
Optimizing the Cost of an Heterogeneous
Distributed Platform

Jean-Marc Nicod, Laurent Philippe, Hala Sabbah
LIFC/INRIA GRAAL, University of Franche-Comté

16 route de Gray, 25000 Besançon, France
[nicod,philippe,sabbah]@lifc.univ-fcomte.fr

Abstract—Distributed platforms become heterogeneous in more
and more domains, as heterogeneous computing (HC) onto
grids or reconfigurable factories in the industry. For production
grids and factories, it is mandatory to control and optimize
the economic cost of a such platforms regarding performance
objectives. We present in this paper a study which purpose is to
optimize the size of such environments depending on the workflow
to execute or product to realize. The target platforms are either
micro-factories, sized to manufacture products at the micrometric
scale, or the heterogeneous computing domain where the key
point is to reserve processors of an execution platform onto a
grid to compute workflows like medical imaging applications.
Thanks to the sizing of the platform, optimal or not, scheduling
a workflow in HC environment or a production in the micro-
factory is easy because the size of the platform already takes the
performance constraints into account. In this paper, we present
general results on the platform size optimization. Numerical
results are also presented to illustrate 3 cases of our study.

Keywords—grid, micro-factory, heterogeneous platform, cost op-
timization, workflow, scheduling.

I. INTRODUCTION

Distributed platforms become heterogeneous in more and
more domains. In particular this the case for the heterogeneous
computing onto the grids and on reconfigurable factories in
the production industry. This heterogeneity could come from
different origins. The size of these platforms become larger
and larger. It is thus too expensive to keep the homogeneity of
the architecture when the platform size is extended. An other
reason is that these platforms are often made by using existing
processors or machines. It is also the case of the micro-factory
production units (cells) that are dedicated to few tasks in a
process.

The miniaturization of the products become mandatory in
different domains such as mechanical, electronic, electrome-
chanical or optic. New applications could be considered as the
integration and the assembly of optic elements of very small
size (mm) to achieve optic benches. Downsizing of manufac-
turing systems can lead to smart solutions, improving space
utilization factor, reducing the price and energy consumption,
including environmental conditioning such as temperature,
humidity and cleanliness, as well as facility investment. The
agility in reconfiguring the manufacturing lines in the factories
will be elevated. Furthermore, the machines can be placed
off the factory floor, to the design offices or classrooms,

and distributed to small manufacturing laboratories, even in
residential areas [?], [?].

However, the manipulation of this order of size poses several
problems: the balance of the physical strengths in presence
is not anymore the same that the one of the ”macro” world
and the capacities of human intervention are limits. Now a
day, this type of production is mainly achieved by remote-
operation which limits its wider development. The automation
is therefore necessary to consider a production at a bigger
scale. This requires the collaboration between roboticians,
producticians and programmers.

In this context, the platform behavior is very close to
the grids in general and SOA grids in particular because
of both heterogeneity and specialization of processors/cells.
Indeed, designing a platform by reserving processors in a
SOA grid is very similar to the design of a micro-factory
with respect to a performance or cost objective. The dedicated
processors, which are able to compute only the tasks defined
by the libraries deployed on them, are similar to the actions
performed by the reconfigurable micro-factory cells. The input
or output data transfers can be compared with the moving of
the micro-products. Moreover, because of the very small size
of the products, we can easily buffer these products.

In the following, we present a study which purpose is to
optimize the design of the micro-factory or grid context. The
paper is organized as the following. Section II details the
micro-factory specificities and the associated issues. The next
section gives the architecture model and the notations we use
to solve the optimization problem of the platform sizing. The
section IV is the study of 5 different cases that cover the 16
possible cases. The section V shows algorithms and numerical
results for the first three cases. The next section presents the
scheduling step after the designing step. We conclude and give
future work in the last section VII.

II. SPECIFICITIES OF THE MICRO-FACTORY

Micro-factory has a great potential for innovation of man-
ufacturing systems for small sized products. The concept of
micro-factory dates from the nineties [?] and becomes more
closely related to our daily lives. It rests on two ideas: on the
one hand to achieve a factory of very small size, that can hold
in a case [?], and on the other hand to automate the production
of micro-products [?].

