig. 16b) restores its passivity around 950
Hz. In order to fully identify the participation of duct modes solutions 1a and 15 (as well as of higher order modes), a
mode-matching analysis will be carried out in a future dedicated study, where all duct-mode solutions will be correlated
to a multi-modal scattering problem. In case of M, = —1 instead, mode 15 is always a plane wave (stable), therefore it
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Figure 22: Scattering coefficients for excitation coming from the left, in a 2D waveguide of cross section width & = 0.05
m with an ABL lining both sides for an extension of L = 0.3 m, in case of M, = —1, and with varying u,, = px (a), or
varying r, (b). The default values are yy, = ux =0.5 and r, = 1.
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Figure 23: Scattering coefficients in a 2D waveguide of variable cross section width 4, lined segment of length L = 0.3 m,
lined on both sides by the ABL with M, = —1, R, = pyc, and p), = px = 0.5.

does not affect the passivity of the ABL. Fig.s 22 and 23 show the effect of varying the quality factor and the duct cross
section width, respectively. The advection speed is fixed with M, = —1, hence, as said before, only the duct mode
la is impacting the passivity in the scattering solution. Indeed, the scattering coefficients of Fig.s 22 and 23 perfectly
correlate with the modal plots of Fig.s 17 and 18, with the loss of passivity confined in a bandwidth starting above 7 .
resonance. Fig. 22 confirms that by reducing the quality factor (decreasing y;; = pg or augmenting r;) we can restore
the acoustical passivity of the ABL in grazing incidence. Therefore, for any duct cross-section width, the scattering
solutions confirm the outcomes of modal analysis, according to which it should always be possible to have a passive
behaviour of the ABL in the frequency range of interest (here the plane wave regime of the rigid waveguide) by either
reducing M, or the quality factor.

Remark that, in the plane wave regime of the hard-walled duct, the scattering solutions give no information about
the energy exchanged with higher order rigid-duct modes. Indeed, those latter ones are not able to propagate along
the rigid-duct segments preceding and following the liner. Therefore, an apparent passive behaviour of the scattering
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coefficients in the plane wave regime, is not correlated to an absolute passivity as it is defined in Eq. (25). Indeed, in
order to assess absolute passivity from scattering solutions, we should solve the scattering problem at all frequencies.
In the case study reported in this paper, the passive behaviour featured by the ABL in the plane wave regime, is
actually related to the modal passivity defined in Eq. (26), relative to modes 1a and 1b. Therefore, in order to assure no
amplification of propagated energy in the frequency range of interest, the modal passivity criteria defined in Eq. (26)
plays an important role.

Finally, we remark that the loss of acoustical passivity always concerns propagation (either forward transmission
or backward reflection) in the same direction as M. This is so, in the open field case of Section 3, in the duct mode
analysis of Section 4, and in the scattering solution of the present Section.

6. Scattering simulations in 3D waveguide

Sh
£y = QQ -
“, T

0.2

ER

- T+ +
0.4 P

0.69:02

m
Figure 24: 3D geometry for scattering simulations, in case of ERs disks applied flush on the duct boundary.

In this section we simulate the scattering performances in the plane wave regime of a 3D acoustic waveguide, of
square cross section with 5 cm lateral sides, without flow. The ABL is applied along each side of the duct for a length
of 30 cm. In order to investigate the effect of discretizing the ABL by individual ERs lining the parietal walls of a
rectangular cross section duct, as in the experimental test-rig of Section 7, the ABL is applied on separate disks of
diameter 3.6 cm, simulating the ERs (6 per each duct edge), as showed in Fig. 24. The dynamics of each speaker is
simulated according to the Thiele-Small SDOF model [53].

The loudspeaker model is reported in Eq. (30), in terms of the Laplace variable s:

Zo(5)5(s) = j(s) %i(s) (30)

In Eq. (30), p(s) and &(s) are the acoustic pressure and velocity, respectively, on the speaker diaphragm, i(s) is the
electrical current in the speaker coil, Zy(s) = Mys+ Ry + K,/ s is the acoustical impedance of the loudspeaker in open
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Figure 25: Sketch of the 4-microphones ER control, corresponding to Eq. (31).

circuit, with M, Ry and K|, the corresponding acoustical mass, resistance and stiffness. The electrical current i(s) is
multiplied by the force factor B! to get the electromagnetic force, and divided by the effective area .S, to retrieve an
equivalent pressure. Observe that the impedance description of Eq. 30 is a lumped-element model, which is reliable as
long as the wavelength of the acoustic field is sufficiently larger than the size of the speaker diaphragm. This is true for
any local impedance modelling. The upper frequency of validity of the lumped-element assumption is much beyond
the frequency range of validity of the SDOF loudspeaker-model, which lies around the first speaker mode (around 468
Hz). Therefore, both the lumped-element assumption and the SDOF model are valid around the principal resonance of
the ER.

