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Abstract

The perineum is a layered soft tissue structure with mechanical properties that maintain the
integrity of the pelvic floor. During childbirth, the perineum undergoes significant deformation
that often results in tears of various degrees of severity. To better understand the mechanisms
underlying perineal tears, it is crucial to consider the mechanical properties of the different tissues
that make up the perineum. Unfortunately, there is a lack of data on the mechanical properties of
the perineum in the literature. The objective of this study is to partly fill these gaps. Hence sow
perineums were dissected and the five perineal tissues involved in tears were characterized by
uniaxial tension tests: Skin, Vagina, External Anal Sphincter, Internal Anal Sphincter and Anal
Mucosa. From our knowledge, this study is the first to investigate all these tissues and to design
a testing protocol to characterize their material properties. Six material models were used to fit
the experimental data and the correlation between experimental and predicted data was evaluated
for comparison. As a result, even if the tissues are of different nature, the best correlation was
obtained with the Yeoh and Martins material models for all tissues. Moreover, these preliminary
results show the difference in stiffness between the tissues which indicates that they might have
different roles in the structure. These obtained results will serve as a basis to design an improved
experimental protocol for a more robust structural model of the porcine perineum that can be
used for the human perineum to predict perineal tears.

Keywords: Soft biological tissues, Hyperelasticity, Experimental tests, Biomechanical
characterization, Perineum

1. Introduction

The female perineum is a complex multilayer structure composed of soft tissues located un-
der the pelvic floor. On the most superficial layer we find the skin, vulva and vaginal opening.
The deeper layers are composed of muscles, glands and the perineal body. Perineal tears are a
common occurrence in vaginal births affecting up to 89% of women of which most are primi-
parous (Goh et al., 2018). Perineal tears can involve the skin around the vulva, the vagina, the
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perineal body (central attachment of perineal muscles), the external and internal anal sphincter
(EAS and IAS) and the anal mucosa (AM). It is known that the perineum provides a mechanical
support to the pelvic floor and the pelvic organs (DeLancey, 1999; Larson et al., 2010; Shafik
et al., 2005), but its mechanical properties are not yet fully understood. As the perineum is a
multilayer structure, it requires the mechanical characterization of each layer that constitute the
tissue. However, to the best to our knowledge, studies on the biomechanical behaviour of the
perineum are limited and do not consider all the perineal tissues. These mainly consist of finite
element models and numerical simulations of the perineal body and pelvic floor as well as some
experimental data on the vagina (Brieu et al., 2016; Jing et al., 2012; Parente et al., 2008, 2010;
Rubod et al., 2008; Ruiz-Zapata, 2018; Strauss et al., 2012; Zemčı́k et al., 2012). In these stud-
ies, the pelvic floor muscles and perineal body behaviour were described by hyperelastic material
models such as (Mooney, 1940; Holzapfel et al., 2000; Martins et al., 1998). The studies gave
an insight on the location of the maximum stretches and stresses of the pelvic floor during the
second stage of labor. Models of the pelvic floor are created using MRI images from pregnant
and non-pregnant women. However, the perineum and the perineal body, which are difficult to
image, were not included although elastic stiffness data of the perineal body were obtained using
shear wave elastography (Chen et al., 2015; Rostaminia et al., 2019). Since obtaining human
tissue samples for research purposes is challenging and time-consuming, the pig was chosen in
this first step of our work. Additionally, this study is exploratory and the results obtained will
allow us to characterize the human tissues by reusing the designed protocol after studying the
influence of environmental and testing conditions of the samples. Human and porcine tissues
have many similarities. Debeer et al. (2013) showed great histological similarities between the
different layers of pig and human skin. Furthermore, it confirmed the use of porcine skin for
scientific research. Micro-indentation tests have also shown that the mechanical properties of
porcine skin and those of human skin are of the same order (Ranamukhaarachchi et al., 2016).
They clarified that it was preferable to use fresh porcine skin under high humidity conditions to
the use of frozen human skin. Comparative studies between the porcine perineum and the human
perineum have never been carried out. However, a study was performed on sheep vaginal tissues
(Rubod et al., 2007) and used as a characterization protocol for human vaginal tissues (Rubod
et al., 2008). Other tissues such as stomach (Friis et al., 2023), brain (MacManus et al., 2020),
bones, cartilage, ligaments (Cone et al., 2017; Tan et al., 2015) and certain muscles have already
been studied, proving the potential of using the porcine model to replace the human for the iden-
tification of constitutive laws. The aim of the present work was to investigate the biomechanical
properties of the perineum by developing an experimental protocol and to select a constitutive
model that describe the behaviour of the five perineal tissues that compose the perineum: Skin,
Vagina, External Anal Sphincter (EAS), Internal Anal Sphincter (IAS) and Anal Mucosa (AM).
The perineal body was not studied as it is absent in the porcine perineum.