A. Considerations on the size

In a research of flexibility, the micro-factory opposes the
classic vision of the factories of the ”macro” world by the
size and functions of its robots. Macro-robots are complex
and able to achieve a big number of operations. Micro-robots
are rather of small size, i.e. few dozen centimeters large, and
propose elementary operations. Some ”macro” robots have a
sufficient precision degree to manipulate objects of the ”micro”
world, but their precision is not on no account micrometric.
On the other hand, for reasons of size, of flexibility, of
energy consumption [?] or time of reconfiguration, they are
not suited to the ”micro” world. According to Tanaka [?],
driving energies of facilities and energy required to control
the environment of the system such as air conditioning and il-
lumination decrease with decreasing size. The choice of micro-
robots, with little liberty degree and which cooperate, allows
to reach the objective of size, precision and reconfiguration.

Here comes another thinking way about manufacturing
systems. If the size of the manufacturing system is remarkably
reduced, we will able to realize various styles of manufactur-
ing, such as front shop manufacturing, mobile manufacturing
in a vehicle. It implies a conception which is radically different
from the factory in term of organization and management of
the production: each micro-robots provides only a limited set
of operations and it is necessary to cluster them to realize a
complex function. This regrouping is called a cell. Then, the
micro-factory is made by a set of cells.

The size of a cell is small, about ten centimeters. According
to the task to be performed, the presence of independent
actuators allows a configuration in the initialization phase for
the calibration of the cell, and, in a least measure, a recon-
figuration to dynamically change of the provided functions.
These modifications can intervene in operate or inhibit some
actuators or while modifying their order.

The factory designed to realize the final product is thus
made by a cluster of basic cells on the same support. The size
of this support is about one meter large and the organization
of the cells is not necessarily linear there compared to most
production units. The product moving function of the platform
could be achieved by portico for instance. Because of the
product size and the fact that products can be buffered, the
transportation can be recovered by the work of the cells.
Therefore, the micro-factory is very flexible.

B. The automation

The automation of the production of micro-product is a
major issue of the micro-factory. Several factors act this level.
First of all, it is necessary to note that strengths in presence
to this order of size do not allow to use the traditional models
of manipulation anymore. For example, the gravity strength
of is not the most important anymore and uncontrollable
electrostatic strengths can disrupt the products manipulation.
For these reasons, the manner to handle the products must
evolve to make place to a more flexible control that takes the
increase of the mistakes into account. Besides these problems
of order of size, the human intervention is difficult or generaly

simply not possible. For instance, it is not possible to take
such small products by hands or simply to see them without
the help of a microscope.

Then one privilege an automated treatment where the non-
managed cases are considered as mistakes. The organization is
also an interesting point in the survey of the management of
the micro-factories. Indeed, the regrouping of the actuators
within cells allows to identify three levels of control for
the automation. The order of the actuator is called a classic
manner, that is to say some functions serve to enslave it in
positioning and in time.

Cooperation between these actuators must also be managed
since the action of just aone actuator is not sufficient for the
realization of a function on the product. Therefore, we must in-
tegrate the synchronization between the actuators to guarantee
the execution of a function. It is thus also submitted to strong
temporal constraints and must offer real-time guarantees.

In opposite, the level of cooperation between cells is not
necessarily synchronized since it is possible to stock the
products between two cells: their very small size allows
to consider buffer with a big number of products without
difficulty. In this case, there is no real time constraints anymore
and the organization of the production between the cells can
be considered of the viwe point of the flow rather than of the
control one. Thus, the automation of the cells management
looks like the management of processes onto an heterogeneous
distributed execution platform, as the grid.

C. Issues

The factory is known for the realization of micro-products.
A product is achieved from components on which are applied
a set of the functions, for example an assembly.

The application of a function to a component makes itself
under the shape of a task. The set of the tasks of a product
and their dependencies define a graph of tasks (DAG: Direct
Acyclic Graph), called process. We limit it to DAGs without
fork (intree) since it is not possible to duplicate a component.
Different DAGs can generate the same product.

This context allows us to identify different optimization
problems. We propose to optimize the design of an hetero-
geneous platform made of components (cells or processors)
to ensure the fixed execution rate (number of DAGs per unit
of time). The problem is well adapted to both contexts of
the production of micro-products onto a micro-factory and the
execution of workflows onto selected processors onto the grid.
The scheduling step to allow the predicted execution rate is
not difficult because the size of the platform already takes this
constraint into account.

