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Abstract: Marginal lands have been proposed to produce non-food crop biomass for energy or
green materials. For this purpose, the selection, implementation, and growth optimization of plant
species on such lands are key elements to investigate to achieve relevant plant yields. Stinging nettle
(Urtica dioica) is a herbaceous perennial that grows spontaneously on contaminated lands and was
described as suitable to produce fibers for material applications. Two mercury-contaminated soils
from industrial wastelands with different properties (grassland soil and sediment landfill) were used
in this study to assess the potential growth of stinging nettle in a greenhouse mesocosm experiment.
Two organic amendments were studied for their impact on nettle growth. The solid digestate from
organic food wastes significantly doubled plant biomass whereas the compost from green wastes
had a lower impact. The highest doses of organic amendments significantly increased the number of
fibers, which doubled following digestate application, while reducing leaf Hg concentration. Both
amendments significantly improved soil respiration and enzymatic activities linked to the microbial
biomass in the soil from the sediment landfill by the end of the experiment. In the context of a
phytomanagement scenario, solid digestate would be a preferred amendment resource to improve
nettle production on industrial wastelands.

Keywords: compost; digestate; enzymatic activities; fiber; marginal lands; N fertilization

1. Introduction

Due to global population growth, agricultural food production has become more
important over the years, putting great pressure on the environment [1]. Other needs
linked to the bio-based economy (e.g., bioenergy, biomass, fiber) have emerged and have
generated new competition for land use between food and non-food crops since the early
2000s [2,3]. Due to low fertility and high environmental stress, marginal lands are unsuitable
for food cultivation but have been proposed as relevant land to produce biomass for energy
or green material purposes [4,5]. In Europe, marginal lands cover an estimated area of
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39 to 111 million hectares [6,7], and their use for cultivation can meet the needs of a circular
economy action plan and bioeconomy strategy from the European Green Deal [8,9].

Among marginal lands, trace element (TE)-contaminated soils have been described as
a relevant alternative to produce biomass for material applications [10,11]. In addition to the
potential economic benefit of biomass production on these lands [12,13], vegetation cover
also provides environmental benefits. For example, it can help to prevent the dispersion
of contaminated soil particles, reduce the mobility of metals in the rhizosphere [14], and
improve soil properties (e.g., organic matter and nutrient content, biological activity) [15].
Although some TE-tolerant plant species growing or implemented in contaminated or
polluted soils are known to accumulate TE [16,17], others such as industrial hemp (Cannabis
sativa L.) or ramie (Boehmeria Nivea) exhibit a low bio-concentration factor in the aerial
parts. Combined with a high yield crop, the biomass produced can be used for industrial
fiber applications [18,19]. However, biomass production should be sufficient and slightly
impacted by soil contamination, with yields almost similar to those on uncontaminated
soils [20]. Thus, plant tolerance to abiotic stress (e.g., nutrient deficiency) is the most
important consideration for establishing a biomass crop on these lands [21,22]. Under
such conditions, modifications of the biosynthesis of compounds through specialized
metabolism can be observed in plant parts [23,24]. Among these metabolites, phenolic
compounds are often produced as a result of the stress response [25]. These metabolites are
abundant in plants and involved in different physiological processes such as growth, stress
defense, and antioxidant protection [26,27]. Thus, phenolics are considered to be involved
in the adaptation of the plant to its environment [28].

Stinging nettle (Urtica dioica) is a herbaceous perennial plant that grows spontaneously
on contaminated lands, notably in mercury (Hg)-contaminated soils, and that produces
fibers that can be used for material applications [29]. Hg contamination has increased over
the last few decades and is of concern because of its toxicity to humans and ecosystems
and its potential accumulation by plants [30]. Nettle grown under pot-based laboratory-
scale experiments exhibited excess levels of metals, above the toxic levels reported by
Kabata-Pendias [31], while plant material collected from in situ contaminated sites had
TE levels below toxic levels [32]. Although U. dioica is native and able to grow in TE-
contaminated soils, its cultivation in the context of biomass and fiber production has not
yet been investigated. Urtica dioica is usually described as a nitrophilous species [33] for
which cultivation requires high doses of nitrogen (N) fertilization [32,34]. As a perennial
plant, annual re-establishment is not necessary. A duration of four to five years has
been described for a stinging nettle crop [35], to a maximum of 10 years with high weed
control [32,36]. Although U. dioica competes poorly with weeds [37], Müllerová et al. [38]
improved stinging nettle expansion and regeneration in cut grasslands using N fertilization
(along with phosphorus (P) and potassium (K)). The use of amendments constitutes a
factor that assists plant adaptation by improving nutrient availability, soil physicochemical
properties, and microbial activity [39–41].

Due to the environmental impacts of inorganic fertilizers [42,43], the use of organic
amendments is now encouraged as an alternative to improve both soil fertility and carbon
(C) storage [44]. Organic amendments can be produced from agricultural residues or
food wastes, and must be rigorously selected as they can have different effects [45,46].
Among these amendments, compost, which results from the stabilization and sanitation of
organic waste by aerobic decomposition, is a well-known product [47]. Digestate is another
organic amendment, either as solid or liquid material, which is produced under a controlled
anaerobic fermentation process from biodegradable materials [48]. The production of such
fertilizers from bio-wastes can therefore be part of the bio-based circular economy concept
by reincorporating waste materials into the production cycle [49,50], as well as potential
substitutes for mineral N fertilizers [51,52].

N cycling in the soil is crucial for plant development and crop yield [53], and N is
released from compost and solid digestate slowly over time through mineralization [54,55].
N availability is primarily driven by microbial reactions [56]. Soil microorganisms pro-
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duce extracellular hydrolytic and oxidative enzymes involved in C, N, and P cycling and
therefore participate in the breakdown of organic matter [57,58]. These enzymes can be
stimulated or inhibited by N application [59,60] impacting soil nutrient availability [61].
Moreover, compost and digestate, through adsorption mechanisms and enhancement in
microbial activity, may also be involved in soil contaminant immobilization and thus plant
uptake limitation [62,63]. Their use therefore appears to be relevant in the context of
biomass production from contaminated lands.

