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Abstract  10 

To facilitate the transition of residential buildings towards decarbonized energy sources, various 11 

energy systems are currently being investigated within the scientific community. The accurate sizing 12 

and performance evaluation of these systems heavily rely on the quality of input profiles. Addressing 13 

this necessity, a method for generating diverse, high-resolution, continuous, consistent demand and 14 

production profiles for a whole year is proposed. This method is structured in a modular fashion and 15 

draws upon a widely recognized demand model from literature. Each module of the method is 16 

systematically presented, and the parametrization process is detailed through a case study focusing 17 

on single-family houses in temperate climate. This comprehensive description facilitates the 18 

replication of the method in different geographical regions. Subsequently, a Monte Carlo simulation is 19 

employed, incorporating variations in weather conditions, building properties, and occupant 20 

behaviors. This simulation generates an openly accessible dataset comprising thermal, electrical and 21 

photovoltaic profiles for 3500 configurations. The generated weather and electricity demand profiles 22 

exhibit trends and variations that closely match the measured data. Photovoltaic production profiles 23 

were validated against PVGIS data, showing similar monthly variations and diversity. The generated 24 

dataset includes houses with energy consumption profiles that correspond to Energy Performance 25 

Certificates ranging from A to E.  26 
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Highlights 30 

*Modeling of domestic energy load and PV production throughout the year 31 

*Generation of diverse, high-resolution, continuous and consistent energy profiles 32 

*Presentation of the model parametrization procedure through detailed case study 33 

*Sharing of a dataset comprising 3500 configurations derived from French data 34 

*Trend and dispersion analysis of the dataset in comparison to measured data 35 
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Nomenclature 40 

Symbols 41 

D  Day 42 

T  Temperature (°C) 43 

G  Solar irradiance (W.m-2) 44 

t  time (minute) 45 

ƞ  Efficiency 46 

Pr  Probability 47 

C  Capacitance (J.K-1) 48 

H  Heat loss coefficient (W.K-1)  49 

�̇�  Temperature variation (°C.s-1) 50 

�̇�  Hot water mass flow rate (kg.s-1) 51 

P  Power (W) 52 

A  Global irradiance multiplier (m²) 53 

Obj  Objectif function 54 

 55 

Indices 56 

ref  Reference 57 

mp  Maximum power point 58 

amb  Ambient 59 

irrad  Irradiation 60 



 

 

hw  Hot water 61 

heat  Heating 62 

i  Interior of building  63 

w  Water 64 

cw  Cold water 65 

set  Setpoint 66 

db  Dead band 67 

b  Building envelope node 68 

rad  Radiator 69 

cool   Cooling 70 

s  Solar 71 

o  Outside of Building 72 

v  Ventilation 73 

 74 

Abbreviations  75 

PV  Photovoltaic 76 

CREST  Centre for Renewable Energy Systems Technology 77 

NOCT  Normal Operating Cell Temperature 78 

TUS  Time Use Surveys 79 

INSEE  Institut National de la Statistique et des Études Économiques (France) 80 

ADEME  Agence De l'Environnement et de la Maîtrise de l'Énergie, (France) 81 

DHW  Domestic Hot Water 82 

RMSE  Root Mean Square Error 83 

GHI   Global Horizontal Irradiance 84 
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1. Introduction 86 

1.1. Research Background 87 

 88 

Climate change represents a global phenomenon requiring urgent international action. The building 89 

sector stands out as one of the most energy-intensive industries worldwide, accounting for 30% of 90 

global final energy consumption and 26% of total greenhouse gas emissions from the energy sector in 91 

2022 [1]. Addressing climate change, mandates a reduction in energy consumption within this sector 92 

and a transition away from high-carbon energy sources like natural gas. 93 

Various energy solutions are being explored globally to meet building demands in a decarbonized 94 

manner, including photovoltaics, thermal solar panels, battery storage, hydrogen storage, heat pumps, 95 

biogas boilers, new generation heat networks or waste heat recovery systems. However, accurately 96 

assessing and sizing these energy systems require high-resolution electric and thermal load profiles. 97 

Monitoring building consumption in situ is often costly and time-consuming. Jin et al. examined 98 

available open datasets and their utility in the literature [2], identifying only 33 open datasets, among 99 

which only 25 provide yearly data, 6 offer monthly data, and just 2 offer hourly or sub-hourly data. 100 

Additionally, only 6 datasets pertain to the European Union, none of which provide sub-yearly 101 

resolution. To address this data gap, building energy models are commonly utilized to generate time 102 

series suitable for multi-energy simulations. 103 

Building energy models employ two main approaches: top-down and bottom-up [3]. Top-down models 104 

utilize macroscopic data on national, regional, or local scales, which are then disaggregated based on 105 

various economic, social (employment rate, income, etc.), technical (set temperature, equipment, 106 

etc.), or physical parameters (vintage, insulation type, etc.) to the building level.  107 

However, these models may lack the precision required for energy system simulations at the individual 108 

building level, which is primordial for the assessment of individual energy systems [4]. Furthermore, 109 

top-down approaches may struggle to maintain consistency between different profiles (e.g., thermal 110 

demand, electric demand, local electric production), which is also crucial for evaluating energy 111 

systems, particularly in urban photovoltaic modeling. For instance, a decrease in solar radiation can 112 

lead to simultaneous increases in energy demand (for lighting and heating) and decreases in local PV 113 

production, resulting in a sudden gap between energy production and demand. Capturing these gaps 114 

is essential for evaluating the potential of energy storage technologies. For these reasons, top-down 115 

models are less suitable for generating electrical and thermal load profiles needed for evaluating the 116 

performance of residential multi-energy systems. 117 

On the contrary, bottom-up models begin with the specific attributes of a building to derive its thermal 118 

or electrical load profiles. Consequently, extensive data on household equipment, occupants' 119 

behavior, and weather conditions are necessary for electricity load simulations. Similarly, thermal data 120 

necessitates information on inhabitants' behavior and weather, along with detailed data on the 121 

physical properties of the building. These methods, through higher parameterization and increased 122 

modeling granularity, generate coherent and precise profiles suitable for multi-energy systems 123 

assessment. 124 

 125 

https://www-sciencedirect-com.insis.bib.cnrs.fr/science/article/pii/S2210670723003050#fig0001


 

 

1.2. Literature review 126 

 127 

Numerous bottom-up models currently exist in the literature. They can be further categorized into 128 

black, white, and gray box methodologies. Black box models, also known as data-driven models, utilize 129 

historical data to project load profiles based on a new set of inputs such as building characteristics, 130 

occupancy, and weather conditions. Techniques include linear regression, support vector machines, 131 

and neural networks [5]. Wang et al. conducted a comparative study on the performance of 12 black 132 

box algorithms, identifying linear, ridge, and lasso regression as underperforming methods, while 133 

Extreme Gradient Boost and Long Short-Term Memory were highlighted as superior long-term and 134 

short-term prediction methods, respectively [6]. However, black box approaches are limited to 135 

extrapolating existing data and cannot generate datasets from scratch. 136 

Conversely, white box models, also referred to as physical models, utilize the physical properties of 137 

buildings to compute thermal exchanges between different zones within the building and with the 138 

external environment. Commonly employed white box software includes EnergyPlus, TRNSYS, 139 

Pleiades, and Dymola. 140 

Hong et al. proposed a method to generate synthetic smart meter data using EnergyPlus via 141 

OpenStudio (2020) [7]. This model incorporates variations in four sectors (weather, building envelope, 142 

building operation, and inhabitant behavior) across sixteen types of commercial buildings (e.g., offices, 143 

restaurants, schools, hotels) under sixteen U.S. climates, for five vintages (2004, 2007, 2010, 2013, and 144 

2016) and three building operation scenarios (good, average, and poor). An agent-based model 145 

simulates building occupancy, while appliance usage is represented by a linear function dependent on 146 

occupancy count. The resulting profiles can serve as baselines for testing energy algorithms. 147 

Chaudhary et al. introduced in 2023 a bottom-up approach for generating profile datasets suitable for 148 

deep neural network training, known as synconn_build [8]. This method employs Python scripts to 149 

automate the setup of EnergyPlus software, which then simulates temperature variations and the 150 

corresponding heating and cooling loads. Variations are introduced through solicitation profiles 151 

(weather, occupancy, lighting, appliances), three perturbation signals (heating/cooling setpoint, 152 

control and windows' opening), and noise on the heating/cooling temperature setpoint signal. 153 

Ferando et al. presented in 2020 eight commonly used bottom-up physics-based urban energy models, 154 

three of which employ a white box approach, all based on EnergyPlus (umi, CityBES, and URBANopt)  155 

[9]. However, for accuracy, the design of multi-energy systems often requires extensive dataset inputs 156 

to conduct uncertainty and off-design analyses. While classical white-box models can be 157 

computationally expensive for generating larger datasets, there is a growing need for faster methods 158 

such as gray-box approaches. The most prevalent simulation technique in this domain is reduced-order 159 

resistor capacitance (RC). Ferando et al. identified five commonly used tools employing this approach: 160 

CitySim, SimStadt, OpenIDEAS, CEA, and TEASER [9].  161 

The complexity of reduced-order RC models varies depending on their order. Shamsi et al. proposed a 162 

procedure for determining the most suitable order of RC models for commercial building studies  [10]. 163 

This method relies on various building characteristics, with significant impacts identified including total 164 

interior floor area, glazed area, number of floors, number of zones, presence of solar facades, heat 165 

demand profile, installed heating/cooling systems, and renovation history. Validation of this approach 166 

was conducted using a forward selection method, demonstrating consistency between the order 167 

identified by the proposed method and the forward selection procedure. 168 



 

 

Roth et al. (2020) created SynCity which adopts a hybrid approach, combining elements of both top-169 

down and bottom-up methodologies to generate hourly electric and thermal load profiles on a city 170 

scale [11]. Initially, a machine learning algorithm was developed using annual consumption and 171 

physical properties from 15,000 buildings in New York City, which then estimated the annual 172 

consumption of 1 million buildings based on their physical properties. Subsequently, estimated annual 173 

consumptions were used to allocate each building to three reference physical models among nineteen. 174 

