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Analysis in terms of evanescent guided waves is essential for waveguides that contain viscoelastic
materials, in view of characterizing thoroughly their spatial decay, which is essential to modern
applications that often utilize dissipative viscuous materials. Few experiments have furthermore
been conducted to observe the decay of evanescent waves in comparison to numerical results. In this
work, we study the propagation of evanescent Lamb waves guided in coupled-resonator viscoelastic
waveguide (CRVW), with special attention to attenuation. CRVW is defined by considering a
linear chain of coupled defect cavities in a phononic plate made of epoxy. The viscoelastic behavior
of epoxy is characterized numerically by the Kelvin–Voigt (K-V) model. Based on finite element
analysis, the complex band structure and the spectrum of frequency response function (FRF) are
obtained. Due to viscosity, guided Lamb waves are spatially damped. Two theoretical models are
devised to predict the displacement distributions inside and outside a bandgap for guided waves,
respectively, considering either the first or the first two least evanescent Bloch waves identified in the
complex band structure. A CRVW sample is fabricated and characterized experimentally by laser
vibrometry. Evanescent Lamb waves are observed to be strongly confined along the waveguide and
at the same time to decay rapidly along the waveguide axis. Experiments and numerical simulations
are found to be in fair agreement. The present work is expected to inspire practical applications of
highly confined viscoelastic phononic waveguides.

1. INTRODUCTION

Along the last decades, the study of elastic wave prop-
agation in structured materials has attracted a great
deal of attention [1–4]. As a functional composite mate-
rial with spatial periodicity, phononic crystal (PC) relies
on highly contrasting elastic moduli and mass densities.
Spatial modulation on a scale comparable to the wave-
length leads to many salient properties, such as bandgaps
[5–8] and band-edge states [9]. The main mechanisms
for bandgap generation are Bragg scattering and local
resonance[10, 11]. In the frequency range of a bandgap,
propagation of elastic/sound waves is prohibited, and
only evanescent waves are allowed [12, 13]. This prop-
erty allows PCs to be used for sound absorption [14, 15],
vibration damping [16, 17], or filtering [18, 19].

The modification of an individual or of a series of
unit cells in the periodic structure of a PC disrupts
the original periodicity and results in the formation of
point, line or surface defects [20–22]. Defective bands
can in turn appear in the frequency range of the origi-
nal bandgap. The waves forming the defective dispersion
bands are confined to the defects and propagate along
the designed structural defects. Hence, wave propagation
can be controlled or manipulated by designing defects
[23–25]. When defects are close enough, coupling effects
occur between them, leading to the formation of coupled
resonator waveguides [26–28]. Unlike linear waveguides,

∗ Yu-Ke Ma and Wei Guo contributed equally to this work.
† wangyanfeng@tju.edu.cn

coupled-resonator waveguides are based on the evanes-
cent wave coupling mechanism [29, 30] between defective
cavities or resonators, which theoretically allows for the
design of arbitrary acoustic lines [31]. Coupled-resonator
waveguides are extremely sensitive to local variations in
the defective cavities or resonators, such as their sepa-
ration or the amount of prestress at the defect [32, 33].
The dispersion relation is ultimately determined by the
coupling strength between the defective cavities or res-
onators [34].

Attention to linear/coupled-resonator waveguides for
manipulation of elastic or sound has increased consider-
ably in recent years [26, 35–39]. Shi et al. [35] designed
a compact and frequency-robust waveguide squeezed by
two layers of metagratings with only one identical unit
cell. They found that flexural waves can be efficiently
guided by the waveguide. Jiang et al. [40] realized in-
terface transport by replacing defects in acoustic valley
insulators to form an acoustic waveguide. Hatanaka et
al. [41] designed a phononic waveguide by using a one-
dimensional array of suspended membranes that inte-
grates isolated nanoelectromechanical systems. Wang et
al. [42] created reconfigurable coupled-resonator acous-
toelastic waveguides consisting of a periodic array of cups
slectively filled with water. They showed that acoustoe-
lastic waves can be controlled by locally removing water
from certain cups. Most of the existing studies, how-
ever, only consider an elastic model and do not involve
viscoelastic materials.