The present study aimed to investigate the fitness of U. dioica growth on Hg-contaminated
soils and to determine the most effective organic amendment (compost: C or digestate: D)
and dose (+; ++; +++) for biomass production improvement. We conducted the experiment
on two industrial soils with different properties, but both were contaminated with Hg.
Stinging nettle plants were grown in pots and amended with compost or solid digestate
at different doses. Plant parameters (i.e., biomass, height, stem diameter, chlorophyll
content, photosystem II (PSII) activity, phenolic compounds, N and Hg concentrations, fiber
characteristics) were measured to evaluate the growth of U. dioica on these contaminated
soils. Soil parameters (i.e., soil respiration, double-stranded DNA (dsDNA) concentration
and enzymatic activities) were assessed to identify the effect of organic amendments on soil
activities and microbial biomass that can impact plant growth. We therefore hypothesized
that the use of organic amendments would (i) improve nettle fitness in Hg-contaminated
soils and (ii) sustain biomass production by improving soil microbial biomass and activities.

2. Results
2.1. Main Impacting Factors and Effect of the Soil on Nettle Growth

All replicates survived during the experiment, with PSII activity that ranged from
0.75 to 0.78 in both soils (Table S1). The application of amendments significantly decreased
the chlorophyll content, except for D++, which resulted in the opposite effect (Table S1).
Leaves (<153 µg·kg−1 DW) and stems (≤72 µg·kg−1 DW) exhibited low Hg concentrations
regardless of the soil considered (Table 1). However, D++ significantly divided the Hg con-
centration in the leaves of nettles from the Tavazzano soil by 2.3 and the Hg concentration
in the leaves and stems of nettles from the St-Symphorien-sur-Saône soil by 1.5.

Table 1. Mean Hg concentration (n = 5, expressed as µg·kg−1 DW ± SE) in the leaves and stems
of Urtica dioica after 83 days of cultivation on contaminated soils (St-Symphorien-sur-Saône and
Tavazzano) depending on the nature of amendment (C: compost; D: digestate) and rate applied (+; ++;
+++). Different letters indicate significant differences between treatments and soils (Kruskal–Wallis
test, p < 0.05).

Soil Treatment
Leaf Hg

Concentration
(µg·kg−1 DW)

Steam Hg
Concentration
(µg·kg−1 DW)

St-Symphorien-sur-Saône

Control 110.8 ± 15.3 ab 58.8 ± 4.0 efg
C++ 130.2 ± 3.5 a 50.0 ± 6.6 ghi

C+++ 134.5 ± 14.9 a 72.0 ± 10.1 cdef
D+ 101.1 ± 2.7 abc 59.4 ± 8.1 efg

D++ 74.1 ± 14.0 defg 36.0 ± 7.9 hi

Control 109.3 ± 23.3 abcd 39.9 ± 5.5 hi
C++ 73.5 ± 5.5 bcde 50.2 ± 7.7 ghi

Tavazzano C+++ 152.5 ± 37.2 a 50.9 ± 7.2 fgh
D+ 64.5 ± 11.3 efg 34.5 ± 4.4 hi

D++ 47.6 ± 3.9 ghi 33.2 ± 2.2 i

When all the measured variables were considered, the applied dose of amendment
was the main impacting factor (R2 = 0.53, p = 0.001), followed by the treatment (i.e., nature
of amendment × dose × soil; R2 = 0.10, p < 0.05). The two first principal components
explained 59.6% and 51.2% of the total variance in the whole dataset for St-Symphorien-sur-
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Saône and Tavazzano soils, respectively, with digestate samples that seemed to separate
from the control rather than the compost samples (Figure 1a,c). Plant parameters (i.e.,
aboveground biomass, plant height and leaf area) contributed the most to the variability of
the data, along with enzymatic activities involved in N and P cycles (i.e., chit, leu, acP, bisP)
for both soils (Figure 1b,d). Except for xilo and uroni, the enzymatic activities involved in
the C cycle contributed the least, along with soil respiration and dsDNA for the Tavazzano
soil. Finally, the soil had a low significant impact on the variability of the dataset (R2 = 0.05,
p < 0.01). However, control plants grown on the Tavazzano soil produced significantly
twice more aboveground biomass than nettles grown on the St-Symphorien-sur-Saône soil
(Figure 2a,d). Nettles resulted in significantly higher plants (Figure 2c,f) with a higher stem
diameter (Figure 3a,b).
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Figure 1. Principal component analysis (PCA) plots showing the ordination of the samples depending
on the nature of amendment (C: compost; D: digestate) and rate (+; ++; +++) applied using the whole
dataset for (a,b) St-Symphorien-sur-Saône and (c,d) Tavazzano soils. The ellipses represent a 95%
confidence interval. Vectors are colored depending on their contribution to the overall distribution
and indicate the direction and strength of each environmental variable.
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Figure 2. Impact of organic amendments on plant growth parameters (n = 10). (a,d) Aboveground and
belowground dry biomass (g ± SE); (b,e) relative growth (% ± SE) of nettle plants during cultivation
(days) and (c,f) final plant height (cm ± SE) of Urtica dioica after 83 days of cultivation depending on
the nature of the amendment (C: compost; D: digestate) and the rate (+; ++; +++) applied to (a–c) St-
Symphorien-sur-Saône and (d–f) Tavazzano soils. Different letters indicate significant differences
between treatments and soils for each variable (Kruskal–Wallis, p < 0.05).
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Figure 3. Impact of amendments on nettle stem parameters. Mean stem diameter (mm), internode
length (cm), and number of internodes (n = 10 ± SE) per stem after 83 days of cultivation depending
on the nature of amendment (C: compost; D: digestate) and rate (+; ++; +++) applied to (a) St-
Symphorien-sur-Saône and (b) Tavazzano soils. Different letters indicate significant differences
between treatments and soils for each variable (Kruskal–Wallis test, p < 0.05).
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2.2. Impact of the Nature and Dose of Amendments on Plant Growth

The D+, D++, and C+++ treatments significantly increased the production of below-
ground biomass of nettles in the St-Symphorien-sur-Saône soil (Figure 2a). The nature of
the amendment and the dose applied mainly affected the final aerial biomass (F = 147.2;
p < 0.001 and F = 86.3; p < 0.001, respectively) rather than the soil (F = 24.7; p < 0.001). At
harvest, only the plants that grew under the highest dose of digestate reached the flower-
ing stage. In the St-Symphorien-sur-Saône soil, C+++ and D+ significantly doubled the
produced aboveground biomass, while D++ more than quintupled it (Figure 2a). During
the first four days of cultivation, C+++ and D++ significantly reduced the relative growth
compared to control plants, while the positive impact of these treatments started to be
significant after 49 days of cultivation in this soil (Figure 2b). From 63 days, D++ signifi-
cantly improved the relative growth compared to all the other treatments. At harvest, the
plant height followed the same increase as above- and belowground biomass, with nettles
significantly taller with digestate and C+++ compared to control plants (Figure 2c).