The respective weightings of these three reference models for each building were determined using 175 

convex optimization, comparing the aggregated results to citywide consumption. This method allows 176 

the authors to generate over 1 million hourly energy profiles in New York City utilizing only open 177 

datasets. 178 

Guo et al. (2023) also utilized a mixed approach [4]. Initially, bottom-up models were generated based 179 

on building characteristics such as building types, roof types, vintage, building layout, and footprints. 180 

Subsequently, a top-down approach was employed to reduce uncertainties in the model inputs. 181 

Evaluation on a district in Leeste, Germany, indicated a mean absolute error percentage of 2%, 182 

contrasting with 15% when solely employing bottom-up approaches. 183 

The majority of building dataset-generating tools use, for computing time reasons, time steps above 184 

the minute. Yearly values are used for (SimStadt, umi), hourly time steps for (CitySim, Roth et al., CEA, 185 

Urbanopt, Teaser, SynCity), and 15-minute time steps for (Smart-E, synconn_build). However, to 186 

accurately capture the performance of energy systems, high resolution is required. For example, some 187 

energy systems exhibit slow start-ups and ramp-ups, and assessing the impact of these slow dynamics 188 

on performance requires fully capturing the abrupt changes that can appear in real domestic loads. 189 

Some models, like CityBES and OpenIDEAS, can produce data with a resolution of 1 minute. However, 190 

OpenIDEAS does not produce PV production profiles, and CityBES does not allow for stochastic 191 

variation of occupancy, heating setpoints, appliances ownership and usage, etc. Moreover, these two 192 

models, as well as most aforementioned tools, require expertise specific to building modeling, which 193 

can limit the number of users able to use them. 194 

Conversely, premade open datasets offer easier utilization for researchers specializing in energy 195 

systems (electric, thermal, or multi-energy) who may lack expertise in building modeling. The drawback 196 

is that those datasets cannot be adapted to new parameters (new building, new regions, etc.). For the 197 

European region in a similar way as for measures datasets, available synthetic datasets are limited. Ali 198 

et al. developed a synthetic building dataset for 1 million buildings, including heating, electricity, and 199 

hot water consumption, as well as PV production in Dublin but only for comprising annual values [12]. 200 

The Joint Activity Scenarios and Modeling share open dataset for Swiss buildings, notably in the work 201 

of Murray et al. that generated hourly profiles for 14 residential and commercial buildings under 7 202 

retrofit scenarios [13]. In the same way, Iturralde et al. shared hourly profile for one multifamily house 203 

and one single-family house in Central Europe [14].  204 

For the purpose of energy system design and sizing, datasets need to be high-resolution to assess 205 

dynamic system performances, consistent to capture gaps between local production and consumption, 206 

continuous throughout the year to evaluate storage potential, pre-made to accommodate a larger 207 

number of researchers, and varied enough to allow for uncertainty and off-design analysis. In the 208 

literature there is a lack of corresponding openly available dataset tailored to Europe.  209 

The Centre for Renewable Energy Systems Technology (CREST) demand model, widely recognized in 210 

the literature, has the capability to generate such profiles without necessitating specific expertise in 211 

building energy modeling. Leveraging statistical techniques, this model stochastically generates 212 

consumption profiles for single-family houses. Initially conceived as a domestic occupancy model, it 213 



 

 

has since evolved into an electricity demand model. Subsequent enhancements incorporated a 214 

thermal component, encompassing heating, and more recently, cooling [15, 16, 17, 18, 19].  215 

The electrical and thermal load profiles, as well as PV production profiles generated by the model, are 216 

consistent and high resolution (1 minute). Only a few inputs are necessary to generate profiles, making 217 

this method usable by a large range of researchers. Moreover, the model is able to generate profile 218 

datasets with high diversity, relying on variations in weather conditions, building envelopes, building 219 

sizes, inhabitant occupancy, lighting/appliances (variation in ownership and usage), and inhabitant 220 

heating/cooling habits. The CREST model can be compared to the other presented bottom-up methods 221 

in Table 1.   222 

However, the current iteration of the model still has limitations. It simulates one day at a time, resulting 223 

in discontinuities between consecutive days when constructing yearly profiles. Additionally, compared 224 

to conventional scientific programming languages, the VBA code environment used, can exhibit slower 225 

performance, resulting in prolonged execution times for yearly simulations. Furthermore, the 226 

downside of not requiring complex user inputs is that the model is rigid and is limited to the specific 227 

regional setting it originates. 228 

Therefore, a new method is created to enhance the model's capabilities to an annual simulation by 229 

enabling annual simulations while maintaining consistency across days. A reproducible and 230 

comprehensive procedure is proposed for the reparameterization of the CREST model for different 231 

weather conditions, building types, inhabitant behaviors… The procedure is illustrated through a case 232 

study using French statistical data and weather data from a temperate oceanic climate (as defined by 233 

the Köppen-Geiger climate classification [20]). Finally, utilizing the enhanced model, Monte Carlo 234 

simulation is conducted to generate an open dataset suitable for assessing energy system performance 235 

and sizing. 236 

 237 

The intended novelty of this paper includes: 238 

• Development of a method for the generation of yearly, high-resolution, consistent residential 239 

electricity, heating and cooling load profiles as well as PV production profiles  240 

• Presentation of the model parametrization process, using the case study of single-family 241 

houses in temperate oceanic climate, such that it can be replicated for other regions 242 

• Analysis and discussion of profiles generated by Monte Carlo simulation for 3500 unique 243 

houses’ configurations 244 

• Provision of the generated dataset for public access. 245 

To achieve these objectives, the following tasks must be undertaken: 246 

• Modeling the varying weather conditions, including solar radiation and temperature 247 

fluctuations 248 

• Modeling the appliance and lighting loads typical of Central European households  249 

• Modeling the space heating, hot water, and cooling demands specific to typical single-family 250 

houses in a temperate oceanic climate.  251 

• Integration of these models into a Monte Carlo simulation framework to generate a 252 

comprehensive load profile dataset incorporating variations in weather, building 253 

characteristics, occupant behavior, and equipment usage   254 



 

 

Table 1: Summarize of existing residential profiles generation methodologies  255 

Model Modeling approach Resolution Profiles generated PV Variation 

Umi (2013) [21] White box (Energy plus) Yearly Electricity, hot water, heating and cooling Yes Weather, building properties 

CitySim (2015) [22] 
Gray-box (reduced-order 
RC) 

Hourly Electricity, hot water, heating and cooling No Weather, building properties 

Simstadt (2015) [23] 
Gray-box (reduced-order 
RC) 

Yearly Electricity, hot water, heating and cooling Yes Weather, building properties 

OpenIDEAS (2015) [24] 
Gray-box (reduced-order 
RC) 

1 minute Electricity, hot water, heating and cooling No Weather, Building properties, occupancy 

CityBes (2016) [25] 
White box (Energy plus 
and OpenStudio) 

1 minute Electricity, hot water, heating and cooling Yes Weather, building properties 

CEA (2016) [26] 
Gray-box (reduced-order 
RC) 

Hourly Electricity, hot water, heating and cooling Yes Weather, building properties 

TEASER (2018) [27] 
Gray-box (reduced-order 
RC) 

Hourly Electricity, hot water, heating and cooling No Weather, building properties 

URBANopt (2020) [28] White box (Energy plus) Hourly Electricity, hot water, heating and cooling Yes Weather, building properties 

Hong et al. (2020) [7] 
White box (Energy plus 
and OpenStudio) 

15 minutes Electricity, heating and cooling  No 
Weather, building properties,  
occupancy and building operation  

CREST (2020) [15] 
Gray-box (reduced-order 
RC) 

1 minute Electricity, hot water, heating and cooling Yes 
Weather, building properties, occupancy, 
building operation, lighting and appliances 
(ownership and usage)  

SynCity (2020) [11]  
Hybrid (top-down and 
bottom-up) 

Hourly Electricity, hot water, heating and cooling No Building properties 

Guo et al. (2023) [4] 
Hybrid (top-down and 
bottom-up) 

Hourly Electricity, hot water and heating No Building properties 

synconn_build (2023) [8] White box (Energy plus) 15 minutes Heating and cooling  No 
Building properties, occupancy, lighting, 
appliances, setpoint, and  
building operation 

256 



 

 

2. Method  257 

 258 

As previously stated, the decision was made to use the model established by CREST as foundation, the 259 

original model is available as an open-source VBA code [15]. The proposed new model allows for: 260 

• Continuous simulations for a given time period (weekly, monthly, yearly), 261 

• Faster execution time, through programming environment change (Matlab®) and structural 262 

changes (vectorization),   263 

• Finer clearness modeling to capture monthly weather patterns, 264 

• Smother temperature variation through the year,   265 

• More complex PV modeling to capture temperature dependency, 266 

• Flexible lighting calibration function allowing to dynamically align to a specific consumption, 267 

• Handling of conditional probability for appliances ownership, 268 

• More temporal variation of hot water demand through variation of cold-water inlet,   269 

• Inclusion of solar radiative gain on the building envelope, 270 

• Variation in window shutters use through variation in internal solar radiative gain, 271 

• Coherence between the occupancy and heating schedules,  272 

• More stable cooling loads profiles even for high power cooling systems. 273 

The model parametrization procedure is presented in detail using the case study of temperate oceanic 274 

climate as well as the addition of a low consumption building.  Moreover, the model is updated with 275 

more recent data, notably for the introduction of IT appliances, and corrected when needed. The 276 

complete methodology regarding the final framework and the parameterization process are provided 277 

in the subsequent sections. 278 

 279 

2.1. Weather model 280 

2.1.1. Solar radiation  281 

The CREST model employs stochastic processes to generate daily profiles of solar irradiation and 282 

outdoor temperature based on historical data. A comprehensive description of the solar irradiation 283 

modeling is provided by Richardson and Thomson [29]. Initially, the program computes an irradiance 284 

profile for a clear sky scenario using solar angle and optical depth. The impact of cloud cover on this 285 

value is estimated through a clearness coefficient ranging from 0 to 1. To account for its diurnal 286 

variation, a Markov chain is employed. The final irradiation is obtained by multiplying the clear sky 287 

value by the clearness index. 288 

In transitioning to year-round modeling, the daily clear sky irradiation model is executed for each day 289 

of the year and then aggregated to generate yearly irradiation profiles. For the clearness index, the 290 