In viscoelastic media, the dissipation of waves cannot
be ignored. The presence of viscosity can have an effect
on the dispersion of waves in PCs [43–48]. For example,
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for PCs made of rubber and epoxy resin, frequency dis-
persion and energy dissipation occur when waves prop-
agate in the viscoelastic medium [13, 49, 50]. Recently,
some studies have been conducted on the effects of vis-
coelasticity on wave dispersion. Laude et al. [51] theoret-
ically analyzed the effect of loss on the dispersion relation
of waves in viscoelastic phononic and photonic crystals.
Moiseyenko et al. [44] investigated the effect of a linear
increase in material viscosity with frequency on the com-
plex energy band structure of two-dimensional viscoelas-
tic PCs. Zhang et al. [46] discussed wave attenuation
in locally resonant viscoelastic PCs. Viscoelastic damp-
ing reduces the attenuation in the bandgap and increases
the attenuation bandwidth. By optimizing the design
structure, it is possible to change the bandwidth and re-
duce the attenuation of the locally resonator bandgap
(LRBG) [52], but there is no effect on the position of the
bandgap [53]. Oh et al. [54] investigated wave atten-
uation and dissipation mechanisms in viscoelastic PCs
with different inclusions for the long-wavelength regime.
Yip and John [55] describe the trapping and absorp-
tion of audible sound in centimeter-scale claddings of
two-dimensional, locally resonant viscoelastic phononic
crystals. Viscoelasticity is usually analyzed using linear
viscoelastic models, including the generalized Maxwell
model [52] and the Kelvin–Voigt (K-V) model [56–60].
The K-V model, that is adopted in this paper, is conve-
niently represented in the frequency domain using com-
plex stiffness with a fixed real part and an imaginary part
varying linearly with frequency. The K-V model can cor-
rectly characterize the properties of viscoelastic materials
[61–64]. Although the papers mentioned above investi-
gated wave attenuation in viscoelastic PCs, evanescent
guided Lamb waves in waveguides consisting of defects
in a PC plate hav seldom been studied. Furthermore,
few experiment has been conducted to observe the decay
of evanescent waves and to compare it with numerical
results. It is thus difficult to characterize thoroughly the
propagation and attenuation characteristics of evanes-
cent waves. Based on this, using numerical simulation
to accurately predict the behavior of evanescent guided
waves in viscoelastic waveguides remains a challenge in
practice. This task is essential to modern applications of
waveguides that often comprise viscoelastic materials.

In this paper, we design and fabricate a coupled-
resonator viscoelastic waveguide (CRVW) using epoxy
as the base material. The CRVW is formed by filling
certain of the cross holes in the crystal to form a se-
quence of defect cavities. We focus on the propagation
and the attenuation of guided waves. The viscoelastic be-
havior is accounted for numerically by considering the K-
V model. The complex band structure and FRF are first
calculated and discussed. Experimental measurements
are carried out by using a scanning vibrometer. The
displacement distribution of evanescent Bloch waves in-
side and outside the bandgap is modelled based theoret-
ical models inspired by diffraction theory and the model
of the channeled spectrum from optics. It is observed

that guided Lamb waves propagating along defects are
strongly confined in the lateral direction. Guided Lamb
waves are spatially evanescent and show a strong attenu-
ation along the CRVW. Both numerical and experimental
results agree fairly well with the two models. Waveguides
made of epoxy are expected to provide non-destructive
testing for viscoelastic materials and mitigation of un-
wanted elastic waves emitted by sources of elastic waves.
This paper provides a basis for the design and practi-
cal application of highly confined viscoelastic phononic
devices.