All amendments and doses applied to the St-Symphorien-sur-Saône soil significantly
improved the stem diameter, and C+++ and D++ resulted in significantly more and longer
internodes (Figure 3a). Concomitantly, the number of fibers increased significantly by
1.3 and 2.4 times under the C+++ and D++ treatments, respectively (Figure 4). Conversely,
the fertilization did not significantly impact the fiber diameters, which ranged on average
from 37 to 49 µm, or the wall thicknesses (Table S2). Among the plant parameters measured,
plant height largely explained the aboveground biomass (F = 835.1; p < 0.001), followed
by the leaf area (F = 26.7; p < 0.001), the number of leaves (F = 24.2; p < 0.001), and stem
diameter (F = 9.6; p < 0.01).
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Figure 4. Impact of amendments on the quantity of fibers in nettle stems. Mean number of fibers from
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In the Tavazzano soil, D++ significantly almost doubled the belowground biomass,
while the compost application significantly decreased it (Figure 2d). However, only di-
gestate application significantly improved the aerial biomass of nettle (Figure 2d). When
applied to the Tavazzano soil, D++ significantly slowed the relative growth during the
first eleven days of cultivation before significantly increasing it after 63 days compared to
all the other treatments (Figure 2e). At harvest, only D++ significantly doubled the plant
height without the impact of the other treatments (Figure 2f). In this soil, only the digestate
application had an impact on the stem diameter, and only D++ significantly improved
the number and length of internodes (Figure 3b). Among the measured plant parameters,
plant height mainly explained the aboveground biomass (F = 782.1; p < 0.001), followed
by the number of leaves (F = 65.9; p < 0.01), which was the second explanatory factor of
aerial biomass before leaf area and stem diameter (F = 23.3; p < 0.01 and F = 24.8; p < 0.01,
respectively).

2.3. Responses of Soil Activities to Compost and Digestate Application

In the two control rhizospheric soils, alkP, butyr, nona, bisP, leu, and acP enzymatic
activities had the highest values (Figure 5a,c; Table S3). Only the compost application
slightly but significantly increased the soil pH of the Tavazzano soil at the end of the
experiment compared to the control soil (pH = 7.5 and 7.3 in the soil amended with
compost; and pH = 6.9 in the control soil), while other treatments did not impact the
pH of the soil (Table S4). However, amendment application significantly impacted the
enzymatic activities, with the highest impact of the dose compared to the low impact
of the treatment (nature of amendment × dose × soil) and the soil (R2 = 0.39, p = 0.001;
R2 = 0.07, p < 0.01; R2 = 0.04, p < 0.05, respectively). Despite not being the most impacting
factor, the Tavazzano control soil exhibited significantly higher enzymatic activities than
the St-Symphorien-sur-Saône soil. In both soils, all the amendments, except D+ in the
Tavazzano soil, significantly increased butyr (four- and five-fold with C+++ and D++ in the
St-Symphorien-sur-Saône soil) and nona (seven-fold increase with the two higher doses of
amendments in the St-Symphorien-sur-Saône soil) esterase activities (Figure 5a,c). All the
amendments significantly increased the activities of xilo and uroni involved in the C cycle
in the St-Symphorien-sur-Saône soil, but the activities remained low (<1 nmol 4-MUF·g−1

soil per hour) (Figure 5a). The digestate significantly increased the enzymatic activities
involved in the N cycle, which were, respectively, twice (leu in both concentrations and chit
with D+) and three times (chit with D++) higher than in the control (Figure 5a). C+++ and
D++ resulted in significantly higher piroP and alkP enzyme activities, and the same was
observed for acP, bisP, and aryS activities also with C++. However, amendment application
had a lower impact on the enzymatic activities in the Tavazzano soil. C+++ significantly
increased the activities of alfaG, xilo, alkP, and bisP (Figure 5b, Table S3). In contrast, the
activities of leu, acP, bisP with D+, aryS with C++ and D++, and uroni with digestate and
C+ were slightly but significantly decreased compared to the activities in the control soil
(Figure 5b).

At the end of the cultivation period, all the amendments except C++ significantly
improved the respiration of the St-Symphorien-sur-Saône soil, which doubled with diges-
tate application (Figure 6a). Both amendments significantly increased dsDNA (Figure S1),
which was correlated with soil respiration and enzymatic activities involved in C and N
cycles (i.e., xilo, uroni, chit, and leu), alkP, and butyr activities (Figure 5b). In contrast, only
the digestate application significantly impacted the respiration of the Tavazzano soil, with a
two-fold increase with D++ treatment (Figure 6b). No correlation between soil respiration,
dsDNA, and enzymatic activity was observed (Figure 5d).
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Figure 5. Impact of amendments on rhizospheric soil enzymatic activities. (a,c) Mean (n = 10)
enzymatic activities (EA) expressed in nanomoles of 4-MUF·g−1 or AMC·g−1 soil per hour involved
in carbon (C), nitrogen (N), phosphate (P), and sulfur (S) cycles and esterases depending on the
nature of amendment (C: compost; D: Digestate) and rate (+; ++; +++) applied. * indicates a mean
significantly different from that of the control treatment for each soil (Kruskal–Wallis or Tukey’s
test, p < 0.05); - indicates a lower mean than that of the control. (b,d) Spearman’s correlation matrix
between soil respiration (S.Resp), dsDNA, nitrogen (N) concentration, and enzymatic activities in (a,b)
St-Symphorien-sur-Saône and (c,d) Tavazzano rhizospheric soils. Only the significant correlations
are represented.
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Figure 6. Impact of amendments on soil respiration. Soil respiration (µgC/day/g soil; n = 5 ± SE)
after 83 days of cultivation on the (a) St-Symphorien-sur-Saône and (b) Tavazzano soils depending
on the nature of amendment (C: compost; D: digestate) and rate (+; ++; +++) applied. Different letters
indicate significant differences between treatments for each soil (Kruskal–Wallis test, p < 0.05).
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2.4. Impact of Organic Amendments on Leaf Phenolic Compounds

The percentage of N in nettle leaves was not significantly impacted using compost
and digestate or by soil (i.e., ~2% on average) (Figure S2). However, the soil (R2 = 0.33,
p = 0.001), the treatment (nature of amendment × dose × soil; R2 = 0.28, p = 0.001), and, to
a lesser extent, the dose of applied amendment (R2 = 0.14, p < 0.01) significantly impacted
the leaf phenolic compound concentration.