The ABL is implemented by defining the electrical current i(s) as in Eq. (31):

I(S) = HLoc(s)ﬁ(s) + ngad(s)a/\xﬁ(s)’ (31)

where p(s) and an p(s) are the estimated local pressure and its x-derivative on each speaker diaphragm, in the Laplace
domain. The local sound pressure is estimated by averaging the four microphones on the corners of each ER p = (p4 +

pp+pc+pp)/4, while the x-derivative is estimated by a first-order finite difference pr = <(pc +pp)—(Pa +p3)> /Ax,

with Ax = 4 cm the distance between the microphones before (A,B) and after (C,D) each ER speaker, along the x-
direction, as showed in Fig. 25. A time delay of 7 = 2 X 107> seconds between the pressure inputs and the electrical
current, is considered by multiplying the microphones pressures by e 7, in order to simulate the physiological latency
of the digital control algorithm of the ER [16].

The transfer functions Hy ,.(s) and ngad(s) are defined based upon the loudspeaker model of Eq. (30). Equating the
velocity of the speaker diaphragm from Eq. (30), and the velocity corresponding to the ABL (Eq. (8)), we get the
expressions in the Laplace space of Hy . and Hgg, in Eq.s (32) and (33), respectively.

S Zy(s)
H; (s5)==(1- s 32
LOC( ) Bl( ZLOC(S) ( )
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_Ze o) Uy
Bl Z; ,.(s) s

ngad(s) = th(s), (33)

where F,,(s) in Hg,q(s) is a high-pass filter necessary in order for Hy,q(jw) not to become infinite for  — 0.
Notice also, that a purely real Zj . would lead to non-causal Hy . and Hg,q, therefore we have employed the SDOF
expression of Eq. (27) for Z; . (as in Sections 4.2 and 5.2) in the correctors Hy . and H,,q. The synthesis of our
corrector transfer functions, is also called model inversion [54] approach, as the objective of the controller is to cancel
out the loudspeaker proper dynamics, and replace it with a desired acoustic behaviour. Both Hy o and H,,q depends
upon the loudspeaker own impedance model Z,. Therefore, each parameter appearing in Eq. (30) must be estimated.
The so-called Thiele-Small parameters are identified by acoustic measurements, as described in [55], and their values
are reported in Table 1. Further details upon such control strategy can be found in [16, 27].

Both Eq.s (32) and (33) are implemented in the Comsol model. From the microphones estimation of j and (fxp, the
electrical current i is obtained from Eq. (31). Hence, the loudspeaker dynamics Eq. (30) is solved for &(s), which is
then imposed on the disks representing the speaker membranes in the numerical model.

It is worthy to note that the control filters presented here in Eq.s (32) and (33) target aresonant Zj ., while in references
[30] and [31], Z; . was considered as just a mass term, limiting its applicability to frequencies above the loudspeaker
resonance.

The model showed in Fig. 24 is solved for the scattering coefficients as in Section 5. The FE mesh elements have the
same maximum size as those in Section 5.

100 i i
L M, =0
S8 50 M, = -1
0
0.03
= 002}
L 001
4 ‘ : : : 0 : :
500 1000 1500 2000 2500 3000 500 1000 1500 2000 2500 3000
Frequency (Hz) Frequency (Hz)
(a) (b)
Figure 26: Comparison between local impedance control (M, = 0) and ABL (M, = —1), in terms of scattering coefficients
in the 3D waveguide (a), and in terms of sum of all ERs electrical current spectra Y, |i| and velocity spectra Y, || (b).