III. OPTIMIZATION

To simplify the reading of this section, we use the micro-
factory terminology. But when you read product, cell, micro-
factory, you can also understand respectively result, processor,
heterogeneous set of processors on the grid. The both points
of view are considered at the same level in this section.

In this section, we try to give an answer to the following
question: What micro-factory for what production? Indeed,
one of the issues for a micro-factory is the manner to size it
in the perspective of a production of one or several products,
each described by one or several graphs of tasks (DAG) as
some alternative processes can exist for a given product.

We set he hypothesis where the cells exist and can perform
the necessary operations for the tasks of the processes. Thus,
every types of tasks can be done by at least one type of cell.
In these conditions, knowing how to design a micro-factory
consists in choosing how many cells of each types to use
to allow one or several productions described by the tasks
graph. The answer to the previous question consists then in
guaranteing a level of performance, for example in number
of finished products per time unit for a minimal cost. This
last criteria not being the only one possible, the final size of
the micro-factory is another one. The construction of a micro-
factory in this context is therefore a problem of optimization
for which we propose some tracks for its resolution in different
cases. But, before treating the most general case, it is important
to exhibit intermediate cases for which optimal solutions to the
optimization problem proposed here can be given. In the other
cases, sub-optimal solutions must be proposed.

What impacts the level of generalities of the optimization
problem is the fact that a cell is mono or multitask, the
products defined with one or several processes or graphs of
tasks and the productions thrown simultaneously with one
or several products. From all combinations, we identify five
cases:

(i) the cells are mono-task – can just perform one type of
action –, one product is defined by only one process
and only is manufactured for a production;

(ii) same case that previously with simultaneously sev-
eral products, so several processes, to be performed;

(iii) the cells are always mono-task, but different cells can
perform identical tasks with a different economical
cost and with a different execution speed, for pro-
duction of only one product defined by an unique
DAG;

(iv) cells are mono-task with the production of an unique
product defined by several DAGs;

(v) multi-tasks cells, only one product manufactured
according to the definition of one process. All the
other cases can be derive from the solutions exhibit
here.

A. Architecture and Model

An heterogeneous computing grid is composed of proces-
sors P (hosts) which communicate between them by a network
with high speed links. A grid Gp is represented by a graph
Gp = (P,E). The nodes of P are the m processors Pm of the
grid. The Edges E are the network links between processors.
The micro-factory is represented by the same description.

This grid treats a batch of I identical non preemptive tasks.
The batch is then defined as a set of N instances G(N)

A of
work GA. The work GA is an oriented acyclic graph (DAG)

composed of the Ti tasks of T and the dependencies D, the
set of edges between tasks.

All tasks of GA may be all of different types or not. The
example on figure Fig. 1 shows the graph of tasks and the
table Table 1 is an example of platform.

T3

T2

T1

T4

Fig. 1: Graph of tasks

TABLE I: Matrix of processors/cells performances

p1 p2 p3 p4

Ta
sk

s
ty

pe
s T1 200 ∞ ∞ ∞

T2 ∞ 100 ∞ ∞
T3 ∞ ∞ 200 ∞
T4 ∞ ∞ ∞ 300

All the nodes of the platform are not able to perform all
the task types. So, each tasks can just be executed only onto
a sub-set of processors. The conditions of execution of each
task type are given in matrices of execution cost that described
the platform, as the table Table 1 for example. In the table,∞
implies that the task described in the corrsponding line cannot
be executed on the current processor.

One more time, this architecture and the model is available
in the context of the micro-factory.

B. Notation

The following notations will be used in the following:
• M : number of processors used in the architecture plat-

form;
• m: processor (cell) index, m = 1, ..,M ;
• PT : Set of processor types;
• i: index of task types, i = 1, .., I with I different tasks

in the application graph;
•]ij : Occurrence number of task i in the graph (process)
j;

• rim: number of tasks of type i executed per time unit on
the processor m;

• rj : the quantity of instances of graph (process) j executed
per unit of time or flow;

• cim: execution cost of task of type i on a processor m;
• CT is the total cost by flow r;
• N : the total number of instances of graph executed on

the platform.