Markov chain is computed for every minute of the year.  291 

To address the complexity of cloud coverage variations throughout the year, the model is enhanced 292 

by employing 12 transition matrices, each specific to a month. This refinement acknowledges the 293 

reality that certain months are more prone to cloudy days than others. Utilizing monthly matrices helps 294 

mitigate the issue of overestimating solar irradiation in winter months and underestimating it in 295 

summer months. This correction is particularly evident in PV production profiles, which tend to be 296 

significantly overestimated in January and December in the CREST model.  297 



 

 

In terms of parameterization, the clear sky irradiation module already incorporates variations in 298 

longitude, latitude, and meridians and thus requires no further adaptation. However, in the original 299 

CREST model, the clearness model was initially parametrized using weather data from the UK and 300 

remained unchanged even after incorporating Indian climate zones. It's important to note that the 301 

clearness index is closely linked to specific weather patterns, necessitating adaptation to the region 302 

under study in order to accurately capture these patterns. 303 

The Markov chain utilized for modeling relies on a 101 X 101 transition matrix, which necessitates 304 

reparameterization. The parametrization method utilizes necessitate weather data with a 1-minute 305 

resolution. In the present case weather data from the FEMTO ST/FCLAB laboratory weather station in 306 

Belfort (France) are used. Irradiation profile data from 2015 to 2021 are separated by month in 12 sets. 307 

These sets are compared with clear-sky irradiance at the same time of the year to estimate the cloud 308 

cover index sets. These indices are then converted into 101 intervals with a resolution of 1%. Finally, 309 

the matrix is generated by calculating for each state the frequency of transition to the 101 states.  310 

2.1.2. Outside Temperature 311 

The model for outdoor temperature is detailed in the work of McKenna and Thomson [19]. It employs 312 

an autoregressive moving-average model based on monthly reference values to predict the average 313 

temperature for a given day. The cumulative solar irradiance throughout the day is utilized to estimate 314 

both the daily maximum and minimum temperatures. The minimum temperature corresponds to 315 

sunrise, while the maximum temperature is determined by the moment when the ratio of the sum of 316 

ground irradiance to the sum of extraterrestrial irradiance is maximized. Between these two extremes, 317 

temperature variation is influenced by solar irradiance during the day and cloud cover at night. 318 

Transitioning from a daily to a yearly model necessitates a change in approach. In the original model, 319 

the temperature at sunrise (minimum temperature) on day D dictates the temperature decrease 320 

during the preceding evening and following morning of day D. This setup introduces inconsistencies 321 

between consecutive days, which are addressed by utilizing the sunrise temperature of day D+1 to 322 

determine the nighttime temperature evolution between days D and D+1.  323 

Additionally, the original model employs monthly references, leading to abrupt switches in daily 324 

temperature between months. To address this issue, the proposed model now utilizes sinusoidal 325 

functions to create smoother day-to-day transitions. 326 

The parametrization methodology uses openly available data from the Open-Meteo historical weather 327 

API [30, 31, 32, 33]. The daily mean temperatures for each day from 2000 to 2023 are extracted and 328 

used to fit the sinusoidal functions. The results and presented in (Figure 1). 329 



 

 

 330 

Figure 1: Adjustment of the average reference temperature function 331 

 332 

2.2. Photovoltaics model  333 

 334 

The CREST model incorporates a module for the self-generation of electricity by photovoltaic (PV) 335 

panels. The operation of this module is comprehensively detailed in the work of Richardson and 336 

Thomson [29]. The PV module utilizes irradiance data from the climate module to calculate the incident 337 

irradiance on the solar panel, considering its tilt and orientation. Subsequently, the power output of 338 

the panel is estimated based on the given irradiation, the panel's efficiency, and its surface area. 339 

Similar to the adjustments made to other modules, modifications are applied to the PV module to 340 

enable its operation over variable periods instead of just a single day. Additionally, the estimation of 341 

power output for a given irradiation is refined to incorporate the effect of panel temperature on 342 

efficiency. To address this, the model proposed by Arsalis et al. is utilized [34]. Panel temperature is 343 

estimated using its Normal Operating Cell Temperature (NOCT) condition and reference condition 344 

performances (Equation (1)). This temperature value is then utilized to modulate the panel's efficiency 345 

(Equation (2)) with its maximum power point efficiency temperature coefficient (μmp). In the profile 346 

generation, all PV panels face south and are inclined by 40°.  For performances an efficiency of 16.9% 347 

and a maximum power point efficiency temperature coefficient of -0.38%.C-1 are used [35]. 348 

 349 

 
𝑇𝑃𝑎𝑛𝑒𝑙 =

𝐺𝑃𝑎𝑛𝑒𝑙(𝑡)

𝐺𝑟𝑒𝑓
(1 −

ƞ𝑃𝑉,𝑟𝑒𝑓

0.9
) (𝑇𝑁𝑂𝐶𝑇 − 𝑇𝑎𝑚𝑏,𝑁𝑂𝐶𝑇) + 𝑇𝑎𝑚𝑏 (1) 

 350 

 ƞ𝑃𝑉 = ƞ𝑃𝑉,𝑟𝑒𝑓(1 + 𝜇𝑚𝑝(𝑇𝑃𝑎𝑛𝑒𝑙 − 𝑇𝑎𝑚𝑏,𝑁𝑂𝐶𝑇)) (2) 
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2.3. Behavior model 352 

 353 

Model for inhabitant behavior is comprehensively described in the work of McKenna et al. [36]. Similar 354 

to the clearness index modeling, behavioral modeling relies on a Markov chain that governs both the 355 

number of active inhabitants and the number of active inhabitants. Given the significant variation in 356 

the probability of a sleeping resident waking up between 2 a.m. and 7 a.m., distinct matrices are 357 

employed for each 10-minute interval throughout the day, totaling 144 matrices. Different sets of 358 

matrices are utilized based on the number of inhabitants (up to 5) and the day of the week (weekday 359 

or weekend), resulting in a total of 1440 matrices ranging from 16 (4*4) states for 1 inhabitant to 1296 360 

(36*36) states for 5 inhabitants.  361 

To run the model over a year while maintaining an alternation between 5 typical weekdays and 2 362 

typical weekend days, the matrices are concatenated into a weekly matrix. The program iterates over 363 

these matrices every 7 days. 364 

Transition matrices are parameterized using data from Time Use Surveys (TUS). Ideally, the model 365 

would be parameterized with the studied country data to align fully with the test case study. However, 366 

in our test case for France, the French surveys have a different structure compared to those in the UK, 367 

as they only select one inhabitant per dwelling [37]. This limitation prevents the data from capturing 368 

the interactions between inhabitants, which are fundamental components of the behavior model. 369 

Therefore, parameterization is conducted using UK data [38], representing an update of the CREST, 370 

moving from 2003 data to 2015. 371 

The 2015 dataset comprises 16533 notebooks from 4230 dwellings. Each notebook records the 372 

activities and positions of residents over the course of a day at 10-minute intervals. Dwellings are first 373 

classified by inhabitant numbers and the survey day. Then, the state corresponding to each dwelling 374 

at each time step is determined based on the number of present inhabitants present and the number 375 

of active inhabitants. Finally, the frequency of each state transition is calculated and used to populate 376 

the transition matrices.  377 

2.4. Lighting model 378 

 379 

The operational details of the lighting consumption module are outlined in the work of Richardson et 380 

al [17]. This module utilizes a list of bulb configurations to assign lighting fixtures to a building. Upon 381 

initialization of a building, a draw is conducted to assign it to one of the hundred configurations. At 382 

each time step, a probability, comprising an irradiation threshold and factors related to occupancy, 383 

calibration, and usage, is compared against a random draw to determine whether a bulb is switched 384 

on (Equation (3)). Once a bulb is activated, it remains illuminated for a stochastically determined 385 

duration (ranging from 1 to 259 minutes) or until there are no active inhabitants present. 386 

 𝑃𝑟𝑎𝑐𝑡 = 𝑓𝑙𝑎𝑔𝑖𝑟𝑟𝑎𝑑 × 𝐹𝑎𝑐𝑡𝑜𝑟𝑜𝑐𝑐𝑢𝑝𝑎𝑛𝑐𝑦 × 𝑓𝑎𝑐𝑡𝑜𝑟𝑟𝑒𝑙𝑎𝑡𝑖𝑣𝑒,𝑢𝑠𝑎𝑔𝑒 × 𝑓𝑎𝑐𝑡𝑜𝑟𝑐𝑎𝑙𝑖𝑏𝑟𝑎𝑡𝑖𝑜𝑛 (3) 

The lighting model utilizes only one temporal loop, which is simply extended to cover a year's duration. 387 

As described earlier, the model employs a calibration factor to align lighting consumption with a 388 

specified annual value. However, in the original model, this factor remains fixed, despite expectations 389 

that buildings of different sizes will exhibit varying annual consumption levels. To address this, it is 390 

proposed to implement a function dependent on the targeted consumption to adjust this factor 391 

accordingly. 392 



 

 

Parametrizing the model for a new region involves several steps. Firstly, it is essential to create 100 393 

new bulb configurations from which to select. This process involves drawing from a normal distribution 394 

to assign a number of bulbs, with the mean based on the French average (31.1 bulbs) [39] and a 395 

standard deviation of 4.4. Subsequently, each bulb is paired with a technology and a power according 396 

to the distribution of technologies obtained from the same study (see Table 2).  397 