In Fig. 26a, the scattering coefficients achieved by the ABL with M, = —1, are plotted along with the ones relative
to local impedance control (M, = 0), applied on each ER. The {j . parameters are set to y; = px = 0.5 and
R,; = pocp- As in the 2D case, the ABL demonstrates higher isolation capabilities, though being non-passive slightly
after resonance. Notice also the loss of passivity at high frequencies (above 2 kHz), which was not predicted by the
2D simulations. This is mostly due to the time delay [16]. In Appendix B, we briefly check the effects of the finite
difference approximation of 0; p and of time delay. In Fig. 26b, the electrical current spectra of all the ERs are summed
up to visualize how the ABL requires a much higher level of electrical current (up to 3 times at some frequencies) with
respect to the local impedance control. Also the sum of velocities on the 24 ERs is reported showing once again higher
vibrational amplitudes required by the ABL.
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Figure 27: 3D surface plots of the sound pressure field at 500 Hz, in case of local impedance control (a) or ABL with
M, = -1 (b), on the ERs.

Fig. 27 compares the sound field at 500 Hz computed in the duct for an incident pressure of 1 Pa, when local
impedance control (Fig. 27a) or ABL (Fig. 27b) is applied on the ERs. Observe how the sound pressure field gets
annihilated as soon as it enters the segment lined by the ABL. The enhancement of sound transmission attenuation for
M, = —1, with respect to the case of M, = 0, is unequivocal.

7. Experimental results

Upstream and downstream microphones >
along the tube for the scattering evaluation

VY
i

& ER microphones

'\ Ll
4

¥

ER loudspeaker

(a) (b) (c)

Figure 28: ER prototype (a); waveguide (b) for the scattering evaluation, with internal view of the lined segment (c).

In this section, the advection control law is experimentally tested on an array of 24 ER prototypes lining a squared
cross-section duct of about 0.05 m side, as illustrated in the photos of Fig. 28 and in the sketch of Fig. 29. The ERs
are placed 6 per each side of the duct, as showed in Fig. 28. Each ER has a surface area of about 0.05 x 0.05 m?, for a
total lined segment length of about 0.3 m in the duct. Both ends of the tube are filled with 45 cm of foam to reproduce
quasi-anechoic conditions at the input and output of the waveguide. An external acoustic source is placed flush with
the duct surface on both sides of the waveguide, just ahead of the foam terminations, sufficiently far from the lined
segment and from microphone locations. The external sources are excited with a sine-sweep signal from 150 Hz (lower
limit of the source-loudspeakers) to 3 kHz (to stay below the cut-on frequency of the higher rigid duct modes), in order
to characterize the broadband scattering performances of the ABL.

Each ER is controlled autonomously, and the control architecture is illustrated in Fig. 30: the signals p and 3xp
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Figure 29: Sketch of the test-bench.
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Figure 30: Sketch of the ER architecture.

on the speaker diaphragm, after being digitally converted by the Analogue-Digital-Converter (ADC), are fed into a
programmable digital signal processor (DSP) where the output of the control is computed at each time step. The
Howland current pump [56] allows to enforce the electrical current i in the speaker coil independently of the voltage
at the loudspeaker terminals. It consists of an operational amplifier, two input resistors R;, two feedback resistors R,
and a current sense resistor R;. The resistance R, and capacitance C, constitutes the compensation circuit to ensure
stability with the grounded load [57]. More details can be found in [16].

All ERs and control interfaces have been produced in the Department of Applied Mechanics at FEMTO-st Institute.
The control laws have already been defined in Section 6, by Eq. (31), (32), (33), and the loudspeaker parameters
provided in Table 1. The four scattering coefficients have been estimated according to the two-source method [52].

In Fig. 31, the I L; from measurement is compared to the one obtained from 3D simulations (given in Section 6),
for upr = ug = 0.5, R; = pycy and M, = —1. Observe how, despite the inevitable model uncertainties, the trends
before and after the resonance peak are well captured by the 3D simulations, except around 1.5 kHz where an additional
speaker mode appears, as in [16]. The peak of more than 100 dB of attenuation predicted by the simulations, is not
visible experimentally. This is indeed due to the very low signal-to-noise ratio at microphone 3 caused by the extreme
isolation accomplished by the ABL. This prevents the detection of very high I L values, as confirmed by the low level
of coherence around resonance, of the transfer functions between microphones on opposite sides with respect to the
lined segment (check the coherence of transfer function Hj ; between microphones 3 and 1, in Fig. 31).