IV. PROBLEM FORMALIZATION

In this part we detail the five cases identified previously.

a) Case i: In this case where one result of the workflow
is computed by only one DAG and only one processor type can
perform one task type. As in this case we have the following
assumptions that a result is computed by only one DAG, and
a processor type can perform only one task type, we introduce
the following simplifications:
• Let cim = ci;
• Let rim = ri;
•]ij=]i;
• rj = r.
Therefore, the cost of the platform is:

CT =
∑
i

d]i
ri
· reci

It is also possible to find the flow that optimizes the use
of the platform and thus the minize the cost rmin . This flow
is the one that allows to ignore all the integer parts in the
previous expression. We show how to obtain this value of r:
∀i,]i

ri
· r = ki with ki integer such that ai

bi
× ri = ki

such that d]iri · rmine =]i
ri
· rmin

we assume

]i = ai ·GCD(ri,]i)

ri = bi ·GCD(ri,]i)

for a given i we suppose that rmin = bi, so
∀i, rmin = ri

GCD(ri,]i)

for the set of i (to be integer everywhere):
rmin = LCMi∈I(

ri
GCD(ri,]i)

)

b) Case ii: Several results are concurrently computed at
the same time by processors such that each of them is able
to perform only one task type. Moreover, every results are
described by only one DAG. For this case, we find the total
number of processors needed to execute each type of tasks
on all graphs

(
d 1
ri

∑
j]ij · rje

)
. Then we multiply it by the

economical cost of each processors. To get the total execution
cost of a throughput r (CT (r)), we sum the previous value
on all tasks as it is expressed by the following formula:

CT =
∑
i

(
d 1
ri

∑
j

]ij · rje
)
ci

We conclude that it is a similar case of the previous case
except that we produce more than one result at the same time
for this reason we introduce the term

∑
j in the expression

of cost to summarize on all instances of process.

It is possible to find the flow that optimizes the use of the
platform. This maximum flow is the one that allows to ignore
all non integer parts in the previous expression.

c) Case iii: Only one result defined by only one DAG,
computed by processors performing only one task type. A
same task can be done by processors of different types, of
different speeds and of different costs.

A recursive expression computes the optimal cost of the
platform according to the flow r of the DAG per unit of time.
Let assume that αim is the number of processors of type m
used in the execution platform and allowing the treatment of
a task of type i view to a flow rim. The cost and the flow
associated to the tasks of type i are therefore respectively∑

m αimcim and
∑

m αimrim.

A dynamic programming algorithm allows to give this
optimal cost thanks to its recursive expression the tasks of
type i, knowing that their flow is ri =]i× r, with r the total
flow of the workflow per unit of time. A sum on all tasks gives
the global optimal cost of the factory offering a flow r:

Ci(ri) = min1≤m≤M

(
cim + Ci(w(ri − rim))

)
with w(x) = 0 if x ≤ 0 and x otherwise.
The cost of the platform is then :

CT (r) =
∑
m

Cm(]i× r)

d) case iv: It is the case where we have K possible
DAGs for only one result, every type of tasks is being achieved
by only one type of processor. The cost of a flow r is given
by the following formula, with sk is the flow associated to the
DAG k. r =

∑
k sk, #ik is the number of tasks of type i in

the process k and ri is the flow attached to the task i:

CT (r) =
∑
i

(
d 1
ri

∑
k

]ik · ske
)
ci

The difficulty is to find how to decompose the sum of the
sk. A sub-optimal solution could chooses first the low cost
processors. An asymptotic approach to solve this case could
also be considered.

e) case v: In this last case, a processor can compute
several different tasks, the speed of execution of a task is
different according to the type of the task and the type of
the processor. Finally, the unique result to compute is defined
by only one DAG. The expression of the constraints of this
case drives the writing of the quadratic- program, represented
below:

Objective Min
∑|TP |

t=1 xtct

Subject To:
∀t ∈ TP,

∑|T |
i=1

rti
rti

< 1

∀i ∈ T
∑|TP |

t=1 xtr
t
i =]i r

∀i ∈ T et ∀t ∈ TP, rti
rti

< 1

rti ≥ 0, ∀i ∈ T, ∀t ∈ TP
with:

•]i: number of occurrence of task i in the process
• r: flow of the graph;
• rim: the maximal number of tasks of type i executed on

the processor of type m;
• ri: the number of tasks of type i per unit of time;
• rmi : the number of tasks of type i executed by a processor

of type m;
• xm: the number of tasks of processors of type m used in

the architecture platform;
• cim: the execution cost of task of type i by a processor

of type m.
In the following section, we give numerical results for the

three first cases described before.