For the calibration factor function, lighting simulations are conducted for 100 buildings with calibration 398 

factors varying from 0 to 0.025. A curve is then fitted to the results (see Figure 2). This approach 399 

enables the selection of the calibration factor during initialization based on the desired annual 400 

consumption. In the present case, the calibration factor was adjusted depending on the building's area, 401 

with a reference value for France set at 1.7 kWh.m-2.year-1 [39].  402 

Table 2: Distribution of bulb technologies (from [39]) 403 

Technology 
Proportion in the 
home 

Average power per 
bulb (W) 

LED 48% 6.9 
Halogen 28% 45.6 
Incandescent 9% 52.9 
Fluorescent 15% 18.5 
Average per dwelling 31.1 bulbs 733 W 

 404 

 405 

Figure 2: Example of adjustment of the calibration factor, French test case 406 

 407 

 408 

2.5. Appliances model  409 

 410 

The electrical appliance load modeling constitutes a fundamental aspect of the electrical module 411 

within the CREST model, extensively elaborated in the work of Richardson et al. [18]. Its operation can 412 

be summarized in three steps. Firstly, a set of electrical appliances is stochastically associated with a 413 

building, utilizing random draws and ownership probabilities. Secondly, for each appliance, the switch-414 

                      

                                    
  

 

     

    

     

    

     

 
 
   

  
  
 
 
  
 
 
  

 

                 
 
           

 
                     

            

            



 

 

on times are estimated by amalgamating corresponding daily activity probability profiles throughout 415 

the day with specific annual consumption data. Once switched on, an appliance operates for a 416 

predetermined reference period or until the building becomes unoccupied. Finally, these operational 417 

periods are coupled with a constant electrical load derived from a normal draw around a reference 418 

mean, with a standard deviation set at one-tenth of this value. 419 

Similar to the behavior model, to simulate the model over a year while maintaining an alternation 420 

between 5 typical weekdays and 2 typical weekend days, the activity matrices are concatenated into 421 

a weekly matrix. The program iterates over these matrices every 7 days. 422 

The parametrization of the model to a new region requires the modification of the appliance list, 423 

ownership, mean cycle power, mean cycle length, and annual consumption. For this, in our test case 424 

for France, three studies with varying levels of precision are utilized. These include studies from the 425 

Institut National de la Statistique et des Études Économiques (INSEE) (16,000 households, ownership 426 

data only) [40], one from Gifam, a consortium of domestic appliance brands, (6,500 households, 427 

ownership data only) [41] ,and one from the Agence De l'Environnement et de la Maîtrise de l'Énergie 428 

(ADEME) (101 households, ownership, usage, and consumption data) [39]. Leveraging findings from 429 

these studies alongside values from the reference model, the appliance model is reparameterized, 430 

with summarized values provided in Table 3. Notably, one significant change from the reference model 431 

is the utilization of conditional probability for appliances beyond the first for televisions, laptops, and 432 

desktops to models the difference in consumption between a main television and a secondary one. 433 

The activity profiles are updated using the same time use survey as the behavior model [38]. Within 434 

each of the 4230 households, activities conducted within the buildings are extracted at each time step, 435 

and their frequencies are utilized to reconstruct the activity profiles. The considered activities remain 436 

consistent with the reference model (cooking, laundry, house cleaning, ironing), except that watching 437 

TV is altered to multimedia usage to accommodate the increased prevalence of digital appliances in 438 

households (laptops, desktops, etc.). Appliances not linked to these activities can either be 439 

automatically switched on (at any time step) or associated with occupancy (at any time step with active 440 

occupancy). 441 

Table 3: Summary of electrical appliance specifications 442 

Appliance 
Associated 

activity 

Probability 
of 
ownership 

Mean cycle 
length 
(minute) 

Mean 
cycle 
power 
(W) 

Average 
annual 
consumption 
(kWh.year-1) 

Refrigerator Automatic 1.00 18 200 344 

Freezer Automatic 0.56 22 300 288 

Wine cellar Automatic 0.09 18 200 193 

Washing machine Laundry 0.96 138 222 101 

Dishwasher Cooking 0.61 82 714 162 

Tumble dryer Laundry 0.34 97 1017 301 

TV 1 Multimedia 0.95 73 70 189 

TV 2 Multimedia 0.44 73 70 58 

TV receiver Automatic 0.90 13 13 87 

Games console Multimedia 0.66 162 52 103 

Hi-Fi and speakers Multimedia 1.00 60 100 25 



 

 

Internet box Automatic 0.86 1315 12 97 

Laptop 1 Multimedia 0.82 193 19 22 

Laptop 2 Multimedia 0.28 193 19 22 

Laptop 3 Multimedia 0.35 193 19 22 

Desktop 1 Multimedia 0.33 234 76 123 

Desktop 2 Multimedia 0.18 234 76 123 

Cell phone or tablet Occupation 0.96 60 5 3 

Printer Multimedia 0.83 4 355 12 

Electric stove Cooking 0.34 3 1000 164 

Cooker hob Cooking 0.67 16 1265 138 

Built-in oven Cooking 0.56 51 919 146 

Tabletop oven Cooking 0.27 51 371 59 

Microwave Cooking 0.89 30 1250 39 

Multi-cooker Cooking 0.38 51 101 16 

Kettle Cooking 0.62 3 2000 49 

Coffee machine Cooking 0.97 3 1000 28 

Vacuum cleaner Housework 0.82 20 2000 9 

Iron Ironing 0.59 30 1000 27 

Various constants Automatic 1.00 Constant 5 48 

Ventilation Automatic 1.00 1253 32 241 

 443 

2.6. Hot water model 444 

 445 

The Domestic Hot Water (DHW) tank is modeled based on its heat capacity (Ctank) and heat loss 446 

coefficient (Hloss), with its operation detailed in the work of McKenna and Thomson [19]. This model 447 

governs the variation in tank temperature (�̇�𝑡𝑎𝑛𝑘) in response to hot water demand flow rate (�̇�𝑤𝑎𝑡𝑒𝑟), 448 

heat exchanges with the air, and gains from the heating system (𝑃ℎ𝑒𝑎𝑡,ℎ𝑤) (Equation (4)). Hot water 449 

demand profiles are modeled similarly to electrical appliance use, considering only four sources (basin, 450 

sink, bath, and shower) and two activities (cooking and self-care). 451 

The heating power supplied to the hot water tank is regulated by a thermostat signal with a dead band 452 

of 5°C. Hot water setpoints are assigned, at initialization, via a draw from a discrete probability 453 

distribution. When heat is required, the corresponding power is calculated using Equation (5). To 454 

ensure a realistic profile, the power is then limited by the maximum power of the heating system to 455 

obtain the thermal demand associated with hot water usage.  456 

In the CREST model, the dead band is not factored in the power calculation. Consequently, the 457 

domestic hot water (DHW) tank only warms up to the setpoint and never exceeds it. As a result, the 458 

DHW tank remains continuously ON for the entire simulation after being switched on once. To address 459 

this issue, the dead band is incorporated into the power calculation (Equation (5)) resulting in less 460 

constant heat intermittent spikes in demand. Furthermore, the model initially utilized a constant cold-461 

water inlet temperature, leading to a failure in capturing the seasonality of DHW demand observed in 462 

measurements [39]. To rectify this, the model now incorporates varying cold-water inlet temperatures 463 

based on monthly reference values. Additionally, the model has been modified to exclude heating 464 



 

 

systems' efficiencies from the calculation. This adjustment aims to provide generic heat demand 465 

profiles that can be more readily adapted to various types of energy systems under study. 466 

 467 

 𝐶𝑡𝑎𝑛𝑘�̇�𝑡𝑎𝑛𝑘 = 𝑃ℎ𝑒𝑎𝑡,ℎ𝑤 −𝐻𝑙𝑜𝑠𝑠(𝑇𝑡𝑎𝑛𝑘 − 𝑇𝑖) − 𝑐𝑤�̇�ℎ𝑤(𝑇𝑡𝑎𝑛𝑘 − 𝑇𝑐𝑤) (4) 

 468 

 𝑃ℎ𝑒𝑎𝑡,ℎ𝑤,𝑖𝑑𝑒𝑎𝑙 = 𝐶𝑡𝑎𝑛𝑘(𝑇𝑠𝑒𝑡 + 𝑇𝑑𝑏 − 𝑇𝑡𝑎𝑛𝑘) + 𝐻𝑙𝑜𝑠𝑠(𝑇𝑡𝑎𝑛𝑘 − 𝑇𝑖)

+ 𝑐𝑤�̇�ℎ𝑤(𝑇𝑡𝑎𝑛𝑘 − 𝑇𝑐𝑤) 
(5) 

 469 

The parametrization procedure involves determining both the volume of hot water drawn and the 470 

corresponding power load. In our French test case, the average hot water consumption is estimated 471 

at 56 liters at 40°C per inhabitant [42], with an average of 2.15 inhabitants per household [43], it results 472 

in 120.4 liters per household. This aligns with the 120L value utilized in the reference model, hence no 473 

changes are made to the consumption volumes. However, the power loss associated with the drawn 474 

hot water is now calculated using a value of 40°C to correspond to the reference value (Equation (6)). 475 

Furthermore, the daily constant cold-water temperature is determined by a normal draw, with the 476 

average and standard deviation specified in Table 4 (sourced from [43]). 477 

 478 

 𝐶𝑡𝑎𝑛𝑘�̇�𝑡𝑎𝑛𝑘 = 𝑃ℎ𝑒𝑎𝑡,ℎ𝑤 −𝐻𝑙𝑜𝑠𝑠(𝑇𝑡𝑎𝑛𝑘 − 𝑇𝑖) − 𝑐𝑤�̇�ℎ𝑤(40 − 𝑇𝑐𝑤) (6) 

 479 

Table 4: Average monthly cold-water temperature (from [43]) 480 

Month Mean (°C) Standard deviation (°C) 

January 11 2 

February 11 2 

March 12 2 

April 15 2 

May 17 3 

June 19 3 

July 21 3 

August 21 3 

September 20 3 

October 17 3 

November 15 2 

December 12 2 

 481 

2.7. Building thermal model  482 

 483 

The reference thermal model was initially described for the heating part in the work by McKenna and 484 