Fig. 32a and 32b show the experimental scattering coefficients for incident field toward +x, with varying M, and

R, respectively. The default parameters are set to u,, = ug = 0.5, R; = pycy and M, = —1. Fig. 32a confirms
the higher isolation achieved by increasing the absolute value of M, < 0, though the I L; for M, = —1.5 does not
look significantly augmented with respect to M, = —1. This, once again, can be explained by an excessively low
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Figure 31: Comparison between measurements (in red) and simulations (in blue) for ABL with u,, = ux = 0.5, R, = pyc,
and M, = —-1.
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Figure 32: Experimental scattering performances for incident field propagating toward +x, achieved by the ABL with
varying M, (a), or varying R,. The default parameters are set to p,, = pux = 0.5, R, = pyc, and M, = —1.

signal-to-noise ratio of microphones after the lined segment (microphones 3 and 4 for positive propagation), and the
consequent low coherence of the corresponding transfer function. The reflection and absorption coefficients though,
are still able to follow the expected trends, with the loss of passivity immediately after resonance. Notice that the ABL
allows to increase both isolation peak and frequency bandwidth, prospecting its efficiency for both broadband and tonal
noise attenuation when applied to turbofan noise. Fig. 32b also validates the numerical predictions both in terms of
isolation performances and passivity, demonstrating that increasing the quality factor brings about an excess in the
backward reflection, endangering passivity above resonance. Observe, in Fig. 32a, the reduction of passivity from 1.8
kHz and above with higher |M|. This is due to a combined effect of time delay and the first order approximation of
d,.p, which is clearly amplified for higher values of | M.
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Figure 33: Scattering performances relative to external incident field propagating toward +x (“forward”, in solid red)
compared to the ones relative to "backward” incident field (in solid green), in case of ABL with p,, = puyx = 0.5, R, = pyc,
and M, = —1.

The broadband non-reciprocal character of the advective BC is evident by looking at Fig. 33, where the “forward”
scattering coefficients (corresponding to the first column of the scattering matrix of Eq. (28)), are plotted along with the
“backward” scattering coefficients (corresponding to the second column of the scattering matrix of Eq. (28)), in case of
Hpy = g =0.5,r; =1 and M, = —1. Observe that, in the backward direction, we do not have perfect transmission.
Indeed, because of time-delay and model-uncertainties in the actual control system, the model-based correctors Hy .
and H,,  of Eq. (32) and (33) are not capable to fully cancel out the actuator dynamics, leading to residual non-zero
loudspeaker response and non-perfect transmission in the backward direction. Further details on the limitation of
such corrector synthesis approach can be found in [16]. Nevertheless, I L; never overcomes 18 dB, while for forward
propagation 1 L; is significantly higher than 25 dB from 300 to 700 Hz, and higher than 50 dB close to resonance.
Notice that such non-reciprocal propagation is achieved in the bandwidth of {7 .., while in [31] it was accomplished
only above resonance. This is due to the different definitions of Hy . and Hy,q, Which are here targeting the frequency
range around { . resonance, allowing to significantly enhance both isolation and non-reciprocal performances in the
target bandwidth.

8. Conclusions

In this article we have provided a detailed discussion of the Advection Boundary Law, which is composed of a
local impedance component and a convective term. Starting from its theoretical conception of Section 2, such operator
is defined, for the first time, as a degeneration of a Dirichelet-to-Neumann mapping of a semi-infinite non-isotropic
propagative domain, on the boundary. As the surface impedance operator can be seen as a special case of Advection
Boundary Law, the general framework originally employed by Morse [38] to introduce the surface impedance concept,
is here retrieved and generalized to include our advective boundary operator. The derivation based upon the Dirichelet-
to-Neumann mapping, clarifies that the Advection Boundary Law cannot be introduced by passive means. First of all,
because introducing artificial advection clearly requires external energy to be provided to the physical (non-convective)
domain. Moreover, it is very hard to imagine a passive system allowing to reproduce the interface with a semi-infinite
domain which, at the same time, allows advection but not propagation along the axial direction, especially if an
advection speed close to the speed of sound is targeted as in the results reported here.