V. COMPUTING OF THE MINIMAL TOTAL EXECUTION COST
OF I INDEPENDENT TASKS

A. Computation of total execution cost for the first case

In this experience we suppose that our application graph
is composed of four tasks (T1, T2, T3, T4) as shown on figure
Fig. 2, four processor/cells types (p1, p2, p3, p4) each of them
execute a type of tasks with a different speed as shown on
table Table 1. The cost of each processor/cell is respectively
15 euro, 20 euro, 25 euro and 45 euro. To find the needed
number of each type of processor/cell we have to know the
number of occurrences of each type of tasks in the application
graph. So we suppose that the occurrence of each type of
tasks is respectively 3, 2, 2 and 3. This DAGs is shown in the
figure Fig. 2. We aim to produce 500 graphs per time unit.
Recall that the total execution cost of throughput r = 500 is
calculated according to the formula CT (r) =

∑
id

]i
ri
·reci. The

experience shows that the total execution cost for a throughput
of 500 tasks per time unit is equal to: 670 euro; the size of the
platform is 28 processors/cells among them 8 processors/cells
of type p1, 10 processors/cells of type p2, 5 processors/cells of
type p3, and 5 processors/cells of type p4. Also we provide the
computation of the maximal throughput (rmin) that minimizes
the total execution cost and we have obtained as result 200
tasks per time unit.

T3

T2

T1

T1

T3 T1

T2

T4 T4 T4

Fig. 2: Graph of tasks

We study the total execution cost in the interval of r from
0 to 500, we conclude that the function of cost increases
obviously with r (see figure Fig. 3).

We consider another platform (Table 2) with the same
input data as the previous experience the total execution cost
become equal to 475 euro. The platform size is reduced to 18
processors: 5 processors/cells of type p1, 5 processors/cells of
type p2 , 3 processors/cells of type p3 and 5 processors/cells

 0

 100

 200

 300

 400

 500

 600

 700

 0 100 200 300 400 500

ex
ec

ut
io

n
co

st
 C

T
(r

)

Throughput r of the last task by time unit

cost of the platform 1
cost of the plateform 2

Fig. 3: Cost of 2 platforms with the graph Fig.2

of type p4 and rmin = 1400 tasks per time unit. The figure
Fig. 3 also plots the cost of this platform for values of r from
0 to 500.

TABLE II: Matrix of processor performances

p1 p2 p3 p4

Ta
sk

s
ty

pe
s T1 350 ∞ ∞ ∞

T2 ∞ 200 ∞ ∞
T3 ∞ ∞ 400 ∞
T4 ∞ ∞ ∞ 350

B. Computation of the total execution cost for the second case

As mentioned above several products are collected at the
same time by cells performing only one type of tasks, every
product being defined by only one DAG. For this case the
expression of cost is expressed as follow:

CT =
∑
i

(
d 1
ri

∑
j

]ij · rje
)
ci

The architecture platform we use in this section is shown
in the table Table 3.

TABLE III: Matrix of processor performances

p1 p2 p3

Ta
sk

s
ty

pe
s T1 150 ∞ ∞

T2 ∞ 100 ∞
T3 ∞ ∞ 200

In this case, we want to produce two products from two
identical graphs. The throughput of the first graph is r1 = 100
tasks per time unit and the occurrence of tasks T1, T2, T3 is
respectively 3, 2 and 2. The throughput of the second graph
is r2 = 150 tasks per time unit and the occurrence of tasks
T1, T2, T3 is respectively 2, 2, 3 . The corresponding DAGs
are shown respectively in the figure Fig. 4 and Fig. 5. We
suppose that the cost of the processor/cell p1 is 8 euros, the
cost of the processor/cell p2 is 5 euro and the cost of the
processor/cell p3 is 10 euro. We obtain a cost of 97 euro with
a platform formed of 13 processors/cells distributed as follow:

4 processors/cells of type p1, 5 processors/cells of type p2, 4
processors of type p3. The total number of executed task of
each type is derived by the formula ri =

∑j=J
j=1]ijrj , ∀i,

where J is the number of graphs, and equals respectively 600
tasks per time of units of type T1, 500 tasks T.U of type
T2, 650 Tasks T.U of type T3 . The maximal throughput that
minimizes the total execution cost is calculated by the formula
rmin = LCMi(

ri
(GCD(ri,]ij))

) and is equal to 600 tasks per
time unit.