Hydroxycinnamic acids (HCAs) and flavonoids constituted the main soluble phe-
nolics detected in the nettle leaves. Caffeoyl esters (i.e., HCA1) and more specifically
chlorogenic acid (i.e., CGA; 33.8 ± 2.2% and 27.4 ± 2.0% of total phenolic compounds for
the St-Symphorien-sur-Saône and Tavazzano soil, respectively) and caffeoyl malic (i.e.,
CMA; ~37% of total phenolic compounds for both soils) mainly represented the phenolic
compounds (Figure 7a,b). Flavonoids were the second most abundant phenolic com-
pounds (12.90 ± 0.81% and 16.43 ± 1.12% on average for the St-Symphorien-sur-Saône and
Tavazzano soils, respectively) followed by p-coumaric esters (i.e., HCA2; 5.8 ± 0.6% and
7.4 ± 1.5% on average for the St-Symphorien-sur-Saône and Tavazzano soils, respectively).
Overall, amendment application (except with C+++) significantly halved and divided by
four the total phenolic compounds and HCA1 concentration in the leaves of nettles from
the St-Symphorien-sur-Saône soil (Figure 7a). C++ and D++ significantly decreased the
HCA2 concentration, while only C++ significantly reduced the flavonoid concentration
by three times. In contrast, applying amendments to the Tavazzano soil significantly in-
creased the leaf total phenolic compounds and HCA1 concentrations by three- to four-fold
(Figure 7b). Only digestate significantly increased and almost tripled the HCA2 concen-
tration (Figure 7b), while all amendment treatments at least significantly doubled the
flavonoid concentration.
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Figure 7. Impact of amendments on leaf phenolic compounds. Mean leaf total phenolic, hydrox-
ycinnamic acid 1 (HCA1), hydroxycinnamic acid 2 (HCA2), and flavonoid concentrations (n = 5,
mg·g−1DW ± SE) depending on the nature of amendment (C: compost; D: digestate) and rate (+; ++;
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abundances in percentage (chlorogenic acid (CGA), caffeoylmalic acid (CMA) and others are related
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phenolic compounds (Kruskal–Wallis test, p < 0.05). * indicates significant differences from the control
for each considered compound and for each soil (Tukey’s test, p < 0.05).
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These observed changes in concentrations did not strongly impact the quantitative
abundance of the CMA and flavonoid compounds. In the St-Symphorien-sur-Saône soil,
C++ significantly reduced the abundance of CGA by ten and concomitantly increased
the abundance of HCA2 by six with D+ treatment (Figure 7a). In the Tavazzano soil,
D+ significantly increased the abundance of CGA by more than 10% but decreased the
percentage of HCA2 by three to four along with compost (Figure 7b).

3. Discussion
3.1. Urtica dioica Can Be Grown in Hg-Contaminated Soils, but Its Growth Is Impacted by
Soil Properties

Urtica dioica grows spontaneously in contaminated lands but its cultivation in such
soils has not been previously studied. However, the contamination by inducing stress can
affect plant growth and physiology [64,65]. In this context, assessment and improvement of
plant growth and physiological traits are important [66]. In our study, stinging nettle grew
well in Hg-contaminated soils, with a photosystem II photochemical efficiency slightly
below 0.8, suggesting that the nettles were not stressed by soil conditions [67,68]. The two
soils investigated in the present study exhibited different soil properties, particularly in
terms of Hg concentration, which was six times higher for the Tavazzano soil. However,
the levels of Hg found in the tissues of nettles grown in both soils were similar to those
measured in crops (e.g., 6–139 µg·kg-1, [31]), suggesting that Hg was poorly transferred to
the aboveground part of the plant, as previously described [29,69,70]. However, the Hg
levels were approximately five times greater than those found in our previous study [71],
which is probably because the nettle leaves from the present study were much younger,
closer to the soil, and probably more active in terms of Hg uptake.

The stinging nettles grown in the Tavazzano soil produced overall more biomass, with
higher plants and greater stem diameters than the nettles from the St-Symphorien-sur-
Saône soil. Soil is the main driver of nettle growth, and although the Tavazzano soil is
slightly lower in N, it contains more phosphorus, more clay, and two times less organic
matter than the St-Symphorien-sur-Saône soil. This suggests that, probably more than N,
described as the most important element in stinging nettle nutrition [72], P and soil texture
are important parameters for the growth and development of U. dioica.

3.2. Solid Digestate Has a Greater Impact Than Compost on Stinging Nettle Growth

Compost and solid digestate have been described as effective amendments to improve
plant growth [73,74]. Nevertheless, the effects of digestate described in the literature are
highly variable due to the dose, fraction (i.e., liquid or solid), the type of feedstock used
for digestion, and the type of soil studied [75]. In our study, the application of digestate
and compost had different impacts. The two higher doses of amendments (C+++ and
D++) increased the biomass, relative growth, plant height, stem diameter and length,
and number of internodes of nettle grown in the St-Symphorien-sur-Saône soil. In the
Tavazzano soil, only digestate significantly improved plant growth parameters. Overall,
the nature of the amendments had a great impact on plant parameters since the effect
of compost differed according to the soil type [76]. Notably, D++ significantly increased
all measured parameters compared to compost while providing half as much N. In the
St-Symphorien-sur-Saône soil, D+ significantly doubled plant biomass, as did C+++, while
C++ did not improve biomass. Thus, much more compost than digestate would be needed
to improve plant parameters at this site. These results confirm the lower impact of compost
on plant growth and biomass in contaminated soils [77,78] when compared to digestate [79].
This may be due to the composition of the digestate, which contains more directly available
plant N than the compost [80,81]. In addition, although the compost used contained more
organic matter than the solid digestate, this amendment was produced from plant material.
Therefore, this OM is partly composed of lignin, which is hardly biodegradable [81]. N is
therefore mainly present in organic form and thus more slowly released and available to
plants [82]. Mineralization of compost may be a longer process whereas stinging nettle has
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a high growth rate. Nitrogen release is therefore not synchronous with plant N uptake,
as previously demonstrated for sweet corn [83]. Another possibility for the low impact of
compost on plant growth may be the maturity of the amendment [40]. N immobilization
can indeed occur quickly in less mature composts [84]. As a consequence, microorganisms
scavenge available N from the soil that becomes unavailable to plants [85,86], explaining
that nettles were similar to the control in terms of plant parameters, without N accumulation
in aerial parts but with higher microbial biomass in all treatments in the St-Symphorien-
sur-Saône soil.