2. Material and Methods

Tensile experimental tests are the most common way to conduct mechanical characterisation
of soft biological tissues (Navindaran et al., 2023). These tests allow us to identify the elastic,
viscous and rupture properties of tissues. A testing protocol is proposed here to characterize
the different tissues of the sow perineum. First, a dissection technique is implemented to iden-
tify and to collect the different tissues: skin, vagina, EAS, IAS, AM and then the experimental
characterization of the samples is carried out.
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2.1. Dissection technique

The perineal structures used for this study were discarded parts collected from the local
porcine slaughterhouse for food, which respects the animal bioethical norms. The sow breed was
the French pork butcher’s pig. The sows were multiparous and not pregnant at the time of death.
The structures were collected from the slaughterhouse four to five days after death. They were
refrigerated during the time before collection. In order to obtain samples in a reproducible way
and preserve fiber integrity, a precise dissection method has been implemented and performed by
an urogynecologist expert in anatomy of perineal tears. The instruments used were fine scissors
and atraumatic forceps. No traction on the tissues was performed. A careful midline incision next
to the vulvar area between the vaginal and anal openings was made. The external anal sphincter
(EAS) was immediately identified and isolated. The perineal skin was dissected from the anus
to the ventral extremity into two dorso-ventral samples (right and left). Next, the ventral part
of the vagina was incised. A right and left vaginal samples were dissected on the rectovaginal
septum side. Histologically, the vaginal sample included the vaginal wall composed of mucosa,
lamina propria, muscularis and adventitia (Gruber et al., 2012). Then, the external anal sphincter
was carefully dissected and sectioned at the lateral sides. Finally, the dorsal wall of the rectum
and anus was incised. Two samples (right then left) of the anal mucosa (AM) and the internal
anal sphincter (IAS) were obtained. Only the right samples on the right side were analyzed for
the perineal skin, the perineal vagina, the perineal anal mucosa and the IAS. The left samples of
these sows were analyzed in another study with non-comparable experimental conditions. The
entire EAS was collected between the vagina and the anus. Fig. 1 shows the different tissues and
their location. In total, 5 samples were tested for each tissue, making a total of 25 samples.

Figure 1: Anatomic description of perineal tissues. The sow perineum (in the middle) is dissected in 5 parts : Skin,
Anal mucosa, vagina and External Anal Sphincter and Internal Anal Sphincter (not depicted here, located under the anal
mucosa).
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2.2. Test procedure
The samples were oriented using an indelible marker (right or cranial side depending on the

part) before being studied. For each sample, a test sample was cut with a cold scalpel using a
5 cm × 1 cm rubber pre-made template. Paper was glued to the ends one centimeter from the
edges to facilitate the gripping of the sample. The specimens were tested in quasi-static uniaxial
tension at a velocity of 0.1 mm/s with the Mach-1 testing machine (Biomomentum Inc, Canada).
The grips used are specific clamping grips for soft tissues to prevent slippage during tests. They
consist of C-shaped cavities, coupled with stainless steel bars, screwed in place to solidly lock the
sample in the grips. The displacement was imposed and the forces were measured with a 250 N
force sensor. For each specimen, a pre-load of 0.3 N was applied before the test. Measurements
of thickness, width and initial length were made once using a digital caliper after the pre-load
at the center of the specimen. The mean thicknesses of the skin, vagina, external anal sphincter,
anal mucosa and internal anal sphincter samples were respectively 3.15± 0.8 mm, 1.6± 0.6 mm,
4.5 ± 2.1 mm, 1.2 ± 0.2 mm, 2.7 ± 0.8 mm. The displacement (∆l) and the force were recorded
with an accuracy of 0.5 µm and 12.5 µN at a frequency of 100 Hz. A sample of EAS installed in
the grips can be seen in Fig. 2.