T2

T1

T3T1 T3

T1

T2

Fig. 4: Graph of tasks

T3 T3

T2

T3

T2T1

T1

Fig. 5: Graph of tasks

We study the total execution cost in the interval [0..250]
and we conclude that the total execution cost of r increases
with r as shown in figures Fig. 4 and Fig. 5, knowing that
the total throughput is equal to the sum of the throughput of
all graphs (r = r1 + r2). We take another platform (Table 4)
with the same assumption as for the previous experience. The
computation shows that the total execution cost to produce two
products with two processes described above is equal to 61
euro. The total number of processors/cells from this platform
is equal to 8 processors/cells, like follow 2 processors/cells of
type p1, 3 processors/cells of type p2 and 3 processors/cells
of type p3. The maximal throughput that minimizes the total
execution cost is equal to 300 tasks per time unit. We study
the variation of cost with the variation of r on the interval
([0..250]) and we plot it on the figure Fig. 6.

TABLE IV: Matrix of processor performances

p1 p2 p3

Ta
sk

s
ty

pe
s T1 300 ∞ ∞

T2 ∞ 200 ∞
T3 ∞ ∞ 300

C. Computation of total execution cost of the third case

In this case, a task can be executed in processors/cells of
different types with different cost and speed. The table Table 5
shows the platform used in this section. As shown before,

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

 0 50 100 150 200 250

ex
ec

ut
io

n
co

st

Throughput of the last task by time unit

cost of the platform 1
cost of the plateform 2

Fig. 6: Cost of platform in the case (ii)

if we select a processor/cell, we dedicated the processor/cell
to the task for which it is selected. So, we can compute
the cost of the platform as the sum of cost of each task
type (CT (r) =

∑
i CT (ri)). For the reason, we only give

in this section numerical experiments for the optimal design
for execution of the first task. Indeed, if we know the final
throughput r, we can compute the throughput ri concerning
each task Ti (ri =]i × r). The processor/cell performances
to perform the first task T1 are shown in the first line of the
table Table 5. The cost of the processors/cells are respectively
10 euros, 20 euros and 40 euros.

TABLE V: Matrix of processor/cell performances: rim

p1 p2 p3

Ta
sk

s
ty

pe
s T1 10 50 130

T2 20 30 100
T3 30 50 120

The algorithm Fig. 1 shows the algorithm to find the greatest
step size and the minimal number of iterations while studying
the cost in the interval from 0 to ri. The algorithm Fig. 2
explains the computing of the total execution cost in this
case. As we explained before, this algorithm is a dynamic
programing based algorithm.

Algorithm 1: cas3Parameters(ri: array of integer, n: integer):
integer
ri: array of integer from which we compute the gcd.
n: the size of ri
k: the number of iteration using in the algorithm 2
d: the greatest step to compute the platform design (algorithm 2)
begin

d ← gcdN(ri, n) /*gcd of n integer in ri */
k ← d/r
if (d%r) > 0 then

k ← r/d
else

k ← r/d+ 1
endif
return d, k

end

Algorithm 2: TotalExecutionCost(cost, ri, C)

w(x): the function which returns 0 or x if x < 0 or not
ri[p]: the throughput available on the processor p for the type i
k: the number of iterations
d: the greatest step value that allows us to cover the possible values of
the throughput before r
C[p]: cost of the processor p
cost[j]: optimal cost of the platform for the throughput j × d
addedProc[j]: processors added at the step j for the optimal solution
with the current throughput j × d
procToAdd: number of the processor to add at this step to the
platform to reach the optimal cost for the current throughput
begin