Compost application had no impact on nettles grown in the Tavazzano soil, but it
can provide a longer-lasting effect [87]. Compost thus does not appear to be suitable for
improving the growth of U. dioica in soils with low nutrient availability in the short term.
The low impact of compost on plant yield following the first application has already been
described in the case of fertile soils [55,83], but further investigations are needed to assess
its potential effect in the long term. In addition, relative growth was negatively impacted
by digestate during the first days of cultivation. Temporary immobilization of soil N has
already been described during the use of organic amendments [88] and may be responsible
for this slowing in plant growth. It can therefore be recommended to add the amendments
two weeks before planting the nettles. Nevertheless, the nettles have started to grow despite
the low availability of nutrients, probably thanks to their rhizomes, which constitute an N
reserve that can be mobilized primarily for shoot development [89]. Finally, the relative
growth of U. dioica was enhanced using amendments after several weeks of cultivation (i.e.,
63 days).

3.3. The Dose of Amendment Applied Impacts the Growth of the Stinging Nettle and Reduces the
Concentration of Hg in the Aerial Parts

Although described as a crop with low requirements for agricultural soils, the use
of quite high fertilization doses has been reported for U. dioica cultivation [32,34]. In the
present study, nettle biomass followed the dose of amendment applied. However, high
doses of amendments were used in this study to double the nettle biomass. Growing U.
dioica on marginal lands seems to require high inputs to enhance its biomass, which should
be considered regarding environmental concerns (e.g., gaseous emission, nutrients leaching,
eutrophication) [90,91]. Moreover, under the highest fertilization dose of digestate, the
nettle plants all reached the flowering stage, while flowers only started to appear in the
other treatments except for the control. As the flowering stage induces the cessation of
vegetative growth [92], the digestate significantly improved the biomass produced but
reduced the growth period.

In addition to impacting the biomass, the production of fibers was also enhanced
without impact on the fiber size, which was similar to those previously reported and
therefore similar to fibers of hemp (Cannabis sativa L.) and flax (Linum usitatissimum L.) [37].
As nettle fibers are potentially relevant candidates for composite reinforcement applica-
tions [29,93], improving nettle traits without TE accumulation through fertilization can
be valuable for biomass production from contaminated lands. Organic amendments can
indeed modulate the mobility and bioavailability of TE [94,95]. In our study, D++ signif-
icantly reduced the leaf Hg concentration for both soils, and the stem Hg concentration
for the St-Symphorien-sur-Saône soil. Digestate efficiently reduced the mobility of Hg in
an artificially contaminated chernozem soil [96], suggesting that solid digestate in high
doses can reduce Hg transfer from the soil to the plant by reducing its mobility in the soil.
Digestate therefore appears to be a relevant candidate to improve the performance of U.
dioica grown in contaminated soil, but the dose should be adapted for in situ application.
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3.4. Organic Amendments Differentially Impact Soil Enzyme Activities Depending on the
Soil Type

In addition to its impact on plant parameters, fertilization is also known to induce
changes in soil microbial communities and indirectly impact associated enzymatic activi-
ties [97,98]. In our study, the application of digestate significantly improved the respiration
of the two soils and the microbial biomass of the St-Symphorien-sur-Saône soil, as observed
in previous experiments [99–102]. In contrast, compost application in the Tavazzano soil
and C++ application in the St-Symphorien-sur-Saône soil did not significantly impact the
soil respiration or the root biomass, which was not significantly different or lower compared
to the control plants. This result follows previous studies that highlighted a significant cor-
relation between root biomass and soil respiration [103,104]. Nevertheless, soil respiration
was also correlated with dsDNA and enzymatic activities in the St-Symphorien-sur-Saône
soil, and amendment application significantly increased the esterase activities in both soils.
Butyrate esterase (butyr) has been described to be related to living biomass content [105]
and was strongly correlated with dsDNA in the St-Symphorien-sur-Saône soil. Therefore,
the enzymatic activities measured in our study were likely related to microorganisms rather
than to plants [106]. These results follow previous studies that highlighted higher soil
microbial biomass and enzymatic activities in response to the application of amendments
to contaminated soils [107–110]. However, nettle growth was not affected by the increased
microbial biomass and higher enzymatic activities under the C++ treatment. This indicates
that compost did not improve plant nutrient uptake [111], or that the released nutrients
were immobilized or used by soil microorganisms [112,113]. Heijboer et al. [114] high-
lighted that soil nitrogen retention or microbial immobilization of nitrogen can occur with
organic amendments at the expense of plant growth, and this phenomenon can last for
a few months [82]. This may explain the fact that only the high doses of amendments
impacted plant growth in our study, and that root biomass followed aerial biomass. We
hypothesized that when nutrient release was sufficient for soil microorganisms and plants,
the stinging nettle produced more roots to take up nutrients.

However, the amendments differentially impacted the enzymatic activities depending
on the studied soil after three months of cultivation. In the St-Symphorien-sur-Saône soil,
amendments significantly increased almost all measured activities (except those involved
in the C cycle), while they were mainly comparable or slightly reduced in the Tavazzano
soil. This may be related to the properties of the soil or to the dose of amendments that may
have a negative impact on enzymatic activities [60,115,116]. In our study, the soil pH cannot
explain the variations in the enzymatic activities [117], as only compost application slightly
increased it in the Tavazzano soil. However, since the mineralization of nutrients from
amendments depends on soil properties and may be faster in more fertile soils [118,119], it
can be argued that the mineralization rate of amendments was higher in the Tavazzano
soil. Thus, all easily degradable organic matter has already been used, resulting in the
restoration of soil microbial activity [120]. Previous experiments have shown a return to
baseline enzymatic activities 2–3 months after compost application [121]. Additionally, the
Tavazzano soil has a higher clay content, which has been described as retaining organic
carbon and nitrogen through sorption of organic matter, making them inaccessible to
microbes [122,123]. Access to organic matter is therefore easier for microbes in less textured
soils such as that of St-Symphorien-sur-Saône, which explains why amendments improved
the growth and biomass of U. dioica in the St-Symphorien-sur-Saône soil better than in
the Tavazzano soil. In addition to improving nettle growth, amendment application also
improved soil parameters and conditions that can improve nettle re-establishment and
improve re-growth for further harvest.
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3.5. Fertilization Impacts the Production of Leaf Phenolic Compounds of the Stinging Nettle