Figure 2: EAS installed in the grips after preload in the tension direction x̂1.

2.3. Identification of the hyperelastic constitutive law
Biological soft tissues behaviour results from nonlinear phenomena. These phenomena in-

clude time dependency and stress softening, which implies that their mechanical response primar-
ily relies on time and on the maximum deformation experienced. From a macroscopic point of
view, depending on the quantity and orientation of the fibers, the tissues can present anisotropy
(Egan, 1987). Consequently, in an initial approximation, hyperelasticity was employed to de-
scribe soft tissues (Chagnon et al., 2015). In this study, time dependency was not studied and
the tests were quasi-static. The diverse mechanical characteristics observed in soft tissues have
spurred the development of numerous constitutive formulations tailored to different tissue types.
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As we have not measured anisotropy of the tissue, but observed the fiber direction for muscles,
we compare six hyperelastic models as in (Martins et al., 2006): Yeoh (Yeoh, 1993), Mooney–
Rivlin (Mooney, 1940), Ogden (Ogden and Hill, 1997), Humphrey (Humphrey and Yin, 1987),
Veronda–Westmann (Veronda and Westmann, 1970) and Martins (Martins et al., 1998). All
models assume material isotropy except the Martins model which assumes fiber orientation in
the direction of the stretch. Incompressibility constraint is also assumed (Martins et al., 2006).

The definition of a hyperelastic material model starts from the gradient deformation tensor F
which is defined, in the case of material incompressibility and uniaxial tension by:

[F] =


λ 0 0
0 λ−

1
2 0

0 0 λ−
1
2

 (1)

where λ is the principal stretch along the loading direction x̂1.
The Right Cauchy–Green tensor C is defined by C = FT F.
The invariants of the Right Cauchy–Green tensor take the form:

I1 = tr(C) = λ2 +
2
λ

I2 =
1
2

[
(tr(C))2 − tr(C2)

]
= 2λ +

1
λ2

I3 = det(C) = 1

(2)

The strain energy functions (SEF), denoted Ψ
incomp
# , for the six models under incompressibil-

ity assumption, are defined by:

Ψ
incomp
# = Ψ# − p (det(F) − 1) (3)

where p is a Lagrange multiplier enforcing incompressibility constraint and is determined in
uniaxial tension from equilibrium conditions (i.e. σ2 = σ3 = 0). Ψ# are SEF defined for
det(F) = 1 , using for comparison convenience the notation in (Martins et al., 2006):

Mooney–Rivlin (Mooney, 1940) The Mooney–Rivlin model has been widely used in the
analysis of rubber components with medium deformation. Its general SEF depends on the invari-
ants I1 and I2.

ΨMR = C1(I1 − 3) + C2(I2 − 3) (4)

Yeoh (Yeoh, 1993) The Yeoh material model was first presented for incompressible (rubber-
like) materials. Its SEF only depends on the invariant I1:

ΨY = C1(I1 − 3) + C2(I1 − 3)2 + C3(I1 − 3)3 (5)

Ogden (Ogden and Hill, 1997) Ogden proposed to derive the strain energy function in terms
of generalized strain. The Ogden model can be utilized in a wide strain range with great flexibil-
ity. It depends on the principal stretch values λ1, λ2 and λ3.

ΨO =

3∑
i=1

C2i−1

C2i
[λC2i

1 + λC2i
2 + λC2i

3 − 3] (6)
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Humphrey (Humphrey and Yin, 1987) This model was proposed to study of passive my-
ocardium. Restricted to isotropic modelling, it depends only on I1.

ΨH = C1

(
eC2(I1−3) − 1

)
(7)

Veronda–Westmann Veronda and Westmann (1970) introduced a hyperelastic material model
based on uniaxial tests performed upon skin of cats. Its SEF depends on I1 and I2.

ΨVW = C1

(
eC2(I1−3) − 1

)
−

C1C2

2
(I2 − 3) (8)

Martins (Martins et al., 1998) Martins proposed this model to study skeletal muscles. Al-
though inspired on the Humphrey model (Humphrey and Yin, 1987), this model exhibits an
explicit dependence on the fibers stretch (λ f ) which in our case is assumed to correspond to the
uniaxial tension direction λ.