2. METHODS

The experimental setup for measuring the out-of-plane
vibrations of the surface of the CRVW sample is shown
in Fig. 1(a). The sample is manufactured by mechanical
machining of an epoxy plate with a thickness of 8 mm.
The crystal is composed of a square-lattice arrangement
of cross holes, which is known to induce a wide com-
plete band gap. The CRVW design is a straight chain
of defect cavities separated by 2 lattice constants, as
Fig. 1(b) shows. Defects are simply introduced by omit-
ting the machining of cross holes inside the considered
unit-cells. An asymmetric wave source is formed by a
vertically-polarized piezoelectric patch glued on one side
of the plate, in view of favoring the excitation of out-
of-plane vibrations. The electrical driving signal is first
amplified before being applied to the piezoelectric patch.
Note that the excitation is applied on an homogeneous
part of the plate and is positioned away from the ex-
ternal boundaries, in order to prevent elastic waves from
reverberating on them. This arrangement favors the exci-
tation of the chain of defect cavities. A Polytec PSV-500
scanning laser vibrometer is used to measure the out-
of-plane displacement distribution along and around the
waveguide. In the experiments, the laser is first moved to
approximately the middle of the sample under test and
is focused on the surface. Then two-dimensional align-
ment is performed to establish the relationship between
the pixel position in the image and the laser swing angle.
After the laser is calibrated, the laser vibrometer is used
to measure the bandgap of a perfect PC plate to ensure
experimental consistency and to calibrate the measure-
ments. The frequency response is detected by applying a
periodic chirp signal and by measuring the displacement
at the central parts over the same area for the defects
designated in Fig. 1(a). The signal sweeps from 45 kHz
to 70 kHz, with 3200 sample points. The displacement
field over the surface of the plate is measured by using a
harmonic signal with a selected frequency.
Numerical simulations are conducted using finite el-

ement analysis, with software COMSOL Multiphysics.
The supercell in Fig. 1(b) is used to obtain the dis-
persion relation of guided Bloch waves. Epoxy is con-
sidered isotropic, with mass density ρ = 2038 kg/m3,
Poisson’s ratio ν = 0.41, and Young’s modulus E = 24
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Figure 1. Coupled-resonator viscoelastic waveguide using
epoxy as the base material. (a) Lamb wave propagation is
imaged at the source frequency using a laser vibrometer sensi-
tive to vertical displacements. Defects forming the waveguide
are numbered sequentially from 2 to 6. (b) The supercell of
the CRVW includes one defect every two periods of the crys-
tal of cross holes. Geometric parameters for the sample are
a = 20 mm, b/a = 0.9, c/a = 0.2, and h/a = 0.4.

GPa. The complex band structure in particular is of
great significance to understand in depth wave propaga-
tion. Viscoelasticity is represented with the K-V model.
The frequency-dependent loss is thus added to the imag-
inary part of the modulus. The complex-valued stiffness
tensor is

Cv = C+ ıωη (1)

where C is the usual real-valued elastic tensor and η
is the viscosity tensor with the same symmetry as the
C [13]. Details of the finite element analysis can be
found in Reference [65]. Since propagation of Lamb
waves in a two-dimensional phononic periodic plate is
studied in this paper, periodic boundary conditions are
applied along the x and y directions, whereas they were
only applied along the x direction in Ref. [65], in which
a phononic crystal strip was modelled. The remaining
surfaces are left free. Complex band structures are ob-
tained by sweeping the angular frequency ω in the range
of interest while choosing wavenumber k as the eigen-
value. Alternatively, the real band structure is obtained
by sweeping k along the boundary of the irreducible Bril-
louin zone, considering ω as the eigenvalue. The distribu-
tion of displacement for a specific eigenmode is obtained
from the eigenvector.

For comparison with experiment, we further calculate
the frequency response function (FRF) by building a
time-harmonic model of the finite plate. A z-polarization
displacement wave source with unit amplitude is applied
to the left homogenous part of the waveguide. The fre-
quency response function (FRF) is estimated by com-
puting the vertical displacement at a selected region in
the computation domain. Integrating over the excitation
(S0) and the receiving regions (S1), the FRF is

FRF(ω) =

∫
S1

|U|dS∫
S0

|U|dS
, (2)

where U is the vertical displacement.

3. DISPERSION AND ATTENUATION
RELATIONS OF COUPLED RESONATOR

VISCOELASTIC WAVEGUIDE

In practice, no solid material is ideally elastic or loss-
less. The presence of viscosity affects the propagation of
waves. In this section, the dispersion and the attenuation
in coupled-resonator viscoelastic waveguides is analyzed
with the finite element method. More precisely, the com-
plex band structure of CRVWs is calculated considering
the K-V model of viscoelasticity.
A CRVW is formed by filling certain of the cross holes