In addition to enzymatic activities, organic amendments differentially affected the leaf
phenolic compound concentration of U. dioica depending on the soil used. The concen-
trations of total phenolic compounds, HCA2, and flavonoids did not significantly differ
between the control plants grown on the two soils. However, while the amendments signif-
icantly increased the total phenolic compound concentrations of nettle leaves grown on the
Tavazzano soil, they significantly decreased phenolic compounds in the nettle leaves from
the St-Symphorien-sur-Saône soil. The dose of amendments did not differentially affect the
concentration of total phenolic compounds following the results from Biesiada et al. [124].
In previous studies, the amount of phenolics decreased upon application of amendment
due to an improvement in plant growth status [125,126], as described for U. dioica following
the growth–differentiation balance hypothesis [127]. Thus, biomass accumulation and spe-
cialized metabolism are negatively correlated. As a result, lower production of specialized
metabolites is observed when plants are cultivated under sufficient nutrients. A greater
improvement in plant growth with the amendments was observed in our study on the
St-Symphorien-sur-Saône soil compared to the Tavazzano soil.

In contrast, when growth is reduced due to limited nutrient availability, the production
of phenolic compounds is enhanced [128–131]. The accumulation of phenolic compounds is
commonly observed as a response to abiotic stress [132] and has been previously described
with digestate application [133]. Our results do not follow this rule, as the nettles grown on
the Tavazzano soil were not stressed and the application of amendments did not reduce
their growth. However, the applied organic amendments contained large amounts of C
while N was still limited for the plants. As a consequence, the nettle may have allocated
the extra C to the synthesis of phenolic compounds failing to improve its growth [134].

The observed differences in phenolic responses to N fertilization are compound-
specific, depending on their biosynthetic pathways [135]. Here, in both soils, hydroxycin-
namic acids were the most abundant compounds, as previously described for U. dioica [136].
Phenolic acids have been associated with various functions, such as nutrient uptake [137].
The HCA1 concentration was significantly impacted and explained the observed changes
in the total phenolic concentration. Flavonoid concentration was impacted, although to
a lesser extent, in the nettles from the Tavazzano soil. N limitation has been described as
influencing flavonoid biosynthesis [138,139]. When plant nutrient uptake was enhanced,
U. dioica decreased its phenolic compound production, mainly HCA1, which are the main
compounds. In contrast, production is increased when improving growth is not possible,
but further investigations on the role of these compounds are still needed.

4. Materials and Methods
4.1. Collection and Characteristics of the Soils

Two Hg-contaminated soils from St-Symphorien-sur-Saône (47◦05′03.9′′ N, 5◦19′48.7′′ E,
France) and Tavazzano (45◦19′17.0′′ N, 9◦24′04.1′′ E, Italy) were used for the experiment
that was conducted in pots. The St-Symphorien-sur-Saône site is a chlor-alkali sediment
landfill already described in previous studies [140,141]. The Tavazzano site is a grassland
adjacent to a chlor-alkali plant using Hg cell technology. Both soils were sampled at a depth
of 0–30 cm, air-dried, and sieved to 4 mm. The total N and C contents were analyzed after
dry combustion (Vario Macro Cube, Elementar, Langenselbold, Germany). The soil organic
matter content (SOM) was determined by heating the soil sample up to 600 ◦C (soil TOC
cube, Elementar, Langenselbold, Germany). The soil total concentrations of major elements
and TE were determined by inductively coupled plasma atomic emission spectrometry
(ICP–AES, Thermo Fischer Scientific, Inc., Pittsburgh, PA, USA) after acid digestion of
500 mg of sample (Table 2). The pH of the soil and organic amendments was determined
after slow shaking for 30 min at room temperature in a 1:25 soil/1 M KCl solution.
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Table 2. Properties and elemental composition of St-Symphorien-sur-Saône and Tavazzano soils
(mean ± SE).

Unit St-Symphorien-sur-Saône (Fr) Tavazzano (It)

Sand % 3.8 10.5
Silt % 87.4 72.5

Clay % 8.9 16.9
pH 8.0 ± 0.3 × 10−1 6.8 ± 0.5 × 10−1

C/N 24.0 ± 0.7 18.3 ± 0.6
SOM 1 % 4.0 ± 0.1 1.9 ± 0.2
Total N % 0.1 ± 0.3 × 10−2 0.07 ± 0.4 × 10−2

TOC 2 % 2.3 ± 0.5 × 10−1 1.1 ± 0.1
Ca g/kg 236.8 ± 0.2 3.2 ± 3.7 × 10−2

K g/kg 1.0 ± 1.9 × 10−2 2.5 ± 0.2 × 10−2

Mg g/kg 1.3 ± 0.2 4.5 ± 4.0 × 10−2

Na mg/kg 981.8 ± 16.2 84.2 ± 0.8
P mg/kg 449.0 ± 7.2 753.5 ± 7.3
Fe g/kg 6.0 ± 7.3 × 10−2 14.2 ± 0.1
S g/kg 13.5 ± 0.1 0.4 ± 0.5 × 10−2

As mg/kg 17.1 ± 0.3 9.2 ± 0.1
Cu mg/kg 12.6 ± 0.1 16.1 ± 0.6 × 10−1

Hg mg/kg 6.9 ± 0.3 30.0 ± 0.4
Mn mg/kg 326.1± 6.2 214.1 ± 1.1
Ni mg/kg 8.7 ± 0.2 26.6 ± 0.2
Pb mg/kg 17.2 ± 0.8 20.7 ± 0.2
Zn mg/kg 41.7 ± 0.4 44.5 ± 2.6

1 SOM: soil organic matter. 2 TOC: total organic carbon.

4.2. Greenhouse Experimental Design

The company Agrivalor© (Hirsingue, France) supplied the organic amendments
prepared from green wastes (compost: C), or from organic food wastes (i.e., food produc-
tion byproducts, unsold and expired products; solid digestate: D) (Table S5). These two
amendments were mixed with 780 g of sieved soil and placed in one-liter pots. Compost
was added to the soil at doses of 0.04% N (i.e., 0.36 g N/kg soil, C++) and 0.07% N (i.e.,
0.72 g N/kg soil, C+++), and the solid digestate was added to the soil at doses of 0.02%
N (i.e., 0.18 g N·kg-1 soil, D+) and 0.04% N (i.e., 0.36 g N·kg-1 soil, D++). These doses
gave the highest stinging nettle (Urtica dioica) biomass improvement based on preliminary
experiments (Figure S3). One U. dioica plantlet harboring a single rhizome was planted per
pot. The High School of Horticulture of Roville-aux-Chênes (Roville-aux-Chênes, France)
supplied the nettles, which are produced for multiple uses, including textile fiber. Ten repli-
cates were performed per treatment (i.e., control, C++, C+++, D+, and D++) for each soil.
Nettles were grown in a greenhouse for 83 days (e.g., until the first nettles reached the
flowering stage) from April to June.