Thomson [19], and later for the cooling part in the work by Barton et al. [15]. The change to annual 485 



 

 

modeling is made through an increase of the time loop. To enhance execution efficiency within the 486 

Matlab® environment, the thermal model is implemented using vectorization. Meaning that instead 487 

of looping through every building one by one the stats’ values of the thermal are concatenated in 488 

vectors which are then introduced in the equations. Leveraging the architecture of the Matlab® 489 

environment in this manner significantly improves execution speed, particularly for simulations 490 

involving a large number of buildings. As a result, larger datasets can be generated rapidly. Moreover, 491 

this vectorization allows for the coupling of the thermal part of the model with complex energy system 492 

modeling. This integration enables the assessment of how a given energy system influences the 493 

thermal behavior of buildings throughout the year and vice versa. 494 

2.7.1. Inside temperature 495 

The model adopts a gray box approach as illustrated in Figure 3. The equations governing temperature 496 

variations are Equation (7) for building envelope temperature (�̇�𝑏), Equation (8) for indoor 497 

temperature (�̇�𝑖), and Equations (10) and (11) for heating (�̇�𝑟𝑎𝑑) and cooling (�̇�𝑐𝑜𝑜𝑙) emitter 498 

temperatures respectively.  499 

Those equations are similar to those in the reference model. However two changes were made. First, 500 

for the introduction of solar radiation into the energy balance at two distinct points: within the building 501 

envelope node (through As,exterior) and through the windows in the house interior node (through 502 

As,interior), adopting a methodology similar to that of Berthou et al [44]. Furthermore, different values 503 

of As,interior are employed for the cooling and heating periods . Indeed, when interior temperature 504 

increases the first reaction is often to decrease the admission of solar radiation before resorting to 505 

cooling systems. Adding this second value of As,interior aims at capturing the change in windows 506 

occultation resulting from this behavior, which is not possible in the CREST model.  507 

 508 

 509 

Figure 3: CREST thermal model, from [19] 510 

 𝐶𝑏�̇�𝑏 = 𝐻𝑜𝑏(𝑇𝑜 − 𝑇𝑏) + 𝐻𝑏𝑖(𝑇𝑖 − 𝑇𝑏) + 𝐴𝑠,𝑒𝑥𝑡𝑒𝑟𝑖𝑜𝑟𝐺 (7) 

 511 

 𝐶𝑖�̇�𝑖 = 𝐻𝑏𝑖(𝑇𝑏 − 𝑇𝑖) + 𝐻𝑣(𝑇𝑜 − 𝑇𝑖) + 𝐻𝑟𝑎𝑑(𝑇𝑟𝑎𝑑 − 𝑇𝑖) + 𝐻𝑐𝑜𝑜𝑙(𝑇𝑐𝑜𝑜𝑙 − 𝑇𝑖)
+ 𝐻𝑙𝑜𝑠𝑠(𝑇𝑖 − 𝑇𝑡𝑎𝑛𝑘) + 𝑃𝑖𝑛𝑡𝑒𝑟𝑛 + 𝐴𝑠,𝑖𝑛𝑡𝑒𝑟𝑖𝑜𝑟𝐺 

(8) 

With :  512 

 𝑃𝑖𝑛𝑡𝑒𝑟𝑛 = 𝑃𝑜𝑐𝑐𝑢𝑝𝑎𝑐𝑦 + 𝑃𝑙𝑖𝑔ℎ𝑡𝑖𝑛𝑔 + 𝑃𝑎𝑝𝑝𝑙𝑖𝑎𝑛𝑐𝑒𝑠 (9) 



 

 

 513 

 𝐶𝑟𝑎𝑑�̇�𝑟𝑎𝑑 = 𝐻𝑟𝑎𝑑(𝑇𝑖 − 𝑇𝑟𝑎𝑑) + 𝑃ℎ𝑒𝑎𝑡,𝑎𝑖𝑟 (10) 

 514 

 𝐶𝑐𝑜𝑜𝑙�̇�𝑐𝑜𝑜𝑙 = 𝐻𝑐𝑜𝑜𝑙(𝑇𝑖 − 𝑇𝑐𝑜𝑜𝑙) + 𝑃𝑐𝑜𝑜𝑙  (11) 

 515 

To parameterize the thermal model or to add a new building archetype, identification of characteristic 516 

values of the building model such as transmission coefficients, heat capacities, and solar radiation 517 

multiplication are necessary. The procedure is detailed using as a case study the addition of a very low 518 

consumption single-family house.  519 

The procedure consists of using a complex white-box simulation of the building as a reference to 520 

identify the parameters of the reduced order RC model. For the present study the software Pléiades® 521 

is used to generate the reference indoor temperature profiles and heating loads [45]. The simulation 522 

is conducted on a detached house located near Dijon, France.  523 

Detailed information on the architecture and composition of the house is provided by Topoïein Studio, 524 

an architecture and urban planning firm. This house has been awarded Passif house certification by 525 

the Passivhaus Institute [46], aligning with the desired low-carbon building type. The house is insulated 526 

with glass wool, cellulose, and polyurethane, with thermal conductivities of 0.04, 0.04 and 527 

0.02 W.m-1.K-1 , respectively. The complete composition of the exterior and interior walls, as well as 528 

the windows inventory and thermal bridges, can be found in Tables A1 to A8. 529 

The dwelling comprises two floors, totaling approximately 114 m² of living space. The first floor 530 

includes the living room, kitchen, bathroom, toilet, storeroom, and bedroom. Half of the first floor 531 

consists of a hollow space over the living room, while the other half contains two habitable rooms. The 532 

asymmetrical roof features 56.3 m² facing south and 38.5 m² facing north. A visual representation of 533 

the dwelling is depicted in Figure 4. 534 

 535 

 536 



 

 

 537 

Figure 4: Representation of the modeled house 538 

Heating and cooling setpoints are maintained at 20 °C and 28 °C respectively. Internal gains and 539 

heating/cooling schedules adhere to the normative French energy calculation method [47]. Ventilation 540 

is provided at 0.3 volumes per hour by a heat recovery ventilator with an efficiency of 89%. Weather 541 

profiles correspond to those of Belfort (France) and are based on French thermal regulations for 542 

buildings [47]. During the cooling period (May 6th to September 23rd), strategies such as window 543 

shading with shutters during the day and increased ventilation during the night are employed to 544 

manage interior temperatures. 545 

The building is simulated over the course of a full year, with a time resolution of one minute. The 546 

estimated annual heating consumption is 1561 kWh (equivalent to 13.7 kWh per square meter), while 547 

air-conditioning consumption is estimated at 58 kWh (0.51 kWh per square meter). 548 

The results from the simulation are utilized for the identification of parameters in the gray model. 549 

Firstly, the global irradiance multiplier is determined using the annual irradiation gain through 550 

windows calculated from Pleiades®. The parameter is identified by minimizing the Root Mean Square 551 

Error (RMSE). Two values for the global irradiance parameters are estimated: one for the windows 552 

occultation period (summer) and one for the period outside it (winter) by comparing the irradiation 553 

for the corresponding periods. 554 

Other model parameters are identified using the Matlab® Multistart optimization tool, which enables 555 

the fmincon nonlinear solver to be used in parallel for several starting points. The Pleiades® profiles 556 

for solar irradiation, outdoor temperature, internal gains (lighting, occupancy, power dissipation), and 557 

heating/cooling loads are utilized as inputs to the gray box model. The internal temperature profile for 558 

the first 16 weeks of the year is compared through the RMSE. 559 

A comparison between the indoor temperature profiles obtained with the Pleiades® model and the 560 

reduced model is presented in Figure 5 (for 51 weeks). This new building type as well as the 6 buildings 561 

other types taken from [15] can be used for profile generation (Table 5). It is to be noted that the 6 562 

standard building models are taken from the CREST model and thus do not take into account different 563 

windows shutter management in summers.  564 



 

 

 565 

Figure 5: Indoor temperature comparison between the reduce and complete models 566 

 567 

Table 5: Building types 568 

Building index Building type insulation type Floor area (m²) 

1 Detached Standard insulation 136 
2  Detached Improved insulation 136 

3  Semi-detached Standard insulation 87 

4 Semi-detached Improved insulation 87 

5 Terraced Standard insulation 58 
6 Terraced Improved insulation 58 
7 Detached Passive house 114 

1: taken from [19] 569 

2.7.2. Space heating and cooling loads 570 

In the CREST Model, the heating and air-conditioning control module determine the power required 571 

to maintain comfort based on the building's indoor temperature. Space heating is regulated by two 572 

signals: a thermostat signal and a clock signal. The thermostat signal combines two thermostats—one 573 

controlling the indoor air temperature (with a 2°C dead band) and the other controlling the emitter 574 

temperatures (with a 5°C dead band). Heating setpoint temperatures for indoor air are stochastically 575 

drawn from a discrete distribution. The setpoint temperatures for emitters are consistent across all 576 

buildings: 50°C for heating emitters and 0°C for cooling emitters. Indoor air thermostats are drawn 577 

from a discrete distribution for heating and placed 5 °C above heating for cooling.  578 

When the systems are activated, Equation (12) calculates the heating power required to attain the 579 

setpoint, while Equation (13) is utilized for cooling. These calculated ideal power requirements are 580 

then adjusted based on the actual capabilities of the heating and cooling systems. Given that the 581 

heating system also caters to the demand for hot water, the power supplied will be constrained by the 582 

power already allocated for water. 583 

                                 

     

 

 

  

  

  

  

  

  

  
 
 
 
  
  

 
 
 
  

  
  

  
  

 

              

             



 

 

In the present model, a notable change concerns the cooling control strategy. Given that the cooling 584 

emitter possesses a smaller thermal capacity compared to the heating counterpart, utilizing the same 585 

control approach as in the CREST model leads to operational issues. Specifically, when the cooling 586 

power available is sufficiently high, the system cools the emitter within a time frame shorter than the 587 

resolution of the simulation, resulting in constantly switch ON and OFF. To prevent this, it is chosen to 588 

only use the indoor air thermostat. Another change is that instead of directly using a cooling setpoint 589 