for j = 1 to k do
min ← cost[w(j − ri[0]/d)] + C[0]
procToAdd ← 0
for i = 1 to n− 1 do

if (cost[w(j − ri[i]/d] + C[i]) < min) then
min ← cost[w(j − ri[i]/d)] + C[j]
procToAdd ← i

endif
endfor
cost[j] ← min
addedProc[j] ← procToAdd ;

endfor
/*reconstruction of the solution to this optimization problem */
printf “throughput” k × d “with the cost” cost[k]
j ← k
while j > 0 do

print (“processor” addedProc[j], “next throughput”
j × d− ri[addedProc[j]])
j ← j − ri[addedProc[j]]/d

endw
return addedProc, cost[k]

end
We ran the two previous algorithms with two different

throughputs, 450 and 300 tasks per time unit, and deduced
the following:
• For a throughput of 450 tasks per time unit, we obtain

the following results: the step to verify the cost is equal
to 10, number of iterations is 45, the total execution cost
is 150 euro, the size of platform is 5 processors/cells: 1
of type p1, 1 of type p2 and 3 of type p3.

• For a throughput of 300 tasks per time unit, we obtain
the following results: the step to verify the cost is equal
to 10 , number of iterations is 30, the total execution cost
is 100 euro, the size of platform is 2 processors/cells: 1
of type p2, 1 of type p3.

The figure Fig. 7 gives the optimal cost of the platform for
the execution of task T1 in the case (iii) in the experimental
conditions described before.

The table Table 6 shows the optimal number of proces-
sors/cells of each type p1, p2 and p3 each different target value
of r1 when optimizing the cost of the platform.

VI. SCHEDULING

In our study, we also interested ourselves to scheduling
flows of micro-products on a set of processors/cells as we
defined them. from the context description and according to
the α|β|γ classification [?] of the scheduling problems, the
problem is defined by: Ur—batch of intrees—Cmax. Indeed,
the platform is heterogeneous as the execution times are not
related and what we try to optimize is the Cmax – makespan
or optimal execution time – of a flow of intrees.

 0

 20

 40

 60

 80

 100

 120

 140

 160

 0 50 100 150 200 250 300 350 400 450 500

ex
ec

ut
io

n
co

st

Throughput of the last task by time unit

cost of the platform

Fig. 7: Cost of the set of processors/cells which performed the
task T1 in the case (iii)

TABLE VI: Optimal number of processors/cells p1, p2 and p3
for each throughput r1

number of pi
p1 p2 p3

th
ro

ug
hp

ut
r 1

50 0 1 0
100 0 2 0
150 2 0 1
200 2 1 1
250 0 0 2
300 0 1 2
350 0 2 2
400 1 0 3
450 1 1 3
500 0 0 4

This problem is known to be NP-Complete [?] and we must
therefore either use an heuristic or modify the problem. The
model presented at the global level offers to come closer to the
models used in the distributed systems and more especially of
the computation grids. The main differences rest on the type of
the products we perform and on the functions of transportation,
but the realization of a function on a micro-product or a
computer data is modulated in the same way. With regard to
the type of the products, we have seen that it is limited to the
intree since we cannot duplicate a micro-component without
new task. We are therefore in one under-case of computer
applications. Concerning the function of transportation, it is
possible in spite of all to assimilate the network topology to
a complete network in the case of a portico or to a graph in
the case of transporter.

From these observations, we looked for what could be
the solutions brought to this problem and explored three
approaches [?], [?]. The first is a dynamic approach that
allocates the tasks dynamically to the processors, according to
their availability. The second [?], [?], [?], [?] uses a heuristic
of scheduling, based on the genetic algorithm, having good
results for one DAG and we adapted it for the flow. The
third [?], [?], [?], rests on a vision of the problem a little
different since it is interested to the flow but it gives an
optimal solution, we also adapted it to the management of
flows. The assessment of these three techniques has been

achieved by simulation and the results show without big
surprise that, in a general case, the dynamic solution almost
always offers optimal results, the heuristic solution is good
on the small flows and the solution-oriented flow is good
on the flows of important size. The interest of work resides
therefore more in the borders that limit these techniques and
the differences of performances gotten. Another interesting
result is the dependence of the results with the flow of the
graph that characterizes the process, some approaches giving
better results for certain processes of equivalent flow size.