ΨM = C1

(
eC2(I1−3) − 1

)
+ C3

(
eC4(λ−1)2

− 1
)

(9)

For all these models, C# represent the material parameters to be identified.
The parameters were identified by solving an inverse problem based on the experimental

stress corresponding to the first Piola–Kirchhoff stress and the imposed stretch. To do this, we
solved a least squares method using the Levenberg–Marquardt algorithm (Gill and Murray, 1978)
before the initial signs of damage appeared in each tissue sample. The damage is associated
with the yield point on the experimental curve and indicates fiber rupture or delamination in the
tissue as illustrated in Fig. 3 (Korhonen et al., 2011; Fuller and Kirby, 2013; Morch et al., 2020;
Yasenchuk et al., 2021). We developed an algorithm to automatically detect the damage initiation
point by calculating the first derivative computed by finite difference of the experimental curve
and identifying its first maximum.

For each curve, the parameters were then calculated by minimizing the cost function , utiliz-
ing the Scipy library (Virtanen et al., 2020):

F(Π, y) =
1
n

n∑
i=1

(Πi − yi)2 (10)

where Π and y represent the numerical and the experimental first Piola–Kirchhoff stress val-
ues, respectively, for the complete set of n observed stretch values λi in the stress–stretch curve.
For each sample, the Pearson correlation coefficient, denoted r and defined in Eq. (11), and the
p-value with the null hypothesis that there was no correlation between the experimental and
numerical stresses were computed.

r =

∑n
i=1(Πi − mΠ)(yi − my)√∑n

i=1(Πi − mΠ)2 ∑n
i=1(yi − my)2

(11)

where Π and y are defined above, mΠ and my are the means of Π and y.

3. Results

The detection of the damage initiation point in the samples is illustrated in the Fig. 4. The
red dot marks the yield point. Material parameters are identified on the stress–stretch curve up
to this point.
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Figure 3: Typical stress–stretch curves for soft biological tissues for a uniaxial tensile test (Korhonen et al., 2011; Morch
et al., 2020). For each region, the appearance of the sample fibers is shown: loose in the toe region, stretched in the
elastic region, from the yield point damage starts and finally all fibers are broken at the failure point.

Figure 4: First Piola–Kirchhoff stress P versus imposed stretch λ for an EAS sample under tension after preload. Red
point corresponds to the first maximum of P′(λ) (i.e. P′′(λ) = 0) called yield point and assumed to be the damage
initiation load.
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The truncated experimental curves for each tissue are presented in the figures below (Fig. 5).
From the experimental data, we noted a high variability in the samples. This was particularly
present for the skin, EAS and IAS. On five curves we also noticed a negligible drop in stress
which might be caused by a small slip of the sample from the grips. The mean stretch and stress
for all tissues before the damage initiation point on the stress–stretch curve are also given in
Table 1.

Figure 5: First Piola–Kirchhoff stress versus imposed stretch, up to yield point, for dissected parts (Skin, Vagina, Anal
Mucosa, Internal Anal Sphincter, External Anal Sphincter) of five sow perineums.

Table 1: Maximum stress and stretch before damage for each tissue (mean ± standard deviation).
Skin Vagina EAS AM IAS

Stretch (%) 56 ± 16 24 ± 10 72 ± 35 22 ± 9 115 ± 50
Stress (kPa) 582 ± 316 523 ± 228 272 ± 209 282 ± 158 432 ± 192

The correlation coefficients for each model of each tissues are presented in the Fig. 6. All
correlation coefficients are greater then 0.95 with extremely low p-value (< 10−8) meaning the
results were statistically significant. From the values of the correlation coefficients, AM samples
showed the best results with all the models. This might be due to the quasi-linear response of
that tissue. There was a similar observation for the vaginal tissues. For all tissues, the Yeoh
and Martins models showed the highest correlation coefficients. The Mooney–Rivlin and the
Veronda–Westmann models displayed the lowest ones.