The semi-infinite approach naturally leads to the open-field scattering problem and the corresponding reflection
coefficient formula (Section 3). The open-field solution allows the definition of acoustical passivity in open field from
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the absorption coefficient (related to the normal acoustic intensity at the boundary) which, in case of our Advection
Boundary Law, depends upon the incidence angle. Following a step-by-step increase in complexity, we discuss the
duct-mode solutions in a 2D waveguide without flow in Section 4. In particular, we first analyse the case of purely
real local impedance term (Section 4.1), and then the case of complex local impedance term (Section 4.2). The duct
mode analysis leads to the distinction between absolute and modal passivity. In case of purely real local impedance,
the passivity limits in open-field assure the absolute passivity in grazing incidence. Indeed, in case of purely real local
impedance component ¢ ., the scattering coefficients perfectly correlate with the first duct mode solutions, in terms of
isolation performances, modal passivity and non-reciprocal propagation. The enhancement of isolation performances
induced by the Advection Boundary Law, for excitation field propagating against the artificial advection, manifests
itself with higher backward reflection. Nevertheless, in case of reactive local impedance, the passivity limits in open-
field do not assure absolute passivity in grazing incidence. In particular, for a boundary advection speed against the
incident field, modal passivity is affected by both the reactive component of the local impedance, and the boundary
advection speed. Moreover, such impact is stronger for narrower ducts. Nevertheless, for any duct-cross section sizes,
it is always possible to restore stability of the duct-modes of interest, i.e. to assure the corresponding modal acoustical
passivity of our Advection Boundary Law. The 2D duct-mode analysis is followed by the resolution of the 2D scattering
problem. The correlation between the two studies is evident, in terms of passivity, attenuation levels and non-reciprocal
propagation. In particular, in case of complex (j ., the loss of acoustical passivity related to a reversed direction of
duct-mode propagation (change of sign of Re{k}), corresponds to a backward reflection coefficient higher than 1. The
unstable propagation always happens in the same sense as the artificial advection. A future study will be dedicated to the
resolution of the scattering problem by mode-matching techniques, allowing to visualize numerically the correlation
between modal and scattering solutions.

In order to guarantee no amplification of propagated energy in the frequency range of interest, the modal passivity
plays an important role. In this paper, we have provided a physical quantity able to assess both acoustical passivity
limits and attenuation levels, in Section 4. It is the sine of the elevation angle of modal local group velocity at the
boundary. Such quantity can be employed for liner optimization purposes. In case of the Advection Boundary Law,
we demonstrated that the best choice (to avoid non-passive behaviours and optimize isolation) of local impedance
coefficients and advection speed are strictly related to the size of waveguide cross section. Increasing the advection
speed in the opposite direction with respect to the noise propagation of interest, leads to higher elevation angles of
modal group velocity at the boundary without narrowing the efficient frequency bandwidth. The optimal advection
speed will correspond to the maximum value of the sine of such elevation angle before it becomes negative, which
would mean non-passive boundary behaviour. Alternatively to the advection speed tuning, the quality factor of the local
impedance operator can be increased to sharpen the peak of isolation (but the frequency bandwidth will be reduced), or
it can be decreased to enlarge the passivity margin. As in the case of advection speed, the maximum allowable quality
factor before non-passive behaviour, corresponds to the value preceding the change of sign of the sine of elevation angle
of the boundary modal group velocity. Notice that, if both directions of propagation are of concern, the modal group
velocity at the boundary should be analysed also for the propagation in the same direction as the artificial advection.
The nice physical interpretation of the elevation angle of modal group velocity at the boundary, also allows to clarify
the mechanism leading to enhanced attenuation achieved by the Advection Boundary Law, and should be taken into
account for the design of next generation liners.

The final step of complexity in the numerical simulations, is the 3D scattering solution provided in Section 6, where the
Advection Boundary Law is discretized and implemented on Electroacoustic Resonators, composed of a loudspeaker
and four microphones. The 3D scattering results confirm that the enhanced isolation performances are still achieved
despite the boundary discretization, and provide an intermediate step before the experimental validation of Section 7.
An array of programmable Electroacoustic Resonators lining an acoustic waveguide allows to implement the Advection
Boundary Law in real life. The measurements validate the Advection Boundary Law accomplishments in terms of
enhanced isolation, passivity and non-reciprocal sound propagation, despite the physiological limitations of digital
control algorithms.