of the square-lattice crystal to form defect cavities sepa-
rated by 2 lattice constants, as shown in Fig. 1(b). The
complex band structure obtained considering the purely
elastic model, i.e. without viscoelasticity, is shown in
Fig. 2(b). The complex band structure is presented in
two panels: the left (real) panel shows frequency ver-
sus the right (imaginary) part of the wavevector. The
polarization amount is measured as the ratio of the out-
of-plane displacement to the total displacement. It is
displayed as a colorscale to distinguish between different
modes. For reference, the real band structure is also plot-
ted with black solid lines. The real part of the complex
band structure coincides exactly with the real band struc-
ture, an indication of the correctness of the calculation
of complex band structure. The wide complete bandgap
of the perfect crystal extends from 45.27 kHz to 65.14
kHz. Within it, three separated guiding ranges appear in
Fig. 2(b). Only the guided waves in the range 57.43 kHz
< f < 59.43 kHz are polarized mostly out-of-plane. They
are mainly considered in the following analysis, because
they are available experimentally. This guiding range is
isolated from the two other in-plane guiding ranges. The
minimum imaginary parts of the wavevector for guiding
bands are uniformly zero, signaling propagation of guided
waves without attenuation. Eigenmodes for out-of-plane
guided waves at the X point of the first Brillouin zone
are shown in Fig. 2(c). The out-of-plane displacement
for eigenmode A is symmetrical with respect to the xz
plane, i.e. the wave propagation direction. This mode
can be excited by an incident symmetric plane wave and
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Figure 2. Finite element analysis of dispersion and attenuation in CRVW. Panel (a) presents the complex band structure
computed using the elastic model. The left and right panels show the variation of frequency with real and imaginary parts of
the wavenumber, respectively. The color scale measures the polarization of waves from in-plane (blue) to out-of-plane (red).
The black solid line is the real band structure. The light red and blue areas highlight the frequency ranges for out-of-plane
and in-plane polarized guided waves, respectively. Panel (b) shows the out-of-plane displacement for eigenmodes A and B. The
color scale indicates the normalized amplitude of out-of-plane displacements from 0 (blue) to 1 (red). Panel (c) presents the
complex band structures obtained by considering the viscoelastic model.

is expected to appear in the frequency response. In con-
trast, the out-of-plane displacement for eigenmode B is
asymmetric with respect to the same plane and thus the
corresponding band is deaf. Such a mode can hardly be
excited by an incident symmetric plane wave.

We then compute the complex band structure by in-
cluding the K-V model to investigate the effect of vis-
coelasticity, as Fig. 2(d) presents. The viscosity param-
eter used for epoxy is η44 = 2× 103 Pa · s, corresponding
to rather large material loss in the considered frequency
range. The sharp corners of the conplex band structure
at the high symmetry points are smoothed and rounded
after viscosity is added, resulting in the blurring of the
bandgap boundaries. The minimum imaginary parts of
wavevector of guided out-of-plane waves are non-zero.
As a result the guided Lamb waves become evanescent.
Comparing the imaginary parts in Fig. 2(b) and Fig.
2(d), the effect of viscosity on the lower order evanescent
Bloch waves is particularly obvious. They are suitable for
studying the attenuation of highly confined Lamb waves,
as discussed next.

4. EVANESCENT WAVES IN
COUPLED-RESONATOR VISCOELASTIC

WAVEGUIDE

In this section, we examine the attenuation of evanes-
cent Lamb waves guided along a CRVW. We measure
the FRF at four distinct receiving regions, i.e. the third
to sixth defects labelled in Fig. 1(a). Fig. 3(a) show
the experimental FRFs. They are consistently normal-
ized by the maximum of the response on the third de-
fect. A guidance frequency range 57.4 kHz < f < 59.3
kHz is apparent in the complete bandgap. With in-
creasing distance from the excitation, the magnitude of
the FRF gradually decreases in the guidance frequency
range. The marked attenuation confirms the relatively
large minimum imaginary part of the wavenumber. Fig.
3(b) shows the numerical FRFs computed considering
the K-V model on the same receiving regions as in the
experiment. The larger the distance from the excitation,
the smaller the FRF obtained with the K-V model. The
observed guidance frequency range is consistent with ex-
periment. The numerical and experimental FRFs do not
have the same dynamical range, due to the experimental
noise floor. Hence, we figure a virtual baseline at -100 dB
in the numerical FRF plot of panel (b), to ease the visual
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Figure 3. FRFs obtained from different receiving regions.
Panel (a) presents the experimental results measured at the
third to the sixth defects (see labels in Fig. 1(a)) with blue,
red, yellow and purple lines, respectively. Panel (b) presents
the numerical FRFs at the same defects computed using the
K-V model. The light red area indicates the frequency range
of out-of-plane polarized guided waves. FRFs are normalized
to the maximum obtained for the third defect. The black dot
line at -100 dB in panel (b) virtually marks the numerical
baseline.

comparison. It is consistent with the minimum value of
the experimental frequency response. It is observed that
the FRFs above the black dot line are in fair agreement
with experiment. Besides, a small FRF peak is found ex-
perimentally around 53.6 kHz. It might result from the
piezoelectric patch being only attached on one side of the
plate, causing spurious in-plane waves to be excited and
collected [33]. We also computed the FRFs considering
the elastic model, i.e. no viscosity. The result, shown in
Appendix, deviates markedly from experiment.