5 °C above the heating setpoint, it is chosen from a rounded normal distribution with an average of 590 

28°C and a standard deviation of 2.5°C. This value is compared with the heating temperature to ensure 591 

it is never lower than or equal to the heating setpoint.  592 

One limitation of the CREST thermal model, as highlighted by its authors, is that the profiles generated 593 

for the clock signal are not synchronized with the occupancy model, leading to occasional 594 

inconsistencies. For example, a house may be heated between 10 a.m. and noon, while the occupants 595 

are only present from 8 a.m. to 10 a.m. To mitigate this, in the heating part, the authors generate the 596 

clock signal through pattern assignation. The heating clock signal is correlated with the occupancy 597 

model in three distinct patterns: heating always on (pattern 1), heating off when no occupants are 598 

present (pattern 2), and heating setpoint lowered when no occupant is present (pattern 3). As an 599 

example, these patterns represent 17.6%, 27.50%, and 54.90% of French households respectively [48]. 600 

During system control's initialization, a random draw determines which pattern the building 601 

corresponds to. If temperature reduction during absences is implemented, the setpoint temperature 602 

is decreased by 5°C during absences. For cooling, this signal is established using a Markov chain, 603 

mirroring the approach of the occupancy model. As an example, the resulting probability of the signal 604 

to be activated can be observed in Figure 6 (during both the heating and cooling seasons). Consistent 605 

with the white box model, heating is switched off from May 6 to September 23, while air conditioning 606 

is not utilized from September 23 to May 6. 607 

As already mention above, the generated thermal demand profile remains generic. To derive specific 608 

demands (electricity, gas, etc.), the efficiency of the heating and cooling systems pertinent to the 609 

studied systems must be applied to modulate the profiles. 610 

 611 

 𝑃ℎ𝑒𝑎𝑡,𝑎𝑖𝑟,𝑖𝑑𝑒𝑎𝑙 = 𝐶𝑟𝑎𝑑(𝑇𝑠𝑒𝑡,𝑟𝑎𝑑 + 𝑇𝑑𝑏 − 𝑇𝑟𝑎𝑑) + 𝐻𝑟𝑎𝑑(𝑇𝑟𝑎𝑑 − 𝑇𝑖) (12) 

 612 

 𝑃𝑐𝑜𝑜𝑙,𝑖𝑑𝑒𝑎𝑙 = 𝐶𝑐𝑜𝑜𝑙(𝑇𝑠𝑒𝑡,𝑐𝑜𝑜𝑙 − 𝑇𝑐𝑜𝑜𝑙) + 𝐻𝑐𝑜𝑜𝑙(𝑇𝑐𝑜𝑜𝑙 − 𝑇𝑖) (13) 



 

 

 613 

Figure 6: Examples of probabilities of the clock signal being one through the day (during 614 

heating/cooling season) 615 

 616 

The complete behavior of the model is summarized in the Figure 7. The parametrization procedure as 617 

well as the necessary data to undertake this procedure are also described in the figure. Depending on 618 

the use case, different parts of the methodology are required. A researcher that only wants to assess 619 

the potential of an energy system can directly use the open dataset. For the generation of new profiles, 620 

the user also needs to modify the inputs of the openly shared Matlab® algorithm. If the case study 621 

needs to be changed, the whole parameterization process needs to be redone. Finally, to improve the 622 

methodology every part of the procedure needs to be studied. 623 

 624 
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 626 

Figure 7:  Flowchart of the proposed methodology627 



 

 

3. Test case, results and discussion 628 

 629 

Using the model parametrized for Belfort (France), 3500 annual profiles, with a 1-minute time step, 630 

are generated (500 for each type of house) using a Monte Carlo simulation. The data generated 631 

includes, weather profile: temperature and solar radiation, load profile: electricity, space heating, hot 632 

water and cooling as well as PV production profiles. Important house properties are also saved for 633 

profile identification (inhabitant number, type of house, appliance ownership…).   634 

3.1. Overall trend  635 

 636 

For each module of the model profiles annuals average results are assessed. In the weather model, 637 

with the new clearness matrix for Belfort (France), the solar radiation model yields an average of 638 

1211 kWh.m-2.year-1, closely resembling the average of 1199 kWh.m-2.year-1  for the weather station 639 

used as input (from 2018 to 2020). This average can also be compared with Open-Meteo data, which 640 

reports an average of 1244 kWh.m-2.year-1 for Belfort from 2000 to 2022 [30, 31, 32, 33]. For 641 

temperature the synthetic profiles exhibit an annual average of 10.48°C against 10.51 C for Open-642 

Meteo data from 2000 to 2022  [30, 31, 32, 33]. For both radiation and outside temperature, the 643 

models is able to reproduce the measured weather data.   644 

The PV production profiles present an annual PV production of 223 kWh.m-2. This value can be 645 

compared to the value of 211 kWh.m-2 obtain for a similar panel position with PVGIS [49]. In both cases 646 

only losses in the power invertor are taken into account to produce generic profiles, which can then 647 

be adjusted to specific profiles by adding specific losses as shading, dirt, snow, mismatch, wiring, etc. 648 

Having these PV productions profiles coupled with the electricity and heating demand allow to 649 

accurately assess the temporal matching and mismatching between production and demand, which is 650 

not possible in methods without integrated PV modeling (OpenIDEAS, synconn_build, TEASER etc.). 651 

Intermediary variables such as inhabitant behavior and disaggregated electric profiles are tested for 652 

only 700 profiles, 100 for each house type. The occupancy data are compared using the number of 653 

inhabitant present and active, which is crucial for determining appliance usage and internal thermal 654 

gain. The number of active and present inhabitants in all houses is calculated for every 10-minute 655 

interval throughout the day and then averaged across all houses. The profiles obtain are compared 656 

with the TUS data using the root-mean square error. Results are summarized in Table 6. A RMSE of 0.5 657 

mean on average a 0.5 inhabitant active and present difference between TUS and synthetic data. 658 

Additionally, Figure 8 provides a direct comparison of the frequency of behavior states for an individual 659 

living alone, comparing TUS data with synthetic profiles (for the 266 houses among the 700 with 1 660 

inhabitant). In both state and active presence comparison the model closely follows the behavior of 661 

the TUS data.   662 



 

 

Table 6: Root mean square error in average active presence daily profile between the synthetic and 663 
TUS data (i.e., RMSE 0.5 mean on average 0.5 inhabitant active and present difference between)  664 

Inhabitant number RMSE Weekdays RMSE Weekend 

1 0.0190 0.0454 

2 0.0211 0.1556 

3 0.0220 0.3096 

4 0.1242 0.5447 

5 0.3107 0.6691 

 665 

 666 

 667 

Figure 8: Probability of the state of a single resident during the week, a) input data b) synthetic data 668 

 669 

In the ADEME measurements, the average domestic electricity consumption, excluding heating and 670 

cooling loads, is reported at 2183 kWh.year-1 [39]. The modeled profiles present a similar value, totaling 671 

2241 kWh.year-1. Within this consumption in the ADEME data, lighting accounts for an annual 672 

consumption of 148.6 kWh.year-1 [39], whereas the modeled result for the 700 dwellings yields 673 

182.6 kWh.year-1. However, this value is influenced by the floor area of the house. Down to the square 674 

meters the profiles exhibit a value of 1.9 kWh.m-2.year-1 that is close to the ADEME data measure of 675 

1.7 kWh.m-2.year-1 [39]. 676 

The appliances consumption for the 700 configurations presents an average annual load of 677 

2074 kWh.year-1. Comparatively, the ADEME average in a sample of 101 homes is 2163 kWh. A 678 

disaggregated comparison by end use is provided in Table 7. The overestimation in cooking 679 

consumption is attributed to the decision to replace gas appliances with their electric counterparts, 680 

aligning with the prevailing trend towards reduced natural gas usage. Similarly, the overestimation in 681 

hygiene/self-care consumption stems from differences in ownership rates between the larger Gifam 682 

study [41] and the ADEME study [39]. To conform to French building regulations [47], ventilation 683 

ownership is set at 100%, contributing to potential overestimation in this category. Conversely, the 684 

 

                                             
 

   

   

   

   

 

 
  

 
 
 
 
 
 

                  

                    

                 

                   

 

                                             

           

 

   

   

   

   

 

 
  

 
 
 
 
 
 



 

 

outdoor and electric mobility categories are underestimated due to the exclusion of appliances such 685 

as in-ground swimming pools and electric cars, which have high annual consumption but low 686 

ownership rates. Overall, certain sectors with lower consumption are not modeled, as they encompass 687 

very broad range of electrical appliances.  688 

Table 7: Annual appliances consumption by end use 689 

End-use ADEME study of 101 

homes [39] (kWh.year-1) 
Average over 700 
profiles (kWh.year-1) 

Cold production 535 540 

Audiovisual 328 380 

Washing and drying 308 315 

Cooking 299 360 

Informatics 191 166 

Not monitored 189 0 

Ventilation 114 241 

Outdoor 89 0 

Various constant 49 48 

Electric mobility 28 0 

Hobbies 16 0 

Safety 6 0 

Hygiene/self-care 6 24 

Health 2 0 

Other 3 0 

Total 2163 2074 

 690 

For hot water profiles, an average annual thermal demand of 1795 kWh.year-1 is calculated. This 691 

annual demand closely aligns with the measured annual demand of 1676 kWh.year-1 reported by 692 

ADEME for 57 Joule heating tanks [39]. Seasonal variation induced by variation in cold water 693 

temperature is tested using seasonality coefficient (daily consumption divided by average annual 694 

consumption). In Figure 9, obtained seasonal coefficients are compared with the ADEME data as well 695 

as the data obtain using constant temperature (with 100 runs). The seasonal variation is better 696 

assessed in the model that with the CREST method. However, the decrease in hot water consumption 697 

during summer is still underestimated. Likely because the change in behavior is not considered (colder 698 

shower, less interest in hot water).  699 



 

 