We work currently to the optimization of these different
approaches and more especially the flows oriented one because
several issues can be addressed our context to improve its
results when the number of workflows or products to perform
decreases.

VII. CONCLUSION

In this paper we have presented several results for the
optimization of cost in the context of distributed heterogeneous
platforms as grids or micro-factories. In particular we give
formal results for the simpliest cases and a dynamic program-
ming algorithm for a much complex case. We have illustrated
through examples of different platforms and products.

As we have just seen, the micro-factory presents many
domains of interests with regard to its optimization: as much
to the level of its scheduling as of its control, because of the
flexibility and the new constraints that are attached. The multi-
levels aspects and the interactions between these levels defined
new issues that will study in the future.

The automatic organization of micro-factories is not how-
ever in a phase of realization, even though some exploratory
studies permit to consider its implementation in the coming
years. The goal of our works is therefore to anticipate this
realization in order to be able to come with it, to guide it and
to put the potentialities of the view point of the production
optimization forward.

REFERENCES

[1] Y. Okazaki, N. Mishima, and K. Ashida, “Okazaki: Microfactory and
micro machine tools,” in Reported in the first Korea-Japon Conference
on Positionning Technology, Daejeon, Korea, 2002.

[2] M. Tanaka, “Development of desktop machining microfactory,” Journal
RIKEN Rev, no. 34, pp. 46–49, April 2001.

[3] A. Ferreira, “Vers les micro-usines automatises du futur...” J’automatise,
no. 18, pp. 47–51, 2001.

[4] E. Descourvières and al, “Towards automatic control for microfactories,”
in 5th Int. Conf. on Industrial automation, Montréal, Québec, Canada,
june 2007.

[5] H. Aydin, R. Melhem, D. Mosse, and P. Mejia-Alvarez, “Power-
aware scheduling for periodic real-time tasks,” IEEE Transactions on
computers. Vol 53, NO. 5, May 2004, 2004.

[6] R.L.Graham and al, “optimization and approximation in deterministic
sequencing and scheduling,” Ann. Discreat Math., vol. 4, pp. 287 –
326, 1979.

[7] E.Ilvarasan and P. Thambidurai, “Low complexity performance effective
task scheduling algorithm for heterogeneous computing environments,”
Journal of computer sciences, vol. 3, no. 2, pp. 94–103, 2007.

[8] S. Diakité, J.-M. Nicod, and L. Philippe, “Comparison of batch schedul-
ing for identical multi-tasks jobs on heterogeneous platforms,” in 16th
Conf. on Parallel, Distributed and Network-Based Processing, Toulouse,
France, 2008, pp. 374–378.

[9] T. H. Cormen, C. E. Leiserson, R. L. Rivest, and C. Stein, Introduction
To Algorithms 2nd Edition, M. I. of Technology, Ed. MIT press, Jan
2001.

[10] M. Daoud and N. Kharma, “Gats: A novel ga-based scheduling algo-
rithm for task scheduling on heterogeneous processor nets,” in Genetic
And Evolutionary Computation Conference, 2005.

[11] S. Y. Chen, “A robust genetic algorithm for structural optimization,”
FEA-Opt Technology, 2001.

[12] L. Min and W. Cheng, “Genetic algorithms for the optimal common
due date assignment and the optimal scheduling policy in parallel ma-
chine earliness scheduling problems,” Robotics and computer-integrated
manufacturing, vol. 22, pp. 279 – 287, 2006.

[13] O. Beaumont, A. Legrand, L. Marchal, and Y. Robert, “Assessing
the impact and limits of steady-state scheduling for mixed task and
data parallelism on heterogeneous platforms,” in IEEE Conference on
Heterogeneous Computing, 2004, pp. 296–302.

[14] D. N. Tahar, F. Yalaoui, C. Chu, and L. Amodeo, “A linear programming
approach for identical parallel machine scheduling with job splitting and
sequence dependent setup times.” International journal of production
economics, vol. 99, pp. 63 –73, 2006.

[15] V. Ramabhatta and R. Nagi, “An integrated formulation of manufacturing
cell formation with capacity planning and multiple routings,” Annals of
operations research, vol. 77, pp. 79–95, 1998.