In addition to the FRF, it is interesting to image the
displacement fields of evanescent waves at chosen fre-
quencies. Fig. 4(a) shows the numerical and experi-
mental displacement distributions at 57.7 kHz that lies
inside the guidance frequency range. The guided Lamb
wave propagates along the waveguide with a relatively
strong attenuation but remains strongly confined in the
lateral direction. This wave presents the characteristics
of guided evanescent Bloch waves. The displacement field
at 52.5 kHz, that lies inside the complete band gap for
out-of-plane Lamb waves, is presented in Fig. 4(b). Both
simulated and experimental results show that the evanes-
cent Lamb wave concentrates at the defect closest to the
excitation. A rapid attenuation of the evanescent waves
away from the excitation is observed. As a whole, simu-
lation results based on the K-V model are consistent with
experimental measurements. We can thus reasonably
characterize the propagation and attenuation of evanes-
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Figure 4. Displacement field of Lamb waves in the coupled-
resonator viscoelastic waveguide. Panels (a) and (b) present
the numerical and experimental results for the finite epoxy
phononic crystal slab at 57.7 kHz and 52.5 kHz. These fre-
quencies lie inside the guidance frequency range and the com-
plete band gap for out-of-plane waves, respectively. The color
scale represents the amplitude of the normalized out-of-plane
displacement from 0 (blue) to 1 (red).

cent waves along the viscoelastic waveguide by selecting
the K-V model.
To quantitatively assess the spatial decay of evanescent

Lamb waves, we extract the displacement distributions
along the centerline of the upper surface at the defects,
as plotted in Fig. 5 and Fig. 6. The simulated and ex-
perimental results can be compared directly within the
sequence of coupled defects. As Fig. 5 shows, the agree-
ment at 52.5 kHz, inside the complete band gap, is very
good. It is visually observed that the evanescent wave
decays rapidly and exponentially. In Fig. 6, at 57.7 kHz,
inside the guidance frequency range, the agreement is still
excellent for the second defect. For the subsequent de-
fects, the agreement remains fair, especially regarding the
amplitudes of the out-of-plane displacement. The slight
discrepancies might be attributed to fabrication uncer-
tainties and to the quite crude knowledge of the viscosity
of epoxy. The viscosity coefficient considered in the FEM
numerical simulation is further homogeneous, which may
not be not exactly the case of the actual CRVW sample.

5. MODELS OF THE DISPLACEMENT
DISTRIBUTION IN COUPLED-RESONATOR

VISCOELASTIC WAVEGUIDE

In this section, we apply two theoretical models in-
spired by optical diffraction grating theory and the chan-
neled spectrum; they respectively predict the displace-
ment distributions of evanescent Lamb waves inside the
band gap and inside the guidance frequency range.
First, according to diffraction grating theory [12], the

diffracted field is composed of a superposition of har-
monic waves. From this description, the evanescent field
can be represented as a superposition of evanescent waves
with different orders of diffraction. Since evanescent
waves decay rapidly, it is sufficient in a first approxima-
tion to consider only the first two least evanescent orders
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Figure 5. Attenuation of evanescent waves in CRVW at
52.5 kHz. Displacement distribution of simulation and exper-
iment along the centerline of upper surface at the defects are
presented by the red and black solid lines, respectively. The
green dashed line represents the displacement distributions
predicted with ϕ1 = 0.1, k1a/2π = 0.52 − 0.45ı, ϕ2 = 0.9,
k2a/2π = 0.47 − 0.46ı. The blue dashed line represents the
displacement decay curve fitted using the minimum imaginary
part in the complex band structure.

of diffraction. The evanescent field is hence written de-
scribed [65]

w(x, y) = ϕ1w1(x, y)e
−ık1x + ϕ2w2(x, y)e

−ık2x (3)

where ϕi represents the weighting coefficient for each
evanescent wave, ki is the wavenumber and wi refer to
the displacement field extracted from the first and second
least evanescent eigenmodes in the complex band struc-
ture (i = 1, 2). Using this formula, we plot the modeled
displacement distribution at 52.5 kHz in Fig. 5. It is
found that the model correctly captures the main trends.