For further results, we took a look at the number of iterations to get the optimal parameters
as well as the value of the cost function at the solution (Table 2).
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Figure 6: Correlation coefficients of experimental versus numerical first Piola–Kirchhoff stress (Eq. (11)) for dissected
parts (skin, vagina, anal mucosa, External anal sphincter, internal anal sphincter) of five sow perineums. Numerical
stresses are computed for six materials models : Yeoh, Mooney–Rivlin, Ogden, Humphrey, Martins, Veronda–Westmann.

Table 2: Number of iterations and cost function at the solution for all models: mean and standard deviation (SD).
Nb of iterations Cost function at solution (kPa)

Skin Vagina EAS AM IAS Skin Vagina EAS AM IAS

Yeoh Mean 9 15 10 13 11 21.32 17.33 1.90 4.56 32.85
SD 0 2 2 0 2 23.67 25.48 1.39 3.53 47.63

Mooney–Rivlin Mean 14 17 9 15 10 383.17 63.86 84.93 31.22 139.08
SD 1 2 3 3 2 487.73 117.50 158.27 29.88 95.19

Ogden Mean 1065 109 217 114 116 21.74 70.82 5.28 11.90 188.91
SD 1329 51 159 63 55 10.74 83.44 6.04 9.57 139.60

Humphrey Mean 44 42 103 64 54 68.01 138.13 11.08 20.69 309.88
SD 4 18 126 27 5 45.59 165.77 12.61 21.81 250.63

Veronda–Westmann Mean 40 55 878 1391 66 32.03 79.94 665.74 10.96 192.39
SD 19 20 1846 2961 16 18.83 82.94 1377.61 9.51 162.34

Martins Mean 181 1262 3624 218 6589 34.32 38.14 1.45 2.95 26
SD 180 1666 7323 269 8853 25.42 52.84 1.32 2.37 22.12
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From this data, we noticed that, for the Yeoh and Mooney–Rivlin models, the algorithm was
able to converge to a solution with a mean of less then 15 iterations. Next came the Humphrey
with an average of 62 iterations. Then we had the Ogden model with 324 iterations followed
by the Veronda–Westmann with 486 iterations and lastly the Martins model with an average of
2375 iterations. Regarding the values of the cost function (Eq. (10)), they were low for the Yeoh
and Martins models for all tissues. Looking at all models for the skin, the Yeoh model converged
with the smallest value of the cost function followed by the Ogden, Veronda–Westmann and
Martins models. The Mooney–Rivlin model had the highest value of the cost function (more
than 50% error relative to the maximum stress of the experimental curve) even though it had
reached a solution with few iterations. The fitting of the models is illustrated in Fig. 7. The same
was observed with the EAS for which the Yeoh and Martins models are equivalent and followed
closely by the Ogden model. For the vagina, the Martins and Yeoh models again obtained the
smallest values at the cost function while the Veronda–Westmann and Humphrey models reached
a solution with a high error. Similar to the results of the correlation coefficients, the values of
the cost function were low for all tissues, again due to the quasi-linear experimental curves. The
IAS seemed the hardest to fit for all models with the highest values of the cost function. Apart
from the Yeoh and Martins models, the other models converged with more then 50% error of the
cost function.

Figure 7: Experimental and fitted First Piola–Kirchhoff stress versus stretch curves for skin sample 4 (Fig. 5) under
tension. Fitted curves are obtained from six hyperelastic models with incompressible assumption: Mooney–Rivlin model
(Eq. (4), C1 = 353.08 kPa, C2 = −423.16 kPa), Yeoh (Eq. (5), C1 = 17.06 kPa, C2 = 35.51 kPa, C3 = 1.78 kPa), Ogden
(Eq. (6), C1 = 3.71 kPa, C2 = 6.72 kPa, C3 = 4.34 kPa, C4 = 6.72 kPa, C5 = 4.65 kPa, C6 = 6.72 kPa), Humphrey
(Eq. (7), C1 = 39.71 kPa, C2 = 0.9 kPa), Veronda–Westmann (Eq. (8) C1 = 69.84 kPa, C2 = 0.73 kPa) and Martins
(Eq. (9) C1 = 26.76 kPa, C2 = 1.46 kPa, C3 = 3.64 kPa, C4 = −7.77 kPa).

10



From the correlation coefficients and cost function at the solution values, the ranking of the
models from best fit to worst fit are reported in Table 3. The corresponding material parameters
are reported in Tables A.5 to A.9.