4.3. Measured Plant Parameters

Plant height was measured twice a week from Day 0 to Day 83. The leaf chlorophyll
content was measured on the second leaf with a chlorophyll content meter (Opti-Sciences,
Inc., CCM-200, Tyngsboro, MA, USA) [142]. Photosystem II (PSII) performance was mea-
sured on the basis of the fluorescence ratio (Fm − F0/Fm) using a MINI-PAM II (Walz,
Germany) after placing the plants in the dark for 2 h [143]. At harvest, aerial parts were
separated from roots, washed with tap water, and rinsed in distilled water. The stem
diameter was measured with a caliper from the middle part of the stem, and the length of
internodes was measured.

One internode from the middle of the stem of nettles amended with the highest doses
of compost and digestate on St-Symphorien-sur-Saône soil (n = 3 per treatment) was kept in
70% ethanol to characterize the fiber morphology using X-ray microtomography performed
on an EasyTom tomograph (RX Solutions, Chavanod, France). The stem pieces were placed
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vertically in an Eppendorf tube in ethanol. The Eppendorf tube was glued on the sample
holder to avoid movement during acquisition. The sample holder was mounted on a
rotating stage to allow for a rotation of 360◦. The X-ray source, a Hamamatsu Open Type
Microfocus L10711 (RX Solution, Chavanod, France), was operated with an electron current
of 84 µA and a tube voltage of 60 kV. The X-ray transmission images were acquired using a
2530DX detector of 2176 × 1792 pixels2. The exposure time and the average frame were
fixed at 1.5 s and 2 images, respectively, and 1440 images per revolution were acquired. The
entire volume was reconstructed at a full resolution with a voxel size of 2 µm corresponding
to a field of view of 3.8 × 2.8 mm2, using filtered back-projection. The data analysis was
processed using VG StudioMax software. The analysis of the grey levels was achieved
using a threshold to separate the fiber wall from the air and access the geometry of the fiber.
These images were then post-processed in MATLAB software. The first step consisted of
automatically closing the open contours and removing particles smaller than 5 µm. Then,
each fiber was identified and processed individually. The minimum and maximum Feret
diameters of each fiber were determined. The average wall thickness was also determined
using the coordinates of the center of the ellipse.

The third nettle leaves from the top were scanned and the leaf area was measured using
ImageJ software (version 1.53r) [144]. Samples were then air-dried at room temperature
and weighed for dry biomass prior to subsequent analysis.

4.4. Biochemical Analyses on Plant Leaves

Dry leaves were ground using an MM400 Mixer Mill (Retsch, Eragny sur Oise, France)
for 1 min at 30 Hz. Composites of two plants were used for subsequent analysis, resulting
in n = 5 replicates per treatment for each soil. Two milligrams of leaf powder were used
for CHN analysis (FlashEA 1112, ThermoFisher Scientific, Waltham, MA, USA). Soluble
phenolics were extracted from 15–20 mg of dry powder with 0.6 mL methanol/H2O (4:1)
by 10 min of sonication, followed by shaking for 10 min in the dark. The extraction
was repeated twice, and all supernatants were pooled. Trans-cinnamic acid was used as
internal standard. Extracts were analyzed by UPLC-DAD-ESI-MS/MS (Nexera2, LCMS-
8040, Shimadzu, Kyoto, Japan) using a Luna 5 µm C18(2) 100 Å, 250 × 3 mm column
(Phenomenex, Torrance, CA, USA) and a C18 guard column with solvent A (10% methanol
and 0.2% formic acid) and solvent B (98% methanol and 0.2% formic acid) and the following
gradient: 0–1 min of 8% B; 5 min 20% B; 18 min 55% B; 20 min 100% B; 20–26 min of
100% B. The flow rate was 0.35 mL min−1, and the column oven temperature was 40 ◦C).
Quantification was performed using UV detection at 320 nm for hydroxycinnamic acids
(chlorogenic acid (CGA) as the standard), 360 nm for flavonols (hyperoside as the standard),
and 280 nm for t-cinnamic acid (internal standard). MS detection was used for identification
using the following conditions: nebulizing gas (N2), 3 L min−1; drying gas (N2), 15 L min−1;
desolvation line, 250 ◦C; heat block temperature, 400 ◦C; and interface voltage 4.5 kV.
Finally, Hg quantification was performed from 25 mg of leaves using an AMA-254 (Altec
Co, Chotěboř, Czech Republic) as described in Maillard et al. [140].

4.5. Analyses of Soil Enzymatic Activities, Microbial Biomass, and Respiration

Fresh rhizospheric soil was sampled for enzymatic activities and soil microbial biomass.
Seventeen enzymatic activities (EA) involved in C, N, P, and S cycling were measured
according to Ferrarini et al. [145]: α-glucosidase (alfaG, EC 3.2.1.20), β-glucosidase (betaG,
EC 3.2.1.21), α-galactosidase (alfaGAL, EC 3.2.1.22), β-galactosidase (beta GAL, EC 3.2.1.23),
β-D-glucuronidase (uroni, EC 3.2.1.31), β-1,4-glucanase (cell, EC 3.2.1.4), β-1,4-xylanase
(xilo, EC 3.2.1.14), N-acetyl-β-D-glucosaminidase (chit, EC 3.1.3.2), leucine amino-peptidase
(leu, EC 3.4.11.1), acid (acP, EC 3.1.3.2) and alkaline phosphomonoesterase (alkP, EC 3.1.3.1),
phosphodiesterase (bisP, EC 3.1.4.1), pyrophosphodiesterase (piroP, EC 3.6.1.9), inositol-P
phosphatase (inositP, EC 3.1.3.25), arylsulfatase (aryS, EC 3.1.6.1), butyrate esterase (butyr,
EC 3.1.1.1), and nonanoate esterase (nona, EC 3.1). Briefly, enzymatic activities were
measured from 400 mg of soil added to 1.4 mL of 3% lysozyme solution and glass plus
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ceramic beads. After shaking and centrifugation, enzymatic activities were quantified
fluorometrically from the supernatant and expressed as nanomoles of 4-MUF·g−1 soil per
hour. Fluorogenic substrates with 7-amino-4-methyl coumarin (AMC; leu) and 4-methyl-
umbelliferyl (MUF; other enzymes) were used as fluorophores.