Second, the channeled spectrum, that has long been
known for optical waveguides, is formed by the interfer-
ence of forward propagating guided waves and the back-
ward propagating waves generated by internal reflections.
The description is here extended to the PC waveguide.
The channeled spectrum in CRVW is considered to be
generated by the interference of the same guided Bloch
wave propagating forward and backward. In the inner
part of the waveguide, the right-traveling wave Lr and
the left-traveling wave Ll are superimposed to form the
displacement field [66]:

L(x, y) = αLr(x, y)e
−ıkx + βLl(x, y)e

ıkx (4)

where α and β are complex coefficients to be determined
and k is the complex Bloch wavenumber of the waveg-
uide. The left and right traveling waves have periods Λ
and satisfy Lr(x, y) = Ll(Λ− x, y), where Ll(x, y) is the
conjugate complex number of Ll(x, y). It is noted that
the left and right traveling waves transform into each
other by reflection at both ends of the PCs structure.
We fit the displacement distribution obtained with FEM
using Eq. (4). Using this formula, we plot the modeled
displacement distribution at 57.7 kHz in Fig. 6. It is

  
  

 
  

 
  

 

   

   

   

   

 

   

        2 4 6 8
0

0.4

0.6

0.8

1

0.2

x/a

|w
/m

ax
(w

)|

Experiment

FEM

Eq. (4)

Figure 6. Attenuation of evanescent waves in CRVW at
57.7 kHz. Displacement distribution of simulation and ex-
periment along the centerline of upper surface at the defects
are presented by the red and black solid lines, respectively.
The green dashed lines represent the displacement distribu-
tions predicted with ka/2π = 0.68 − 0.14ı, α = 1.60 + 0.91ı,
β = 0.05− 0.02ı

observed that the channeled spectrum model correctly
captures the main trends. This result will be of great
help for practical applications of CRVW.

6. CONCLUSIONS

In this paper, we have investigated the attenuation
of evanescent Lamb waves guided in a CRVW defined
by considering a sequence of coupled defect cavities in
a phononic plate with cross holes. The complex band
structure, the FRF and the displacement fields were cal-
culated by considering the K-V model. An experiment
was also conducted to verify the numerical results, using
a scanning laser vibrometer. Besides, we devised two the-
oretical models to predict the spatial decay of evanescent
Bloch waves inside the bandgap and inside a guidance
frequency range for out-of-plane waves. Numerical and
experimental results show that due to viscosity, guided
Lamb waves are spatially evanescent. Guided evanescent
Lamb waves are strongly confined and show rapid atten-
uation along the waveguide axis. The propagation and
the attenuation of guided waves are correctly character-
ized by the K-V model. The displacement distribution
can further be accurately predicted by considering only
either the first or the first two least evanescent Bloch
waves that are identified in the complex band structure.
The results presented are expected to be useful for prac-
tical applications of highly confined viscoelastic phononic
waveguides, for instance the directional mitigation of un-
wanted waves emitted by a source of elastic waves. In
addition to the viscoelastic waveguides considered in this
paper, it would be valuable to extend the analysis to vis-
coelastic couplers. We plan to conduct such research in
future studies.
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APPENDIX: FREQUENCY RESPONSE
FUNCTION OBTAINED UNDER THE ELASTIC

MODEL

In additional to the K-V model, the elastic model was
also considered to calculate the FRF. Numerical results
obtained by both models on the third to the sixth de-
fects are plotted in Fig. 7(a) to (d). The black dot line is
added to assist in comparing FRFs estimated on differ-
ent receiving regions. Many peaks in the elastic FRF are
washed out in the viscoelastic FRF, because of attenua-
tion. As the receiving region moves farther away, the elas-
tic FRF inside the bandgap decreases, isolating more and
more the guidance frequency range. The latter response
changes little with distance, indicating guidance with-
out attenuation. Conversely, attenuation is clearly seen
inside the guidance frequency range for the viscoelastic
FRF.
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