Table 3: Ranking of the material models for each tissue (++: best fit; +−: good fit; −−: worst fit).
Skin Vagina EAS AM IAS

Yeoh Correlation coefficient ++ ++ ++ ++ +−

Cost function ++ ++ ++ ++ +−

Mooney–Rivlin Correlation coefficient −− +− −− ++ −−

Cost function −− +− −− +− −−

Ogden Correlation coefficient ++ +− ++ ++ +−

Cost function ++ +− ++ ++ −−

Humphrey Correlation coefficient +− +− +− ++ +−

Cost function +− −− +− +− −−

Veronda–Westmann Correlation coefficient ++ +− −− ++ +−

Cost function ++ +− −− ++ −−

Martins Correlation coefficient ++ ++ ++ ++ +−

Cost function ++ ++ ++ ++ +−

4. Discussion

A protocol for the biomechanical characterization of perineal porcine tissues was developed
using uniaxial tensile tests in the general fiber direction of the samples. The focus of the study
was the comparison of several material models to determine which best fits the experimental data
for each of soft tissues of the perineum that was dissected: skin, vagina, external anal sphincter,
internal anal sphincter and anal mucosa.

The results proved the non-linear hyperelastic behaviour of the different tissues of the porcine
perineum. The comparison of some existing hyperelastic models showed that the Yeoh, Mar-
tins and Ogden models described the behaviour of the tissues better then the Mooney–Rivlin,
Humphrey and Veronda–Westmann models. However, the Ogden model was unable to fit all the
curves of all tissues. Moreover, high values of the cost function at the solution for the Mooney–
Rivlin, Humphrey and Veronda–Westmann models indicate that the algorithm was not able to fit
the experimental data. This was especially noticeable for the Mooney–Rivlin model for which
we have a small number of iterations for a high cost function value (illustrated in Fig. 7). Most
Mooney–Rivlin parameters obtained by solving an unconstrained inverse problem violate the
stability condition (C1 + C2 > 0) (Drucker, 1956). Hence, as observed on Fig. 7, increasing the
stretch value leads to a decrease of stress. So, an identification of Mooney–Rivlin parameters
under the stability condition constraints has been realized. However, in this case, cost function
values were worse than those without stability condition (Table A.4). Indeed, Mooney–Rivlin
constitutive law is not adapted to model perineal soft tissues. As parameter identification was
realized with an unconstrained optimization, the stability condition, related to the convexity of
Ψ#, is checked looking at the sign of Ψ′′# for all hyperelastic models (Ogden , 2003) (see supple-
mentary Tables A.5 to A.9 in Appendix).

The results concerning the models comparison are in agreement with the study of (Martins
et al., 2006) in which the material models were compared on porcine muscle. It was found that
the Yeoh, Ogden and Martins models presented a very good description of the material properties
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of soft biological tissues. Another similar study on pig skin from the spine and stomach regions
reached the same conclusion with an emphasis that Mooney–Rivlin and Veronda–Westmann
models were the least accurate models (Łagan and Liber-Kneć, 2017). Moreover, a comparison
of the Yeoh, Mooney–Rivlin and Ogden models on pig skin (belly and back) confirmed that the
Yeoh model captures accurately the behaviour of the pig skin (Dwivedi et al., 2022). It also
highlighted the stability issues that arise when using the Ogden model as well as the failure of
the Mooney–Rivlin model to properly describe the behaviour of the tissues.

Despite the good results obtained, there are various limitations associated with our study.
One of these limitations comes from the non-homogeneity and the irregularity in thickness of
some samples such as the skin and the EAS. This is due to the difference in skin texture around
the vulva and the ano-vulvar region of the perineum. A second reason is that the EAS is too small
to extract samples and thus must be taken as is to test. Additionally, there is some uncertainty
associated to the computation of the section of the samples which are not perfectly rectangular.
Moreover, there is a lack of information on the precise fiber orientation of the tissues. These
limitations lead to a high variability in the response of the tissues (Tables A.5 to A.9) as well
as non homogeneous strain fields within the samples. The use of digital image correlation could
counteract these problems to have a better understanding of the properties of these tissues.