Soil microbial biomass was measured from the double-stranded DNA (dsDNA) con-
centration using 400 mg of soil in 0.12 M sodium phosphate solution at pH 7.8 as an
extraction buffer [146]. PicoGreen reagent (Life Technologies, Carlsbad, CA, USA) was
then used to quantify dsDNA, expressed as nanograms of dsDNA g−1 dry soil after being
corrected for soil moisture content.

Soil microbial respiration was monitored using an Xstream gas analyzer (Emerson,
Langenfeld, Germany). At the end of the experiment, 18 g of fresh soil samples adjusted at
63% of the field capacity were placed in tight flasks and incubated at 23 ◦C. The produced
CO2 was measured at the end of the experiment and every 4 days, for a total of 16 days
using 5 mL aliquots of the flask atmosphere (sampled using a syringe). An empty sealed
flask was used as a negative control. The respiration activity was represented by the
produced CO2 expressed as carbon mass per gram of DW soil per day (µgC·g−1·d−1).

4.6. Statistical Analyses

Statistical analyses and data visualization were performed using R software (ver-
sion 2022.07.2+576) [147] and were considered significant at p < 0.05. All individuals and
variables were plotted on a PCA biplot using the FactoMineR package (version 2.4) [148].
Variables were colored according to their contribution to the principal components. The
effect of the nature of the amendment, the dose applied, and the soil on plant parameters,
enzymatic activities, and phenolic compounds was assessed using a permutational multi-
variate analysis of variance (PERMANOVA) based on the Euclidean distance matrix using
the vegan package (version 2.5-7) [149]. Three-way analyses of variance (ANOVAs) were
performed to test the effects of the nature of the amendment, the dose applied, and the
soil on the nettle aerial biomass. All the variables were checked for normality distribution
(Shapiro–Wilk test) and homoscedasticity (Levene test). For variables that fit to normal
distribution, comparisons between soils and treatments were assessed by Tukey’s HSD
multiple comparison post-hoc analyses. The other variables were analyzed using the
Kruskal function from the agricolae package (version 1.3-1) [150]. A correlation matrix was
performed using the corrplot package to assess the correlations between soil respiration, ds-
DNA, the percentage of N in the leaves, and the enzymatic activities significantly impacted
by the addition of amendments.

5. Conclusions

Urtica dioica was able to grow in the two Hg-contaminated soils of the present study,
without any induced stress. The solid digestate in both doses greatly enhanced the biomass
of the nettle in contrast to the compost and seems suitable for improving nettle parameters
and fiber production. Moreover, digestate application decreased the leaf Hg concentration
at high doses. The digestate, and to a lesser extent the compost, improved soil functions,
particularly soil respiration and the enzyme activities involved in C, N, P, and S cycling.
The use of organic amendments also impacted the leaf synthesis of hydroxycinnamic acids,
but their role still needs to be further studied. The plant response differed depending on
the soil characteristics, but the application of an appropriate dose of digestate could be
proposed as an efficient strategy for the improvement of nettle cultivation on industrial
lands. Field cultivation and U. dioica re-establishment need further investigation to assess
the long-term efficiency of these organic amendments, and the quantity and quality of
fibers for industrial use.
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Supplementary Materials: The following supporting information can be downloaded at:
https://www.mdpi.com/article/10.3390/plants13172425/s1: Figure S1: Mean soil dsDNA
(n = 10, ng·g−1 ± SE) after 83 days of cultivation on St-Symphorien-sur-Saône soil depending
on the nature of amendment (C: compost; D: digestate) and rate (+; ++; +++) applied. Different
letters indicate significant differences between treatments (Kruskal–Wallis test, p < 0.05); Figure S2:
Mean percentage of nitrogen (n = 5 ± SE) in Urtica dioica leaves after 83 days of cultivation on (a) St-
Symphorien-sur-Saône and (b) Tavazzano soils depending on the nature of amendment (C: compost;
D: digestate) and rate (+; ++; +++) applied. Different letters indicate significant differences between
treatments and soils (Tukey’s test, p < 0.05); Figure S3: Aboveground dry biomass of Urtica dioica
(n = 10) in response to different rates (indicated by + and −) of (a) solid digestate (D) and (b) compost
(C) in St-Symphorien-sur-Saône soil. Different letters indicate significant differences between treat-
ments (Kruskal–Wallis test, p < 0.05); Table S1: Mean chlorophyll content and photosystem II activity
(PSII) (n = 10 ± SE) of Urtica dioica leaves after 83 days of cultivation depending on the nature of
amendment (C: compost; D: digestate), rate (+; ++; +++) applied, and soil (St-Symphorien-sur-Saône
or Tavazzano). Different letters indicate significant differences between treatments and soils for
each variable (Kruskal–Wallis test, p < 0.05); Table S2: Fiber properties from Urtica dioica grown on
St-Symphorien-sur-Saône soil depending on the amendment (C: compost; D: digestate) and rate (++;
+++) applied (n = 3 ± SE); Table S3: Mean enzymatic activities (n = 10 ± SE) expressed in nanomoles
of 4-MUF·g−1 or AMC·g−1 soil in St-Symphorien-sur-Saône and Tavazzano rhizospheric soils after
83 days of cultivation depending on the nature of amendment (C: compost; D: digestate) and rate (+;
++; +++) applied. * indicates a mean significantly different from the control for each soil; Table S4:
Soil pH at T0 and at the end of the experiment (T83) for the two soils depending on the nature of
amendment (C: compost; D: digestate) and the rate applied (+; ++; +++). Different letters indicate
significant differences between treatments (Kruskal–Wallis test, p < 0.05); Table S5: Properties of the
compost and digestate used.
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