Because of its non-natural and non-local character, special attention must be given when implementing the Advection
Boundary Law. In this paper, we have provided a range of interpretational and numerical tools to guide the control users
when implementing such special boundary control, in order to maximize its isolation performances, avoid non-passive
behaviours, and/or achieve the desired non-reciprocal propagation.
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This first study has analysed the Advection Boundary Law in the plane-wave regime and in absence of mean flow.
Such work has put the necessary bases for the Advection Boundary Law to tackle more complex guided propagation
problems, including airflow convection and multi-modal propagation.

Appendix A Duct modes problem formulation

Consider an infinite duct of constant cross-section .A in the plane y, z (as in Fig. 1) with boundary 0.4 and normal
n. Assuming a time-harmonic sound field in the usual complex notation (+jwt) in the duct, the wave equation reduces
to the Helmholtz equation:

Vi +kip=0. (A.1)

Such sound field must also satisfy the generic BC B(p) = 0 on the wall 0.4. The solution to this problem can be
written as:

o0
Bt,0,%,7,2) = e Y Ay, (@, y, 2)e @, (A2)

m=0

where v, (¥, z), the so-called duct modes, are the eigenfunctions of the transverse Laplace operator reduced to .A
satisfying the BC B[p] = 0 on d.A, i.e. they are solution of the eigenvalue problem:

Vizl’/m(.% 2) + (kg — ki,m)u/m(y, z)=0 fory,z€ A
Bly,(y,2),ky ,,]1 =0 fory,z€dA,

(A.3)

where Viz denotes the Laplacian operator in y, z (following the notation of [36]), whose eigenvectors and

eigenvalues are the duct mode shapes y,,(y, z) and (kg — k)zc’m), respectively. Observe that for classical liners, the
BC does not involve the axial wavenumber k, ,,.

We now formulate the duct mode problem in case of ABL as BC, in which the locally reacting liner is a special
case (for M;, = 0). The duct-modes eigenvalue problem writes:

V2 Wy, 2) = (kg = k3 W, (1.2) =0 fory € A (Ada)

n-Vy,(3,2) = —foc <k0 — Mbkx’m>y/m(y, z) forye€odA. (A.4b)

Notice the non-standard character of such eigenvalue problem, where the eigenvalue appears in the BC as well.
Solutions for such eigenvalue problem can be found by FEs. The weak formulation of the eigenvalue problem of Eq.s
(A.4) is reported in Eq.s (A.5), where r is the test function for the duct mode y,,,. The integration by parts (application
of Green formula) is given in Eq. (A.5b), and the final expression, with the assimilation of our BC, in Eq. (A.5c).
Hence, our eigenvalue problem with an eigenvalue-dependent BC, can be solved directly in its weak-form, by FEs.

/A l[’\/ViZI[/m dydz + (kg = k2., /A Gy, dydz =0 (A.52)
/ Wo,w,, dydz — / VW - Vo, dydz + (kg — k2,) / gy, dydz =0 (A.5b)
0A A A
—MLoc <k0 - M,,kx,m> / Py, dydz — / VWV, dydz + (ki — K2, / Py, dydz=0  (A.5c)
A A A
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Appendix B  Effect of discrete pressure evaluation and time delay in the 3D numerical
model

100 F 7 =0, press from average on speakers
" 7 =0, press from mics
> .
N 5t T=2x 107" s, press from mics
- ,

-1 ‘ : : : :
500 1000 1500 2000 2500 3000
Frequency (Hz)

Figure B.1: Scattering coefficients in a 3D waveguide of cross section width A = 0.05 m lined with ABL (y,, = ux = 0.5,
R, = pycy, M, = —1), in case of pressure average evaluation on speakers and no delay (in blue), in case of pressure
evaluated from microphones averaging (see Fig. 25) and no delay (in red), and in case of pressure evaluated from corner
microphones and with time delay (in yellow).

In order to assess the effect of the pressure estimation from the 4 corner microphones on each ER, in case of ABL,
in Fig. B.1 we report the simulated scattering performances in a 3D waveguide, when p and 9, p are retrieved from
the average values on each ER disk (solid blue), or when p and 3x p are obtained from the 4 corner microphones (solid
red). In dotted yellow, we also report the simulations results when a time delay 7 = 2 x 10> seconds is considered
in the controller. Observe that, employing the corner microphones to estimate p and éx p slightly affects the scattering
performances around resonance and reduce the high-frequency passivity. The addition of a time delay in the control
algorithm strongly affects the acoustical passivity at high frequencies, with a;' and [ L;‘ becoming negative, as expected
[16].
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