Another limitation of this study with regards to the use of the results for humans is the
anatomical differences between the porcine and human perineum. The human perineum has
more layers than the sow perineum. Indeed, there are no perineal muscles and so no perineal
body (central attachment of the perineal muscles). Moreover, with the human and porcine pos-
ture being different, we would assume that the human perineum is subjected to more stress.

To pursue the investigation of the mechanical properties of the perineal tissues, it is important
to consider the remaining part of the stress–stretch experimental data by introducing a damage
criterion with the material model. Failure analysis is important for these tissues as the ultimate
objective is to understand the rupture of the perineum during childbirth (Calvo et al., 2009; Fer-
reira et al., 2017; Li, 2016; Martins et al., 2012). Moreover, the anisotropy of the tissues need to
be investigated as well as the viscous behaviour. Lakhani et al. (2020) studied the anisotropy of
the porcine skin from multiple locations of the pig and found the angle of maximum and mini-
mum elastic modulus as well as the collagen orientation intensity. Shi et al. (2019) characterized,
by finite element model updating, anisotropic material properties of human cervical tissues from
indentation and video extensometry measurements. Their model takes into account fiber orien-
tation measured using Optical Coherence Tomography. Peña et al. (2011) studied the anisotropy
and viscoelastic behaviour of human vaginal tissues and proposed a constitutive model that may
be useful for further studies on the porcine perineum. Ferreira et al. (2017) also developed a nu-
merical framework including non-local damage to describe hyperelastic constitutive laws. These
more complete material models could allow us to build a computational model of the porcine
perineum which would be validated on experimental tests on the entire perineum simulating
childbirth. This is a step towards a computational model of the human perineum in which the
material properties would be obtained from in-vivo measurements.

5. Conclusion

Porcine perineums were dissected and tissues such as the skin, vagina, external anal sphincter
(EAS), internal anal sphincter (IAS) and anal mucosa (AM) were subjected to uniaxial tensile
tests. This paper is one of the first to investigate these different tissues seperately. A testing and
analysis methodology was developed and multiple hyperelastic constituve laws were compared.
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The results of this preliminary study give an insight on the mechanical behaviour of those tis-
sues. Despite the variability of the response for each tissue, there is a clear difference in curve
shape, stiffness and yield point between the five tissues. The Yeoh and Martin models described
accurately the behaviour of all the different tissues. For further studies, the Yeoh model is a good
compromise between accuracy, correlation and computation cost for the hypothesis of isotropy.
These preliminary results must be completed by carrying out an experimental campaign on a
larger number of samples in order to first build an experimental database and to study the effect
of environmental and experimental conditions on the material properties of the porcine perineal
tissues. This study is the first step towards understanding the mechanical behaviour of the per-
ineum and its different tissues for the prediction of the damage and tear during childbirth.
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Appendix A. Tables

See Tables A.4–A.9.

Table A.4: Results for the Mooney–Rivlin model with unconstrained and constrained parameters.
Unsconstrained Constrained
C1 (kPa) C2 (kPa) Cost function (kPa) r C1 C2 Cost function (kPa) r

Skin Mean 510.68 −554.69 383.17 0.992 417.92 −416.79 826.77 0.986
SD 221.55 252.26 487.73 0.005 160.05 160.13 1055.24 0.010

Vagina Mean 1800.83 −1728.67 63.86 0.999 1796.58 −1723.82 63.90 0.999
SD 921.19 923.87 117.5 0.002 922.40 924.77 117.48 0.002

EAS Mean 125.49 −127.94 84.93 0.991 115.29 −110.42 127.14 0.989
SD 94.69 106.39 158.27 0.008 87.19 90.80 251.72 0.011

AM Mean 840.91 −745.02 31.22 0.999 840.91 −745.02 31.22 0.999
SD 431.90 455.66 29.88 0.001 431.90 455.66 29.88 0.001

IAS Mean 191.33 −215.87 139.08 0.990 158.39 −154.01 426.75 0.984
SD 110.16 128.32 95.19 0.013 88.56 86.60 316.44 0.017
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Table A.5: Material parameters (mean and standard deviation in kPa) of skin tissues for all models using unconstrained
optimization. Ψ′′# is the second derivative of the SEF and is checked for convexity.