 700 

Figure 9: Seasonal variation of hot water consumption  701 

On the space heating and cooling side, the annual load significantly depends on the type of insulation 702 

use and the house size. The annual values for each house type are summarized in Table 8. With these 703 

average space heating and cooling annual consumption, each building type can be associated with 704 

Energy Performance Certificates using French labeling rules [47]. However, the energy consumption 705 

associated with those thermal needs depend on the type of energy systems used to answer them. 706 

Table 9 summarizes the different houses label for 5 combinations of space heating and DHW systems, 707 

cooling is considered always provided by heat pumps. Label varies from A to E and no house type 708 

corresponds to label F or G. Only the passive house type manages to get an A label when using efficient 709 

heating systems. Because of the conversion factor of 2.3 between final and primary energy for 710 

electricity [47], the worst labels are when using inefficient electric systems (radiator and joule effect 711 

DHW tank). Even if gas boilers are penalized through the carbon emission criteria this penalty does not 712 

compensate for the increase in primary energy consumption.   713 

Only the passive house type (index 7) originates from the present study, and thus, detailed white box 714 

modeling is available only for this case. As previously stated, the white box Pleiades® model give a 715 

heating load of 13.7 kWh.m-2.year-1 and a cooling load of 0.51 kWh.m-2.year-1, whereas the average 716 

annual consumption over 500 profiles is 20.3 kWh.m-2.year-1 of heating and 0.18 kWh.m-2.year-1 for 717 

cooling. It can be observed that those consumptions are quite different and do not respect the passive 718 

house heating norm limit (15 kWh.m-2.year-1 [46]). However, when subjected to the same conditions 719 

as the Pleiades® model (including weather, internal gain, temperature setpoints), the model predicts 720 

an annual heating consumption of 13.4 kWh.m-2.year-1 and a cooling consumption of 721 

1.3 kWh.m-2.year-1 (averaged over 100 homes with similar climates). This comparison demonstrates 722 

that under standard conditions, the houses comply with the passive house norm and replicate the 723 

heating consumption of the white box models. The increase in load is therefore attributed to the 724 

coupling with the other models presented above, which provide a more complex estimation of the 725 

demands instead of constant scheduled values.  726 

                     

           

 

   

   

   

   

 

   

 
 
 
 
 
 
 
   

 
  

 
 
  
  

  
 
 

                                         

                                         

          



 

 

Table 8: Average annual heating and cooling consumption 727 

Building index 
Heating load 
(kWh.m-2.year-1) 

Cooling load 
(kWh.m-2.year-1) 

1 119 0.55 
2  60 3.34 

3  114 3.38 

4 72 10.39 

5 98 3.63 
6 70 7.81 
7 20 0.18 

 728 

Table 9: Energy Performance Certificates for each building type  729 

Building 

index 

Heat pump for 
space heating 
and DHW 

Heat pump for 
space heating 
and Joule 
heating for 
DHW 

Heat pump for 
DHW and 
electric 
radiators for 
space heating 

Electric 
radiator for 
space heating 
and Joule 
heating for 
DHW 

Gas boiler for 
space heating 
and DHW 

1 C C E E D 
2  B B C D C 

3  C C E E D 

4 B C D D C 

5 C D E E D 
6 C C D E D 
7 A A B B C 

 730 

 731 

3.2. Dispersion and Diversity  732 

 733 

In each module of the domestic load model, various factors are incorporated to generate diversity in 734 

the profiles. The sources of variation outlined in the previous sections are summarized in Table 10. 735 

These models introduce diversity between houses (inhabitant number, building properties, setpoints, 736 

heating schedules, ownership…) and temporal diversity (sky clearness, exterior temperature, switch 737 

on, cycle length…). The diversity between houses is used as the foundation of the Monte Carlo 738 

simulation, distinguishing configurations from one another. This variation between profiles allows for 739 

the generation of a diverse dataset, usable for off-design analysis, which is not possible with tools that 740 

can only introduce variation through inputs and building properties (CityBES, TEASER, CitySim, etc.). 741 



 

 

Table 10: Profiles variating parameters 742 

Parameter Model Comments 

Sky clearness Markov chain  
Mean exterior temperature  Autoregressive moving average   

Max variation around mean  Normal distribution Based on cumulative irradiation 
Inhabitant number  Discrete probability distribution  1 to 5 (based on [50]) 

Inhabitant behavior Markov chain Occupancy and activity 

Light bulbs ownership Random configuration selection From 100 configurations 
Bulbs switch ON Single probability check per bulbs Time in dependent 
Bulbs ON cycle length Double probability draw 9 equally likely ranges 
Appliances’ ownership Single probability check per appliance  
Appliances’ switch on  Single probability check per appliance Time in day dependent 
Appliances’ cycle length Normal distribution   
Water fixture ownership Single probability check per fixture  
Fixtures switch ON Single probability check per fixture Time in day dependent 
Fixtures consumption  Discrete probability distribution Poisson law 
Hot water setpoint Discrete probability distribution  Between 42 °C and 62 °C 
Cold water temperature Normal distribution Month dependent 
Space heating setpoint Discrete probability distribution  Between 13 °C and 27 °C 
Space heating schedule  Pattern assignation  
Space cooling setpoint Normal distribution Superior to the heating one 
Space cooling schedule  Markov chain  
Building properties  Archetype assignation Among 7 models 

 743 

3.2.1. Weather model dispersion 744 

In the weather model, variation in the daily mean Global Horizontal Radiation (GHI) is illustrated in 745 

Figure 10 through 365 box diagrams. It can be observed when compared with the Open Meteo GHI 746 

data for Belfort from 2000 to 2022 [30, 31, 32, 33], that the synthetic variation in the profile is closely 747 

matching the measured one. Similarly, the variation in mean daily temperatures can be observed in 748 

Figure 11. In this case also, the mean daily values reproduce the typical temperature profile as well as 749 

the extreme values. The model is thus well able to reproduce the variation in climate conditions for a 750 

specific region. Moreover, no abrupt steps between month can be observed in the temperature 751 

profiles contrary to the CREST method.    752 



 

 

 753 

Figure 10: Dispersion of the daily mean GHI (synthetic data represented as box graph with median 754 
quartiles, and outliner)  755 

 756 

 757 

Figure 11: Dispersion of the daily mean temperature (synthetic data represented as box graph with 758 
median quartiles, and outliner) 759 

3.2.2. Dispersion of photovoltaics production  760 

 761 

The dispersion of PV monthly PV production is compared, in Figure 12, with PVGIS as well as profiles 762 

obtain with CREST method (over 3500 runs). Overall, the dispersion due-to-year to year variation 763 

estimated by the PVGIS tool is well reproduced in the profiles.  A clear advantage of using 12 monthly 764 

                     

           

 

 

 

 

 

 

 

 

 

 

 
 
   

  
 
 
 
  

 
  
  

 
 
  

  

              

                   

                      

                   

                     

           

   

   

 

  

  

  

  

 
 
   

  
 
 
  

 
 
  

 
  

  
 
  
 
 

 
 
  

  
  

  
  

 

              

                   

                      

                   



 

 

matrices for clearness modeling is apparent, especially for the winter months where the production is 765 

heavily overestimated with the CREST method.   766 

 767 

Figure 12: Dispersion of PV production profiles compared with PVGIS  768 

 769 

3.2.3. Dispersion of electricity consumption 770 

The electricity consumption profiles can be distinguished by inhabitant number, appliance/bulbs 771 

ownership and floor area. Ownership generates variation through the annual reference values listed 772 

in Table 3 and floor area through lighting reference consumption 1.8 kWh.m-2. Inhabitant number 773 

introduces variation through the frequency of appliance and lighting usage. However, this variation is 774 

more challenging to directly infer from the input data. The dispersion of the electricity consumption 775 

depending on the inhabitant number is shown in Figure 13. It can be observed that the consumption 776 

stabilizes after 3 inhabitants because of appliances sharing. The dispersion is compared with the 777 

ADEME study used as input (101 dwellings) and corresponding dispersion is observed [39]. This 778 

comparison helps validate the model's ability to replicate real-world variations in electricity 779 

consumption based on the number of inhabitants.   780 
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 782 

Figure 13: Dispersion of the electricity consumption depending on the inhabitant number (ADEME 783 
data use mean and synthetic use median) 784 

 785 

3.2.4. Dispersion of thermal consumption  786 

The Figure 14 compare the generated hot water thermal consumption profiles with the measurements 787 

from ADEME (for Joule effect water tank) [39]. The dispersion around the median is well represented, 788 

but extreme values are not fully captured. One reason for this discrepancy is that in the ADEME 789 

measurements, some dwellings were not consuming hot water, and the thermal demand only 790 

represented static losses, which is not reflected in the synthetic data, where every house uses its DHW 791 

tank. Additionally, in the present study, the volume of the DHW tank is fixed at 125 L, whereas in the 792 

measurements, volumes vary from 15 L to 300 L. 793 

      

                 

 

  

  

  

  

  

  

  

 
 
 
 
 
  
 
  

 
  
  

  
 
  

 
 
 
 
 

 
  
 
 
  
 
 

 
  

  

                              

              



 

 

 794 

Figure 14: Dispersion of the hot water consumption profiles  795 

The space heating and cooling consumption profiles are mainly differentiated by temperature 796 

setpoints, insulation types and heating patterns. Regarding heating patterns, the mean annual space 797 

heating consumption is 84.5 kWh.m-2.year-1 for houses heated continuously, 77.1 kWh.m-2.year-1 for 798 

those with heating lowered during absences and 79.6 kWh.m-2.year-1, for those with heating switch off 799 

during absences. Temperature setpoints also significantly impact consumption with the mean annual 800 

heating consumption varying from 34.2 kWh.m-2.year-1 for houses with setpoint below 15 C to 801 

112.2 kWh.m-2.year-1 for setpoints above 25°C. Conversely, annual cooling consumption varies from 802 

20.3 kWh.m-2.year-1 for houses with setpoint bellow 23°C to 0.53 kWh.m-2.year-1 for setpoints above 803 