C1 C2 C3 C4 C5 C6 Ψ′′#

Yeoh Mean 40.69 83.34 5.14 > 0
SD 17.38 53.70 31.74

Mooney–Rivlin Mean 510.68 −554.69 < 0
SD 221.55 252.26

Ogden Mean 3.56 11.85 9.71 7.48 7.99 12.75 > 0
SD 2.58 9.44 5.46 0.90 8.50 12.13

Humphrey Mean 35.69 1.60 > 0
SD 7.55 0.58

Veronda–Westmann Mean 75.88 1.16 > 0
SD 18.76 0.39

Martins Mean 26.85 2.34 8.10 −3.53 > 0
SD 7.04 1.13 3.86 2.57

Table A.6: Material parameters (mean and standard deviation in kPa) of vagina tissues for all models using unconstrained
optimization. Ψ′′# is the second derivative of the SEF and is checked for convexity.

C1 C2 C3 C4 C5 C6 Ψ′′#

Yeoh Mean 162.77 1145.56 −4116.94 > 0
SD 61.88 1646.08 74.14.71

Mooney–Rivlin Mean 1800.83 −1728.67 > 0
SD 921.19 923.87

Ogden Mean 23.54 12.12 23.78 12.12 24.49 12.12 > 0
SD 16.55 5.98 16.52 5.98 15.58 5.98

Humphrey Mean 70.15 6.75 > 0
SD 61.13 6.35

Veronda–Westmann Mean 212.37 4.79 > 0
SD 210.50 4.42

Martins Mean −26.71 28.91 73.47 66.97 > 0
SD 96.81 28.08 71.94 114.30

Table A.7: Material parameters (mean and standard deviation in kPa) of EAS tissues for all models using unconstrained
optimization. Ψ′′# is the second derivative of the SEF and is checked for convexity.

C1 C2 C3 C4 C5 C6 Ψ′′#

Yeoh Mean 22.15 12.68 4.55 > 0
SD 8.63 28.38 19.58

Mooney–Rivlin Mean 125.49 −127.94 < 0
SD 94.69 106.39

Ogden Mean 5.91 5.69 9.52 4.24 10.17 4.24 > 0
SD 3.65 1.25 7.32 1.86 12.33 1.86

Humphrey Mean 123.53 0.54 > 0
SD 180.50 0.35

Veronda–Westmann Mean 84.15 −2.80 > 0
SD 66.60 3.87

Martins Mean 20.42 1.39 4.52 7.77 > 0
SD 20.96 1.20 2.88 19.74
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Table A.8: Material parameters (mean and standard deviation in kPa) of AM tissues for all models using unconstrained
optimization. Ψ′′# is the second derivative of the SEF and is checked for convexity.

C1 C2 C3 C4 C5 C6 Ψ′′#

Yeoh Mean 146.24 317.27 405.01 > 0
SD 20.07 359.85 1705.57

Mooney–Rivlin Mean 840.91 −745.02 > 0
SD 431.90 455.66

Ogden Mean 28.68 8.32 25.23 8.32 22.84 8.32 > 0
SD 7.36 1.40 9.73 1.40 11.24 1.40

Humphrey Mean 66.41 2.68 > 0
SD 25.17 1.00

Veronda–Westmann Mean 203.95 1.68 > 0
SD 107.06 0.50

Martins Mean 86.23 6.89 20.38 −73.66 > 0
SD 48.28 0.61 4.84 61.70

Table A.9: Material parameters (mean and standard deviation in kPa) of IAS tissues for all models using unconstrained
optimization. Ψ′′# is the second derivative of the SEF and is checked for convexity.

C1 C2 C3 C4 C5 C6 Ψ′′#

Yeoh Mean 19.73 24.38 −2.76 > 0
SD 16.18 18.76 2.89

Mooney–Rivlin Mean 191.33 −215.87 < 0
SD 110.16 128.32

Ogden Mean 12.63 4.54 10.24 4.53 11.67 4.54 > 0
SD 12.11 0.93 7.28 0.93 4.56 0.93

Humphrey Mean 143.30 0.33 > 0
SD 115.44 0.18

Veronda–Westmann Mean 181.23 0.24 > 0
SD 111.92 0.15

Martins Mean 66.30 −1.48 0.20 1138.66 > 0
SD 59.07 1.81 0.15 1839.33
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