33 °C.  804 

The impact of insulation type is illustrated in Figure 15. Single family houses with annual heating 805 

consumption up to 183 kWh.m-2.year-1 are represented in the set. Introducing a building archetype 806 

with lower thermal insulation could complement the dataset to represent the worst-performing 807 

houses in the housing stock. The passive house archetype can vary from not needing heating at all to 808 

having needs similar to less insulated archetypes, depending on heating management (setpoints, 809 

schedule, etc.), underscoring the importance of considering variations in heating management for 810 

energy system sizing. Given the relatively cool climate of Belfort, most houses have low or non-existent 811 

cooling consumption. Moreover, houses archetype where cooling demand is the most important 812 

(improved insulation), are archetype from the CREST model and thus do not use windows shutter 813 

usage scenarios to mitigate interior temperature in summer. These cooling differences, highlights 814 

again the importance of accessing variations in inhabitant interior temperature management. In most 815 

cases, the cooling needs are low enough that inhabitants would likely not invest in a cooling system.  816 

To create an extensive dataset, the authors produced an equal number of each house archetypes in 817 

the profiles (500 per archetype). However, in reality, some house thermal archetypes are more 818 

prevalent in the housing stock than others, this complicates direct comparisons between the dataset 819 

and national space heating and cooling consumption. However, specific targeted annual consumption 820 

profiles can be selected from the dataset to conform to desired criteria. For example, a benchmark for 821 

energy system assessment can be created by eighter directly using the model for a specific set of 822 

building archetypes or by selecting the right profiles from the openly available pre-made dataset to 823 

                        
 

   

    

    

    

    

    

    

    

    

 
 
 
 
 
  
 
 
  
 

 
  

  
 
 
 
 
 
 

 
  
 
 
  
 
 

 
 



 

 

represent the studied population. For example, in France the repartition of Energy Performance 824 

Certificates for houses is 8% of A, 4% of B, 19% of C, 28% of D and 41% of E or worst [51], using the 825 

Table 9 the correct number of each building index can be picked to reproduce this repartition. Similarly, 826 

a district load can be generated using either the model or the dataset. However, in the dataset, the 827 

weather for each house is distinct, whereas in the case of a district, each house is subjected to similar 828 

conditions. This type of configuration, can only be achieved with the model by running the weather 829 

module once and applying the same climate to every house in the district. 830 

 831 

 832 

Figure 15: Dispersion of the thermal consumption depending on the insulation type  833 
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4. Conclusion  835 

 836 

The objective of this study is to develop a comprehensive method to generate yearly energy domestic 837 

load profiles usable in energy systems sizing and performance assessment. For this type of use, profiles 838 

need to be varied for off design analysis, consistent to capture load/production mismatch, high-839 

resolution for system dynamics analysis and continuous for storage potential assessment. Open 840 

dataset profile also allows for researcher without specific knowledge of building energy modeling to 841 

conduct accurate domestic energy systems study, enhancing the usefulness of the profiles. 842 

To achieve this goal, starting from a commonly used open-source model each module was presented, 843 

as well as all the modification and amelioration necessaries to the generation of profiles. Among other 844 

modifications, the weather module was improved to append monthly cloud cover patterns, 845 

temperature effects on PV production were added, seasonal variation of water inlet was introduced, 846 

coherence between occupancy and heating schedule was established, and seasonal variation in shutter 847 

usage was made possible.      848 

Additionally, in each module, the parametrization procedure was extensively presented, using the use 849 

case of a region with a temperate oceanic climate, to facilitate the reproduction of the approach in 850 

specific geographic regions. Using the model in a Monte Carlo simulation, a dataset was generated 851 

comprising electricity, hot water, space heating, and cooling load profiles, as well as local PV 852 

production profiles for 3500 single-family houses in a temperate oceanic climate. The profiles in the 853 

generated dataset, vary in weather (solar radiation, temperature), inhabitant behavior (presence, 854 

appliances usage/ownership, interior temperature management…) and building properties (floor area, 855 

thermal properties…).  856 

The generated weather profiles show a relative difference of approximately 0.3% and 2.7% for mean 857 

annual temperature and annual solar irradiation, respectively, compared to data from Open-meteo. 858 

The models also generate sufficient weather variation to replicate the diversity observed in the last 23 859 

years of Open-meteo data. Regarding PV production profiles, the mean annual production exhibits a 860 

relative difference of 5.7% compared to PVGIS data. The dataset also reproduces the monthly variation 861 

and diversity estimated by PVGIS. In terms of electricity profiles, the mean annual demand shows a 862 

relative difference of 2.7% compared to French ADEME agency measurements. Due to the absence of 863 

houses without hot water consumption, the associated thermal consumption is overestimated by a 864 

relative error of 7.1% compared to ADEME measurements. The presented archetypes allow for the 865 

generation of houses with annual heating consumption ranging from 0 to 25 MWh.year-1, covering 866 

Energy Performance Certificates from A to E. Analyzing the results shows that the generated profiles 867 

reproduce the diversity present in measurement studies while retaining the underlying trends, 868 

highlighting the potential of both the generation method and the openly available dataset for accurate 869 

domestic energy system assessment.   870 

 871 

 872 

Suggestions for further study on the subject include the following improvement of the methodology: 873 

• Enhancing the PV model to incorporate specific losses such as shading and dirt 874 

• Improving the precision of the thermal model by increasing the RC order. 875 

• Delving deeper into inhabitant interior temperature management (window opening, shutter 876 

usage, etc.). 877 



 

 

Other suggestions for further study on the subject include the following expansion of the methodology: 878 

• Applying the methodology in other climates, particularly hotter climates, to enable a more 879 

precise study of house cooling behaviors 880 

• Broadening the scope of considered appliances to include electric vehicles, small digital 881 

appliances, etc 882 

• Introducing a new archetype for a poorly insulated house to expand the range of heating 883 

consumption that can be modeled 884 

• Expand the variety of building types (multi-family houses, apartment buildings, office 885 

buildings, etc.) 886 

 887 
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5. Appendix A. Passive house characteristics 899 

 900 

Table A1: Exterior wall composition  901 

Element Thickness (cm) 
Conductivity 

(W.m-1.K-1) 

Resistance 

(m².K.W-1) 

Wood fiber panel  10 0.04 2.5 

OSB panel  1.6 0.09 0,18 

Adjusted cellulose  14 0.04 3.41 

Vapor barrier 0.1 0 0 

Glass wool 8 0.04 2.29 

Drywall 1.3 0.25 0.05 

Total 35  8.43 

 902 

Table A2: Ground floor composition  903 

Element Thickness (cm) 
Conductivity 

(W.m-1.K-1) 

Resistance 

(m².K.W-1) 

Reinforced concrete  13 2.5 0.05 

Vapour barrier 0.1 0 0 

Polyurethane 20 0.02 8.7 

Reinforced concrete  5 2.5 0.02 

Floor covering (wood) 2 0.15 0.13 

Total  40.1  8.9 

 904 

Table A3: Roof composition  905 

Element Thickness (cm) 
Conductivity 

(W.m-1.K-1) 

Resistance 

(m².K.W-1) 

Wood fiber panel  10 0.05 2.13 

Adjusted cellulose  36 0.04 9 

Vapor barrier 0.1 0 0 

OSB panel  1.6 0.09 0.18 

Drywall 1.3 0.25 0.05 

Total 49  11.36 

 906 



 

 

Table A4: Bearing inner wall composition  907 

Element Thickness (cm) 
Conductivity 

(W.m-1.K-1) 

Resistance 

(m².K.W-1) 

Drywall 1.3 0.25 0.05 

Air gap 4 0.19 0.21 

Glass wool 6 0.04 1.5 

OSB panel 1.6 0.09 0.18 

Drywall 1.3 0.25 0.05 

Total 14.2  1.99 

 908 

Table A5: inner wall composition  909 

Element Thickness (cm) 
Conductivity 

(W.m-1.K-1) 

Resistance 

(m².K.W-1) 

Drywall 1.3 0.33 0.04 

Air gap 1.5 0.19 0.16 

Drywall 1.3 0.33 0.04 

Total 4.1  0.24 

 910 

Table A6: Intermediate floor composition  911 

Element Thickness (cm) 
Conductivity 

(W.m-1.K-1) 

Resistance 

(m².K.W-1) 

OSB panel 1.6 0.13 0.12 

Glass wool 10 0.04 2.5 

Drywall 1.3 0.25 0.05 

Total 12.9  2.67 

 912 

Table A7: Window inventory   913 

Surface (m²) Orientation Solar factor 
U value 

(W.m-2K-1) 
Quantity 

0.795 North 0.508 0.864 2 

0.795 East 0.508 0.864 1 

1.575 East 0.635 0.804 1 

1.89 South 0.636 0.805 2 

6.3 South 0.808 0.719 1 

4.24 West 0.774 0.736 1 

1.545 West 0.635 0.804 1 

1.26 West 0.593 0.824 1 

 914 



 

 

Table A8: Thermal bridge inventory 915 

Name 
Linear thermal transmittance 

(W.m-1.K-1) 

Length concerned 

(m) 

Exterior wall - roof (parallel) 0.024 19.6 

Exterior wall - roof (perpendicular) 0.017 16 

Ground floor - exterior wall 0.024 35.6 

Ground floor - interior wall 0.05 9.9 

Interior floor - exterior wall 0.04 18.6 

Bearing interior wall - exterior wall 0.033 5 

Outer angle 0.032 15.5 

Roof angle 0.018 9.8 

 916 

  917 



 

 

6. Appendix B. Supplementary data 918 

 919 

The following are supplementary data to this article. The method presented as a MATLAB® algorithm 920 

is available at hal.science/hal-04574032. A dataset of consumption profiles related to electricity, 921 

heating, hot water and air conditioning, as well as photovoltaic production profiles for 3500 single 922 

family generated with this method can be found at dx.doi.org/doi:10.25666/DATAUBFC-2024-05-03 923 

 924 

  925 

https://hal.science/hal-04574032
https://search-data.ubfc.fr/FR-13002091000019-2024-05-03_Yearly-synthetic-energy-consumption-and.html
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