

Microfabricated vapor cell atomic clocks

R. Boudot*FEMTO-ST, CNRS, Besançon, France*

rodolphe.boudot@femto-st.fr http://teams.femto-st.fr/equipe-ohms/http://teams.femto-st.fr/MOSAIC/en

Atomic clocks

The local oscillator (LO) frequency is stabilized onto the atomic transition

Long-term stability Sensitivity of the clock frequencyto experimental parameters(temperature, B-field, laser power,..)

IEEE Sum, Barbados, July 2024

CPT-based microcell clocks worldwide

Cell technology and physics packages

A. Douahi et al., Elec. Lett. 43, 5, 279 (2007) M. Hasegawa et al., Sens. Act. 167, 594 (2011) V. Maurice et al., Appl. Phys. Lett. 110, 164103 (2017)

1st generation2nd generation

First prototype Industrial french CSAC (2018)
 Syrlinks

https://www.syrlinks.com/en/time-frequency/mems-micro-atomic-clock-mmac/mems-micro-atomic-clock-mmac

R. Vicarini et al., IEEE UFFC 66, 12 (2019)

tronics^{II}

Integrated physics packages

Ramsey-CPT spectroscopy for light-shift mitigation

Two atom-field interactions separated by a free-evolution time *T Ramsey fringes*

Symmetric Auto-Balanced Ramsey (SABR) interrogation

Residual sensitivity to light shifts produced during the pulses

Auto-Balanced Ramsey spectroscopy

C. Sanner et al., Phys. Rev. Lett. 120, 053602 (2018)

Compensate the phase shift experienced by the atoms during the pulsesby applying a phase correction to the LO during the dark time T

Apply two consecutive Ramsey cycles with different dark times (short Ts and long T^L)

Light-shift mitigation with SABR-CPT in MEMS cells

First clock stability tests with SABR

S. Abdullah et al. Appl. Phys. Lett. **106**, 101063 (2015)

Gas permeation through the cell walls

Buffer gas induces a shift $\Delta\nu_{bg}$ of the clock transition frequency :

 $\Delta v_{bg} = P[\beta + \delta(T - T_0) + \gamma(T - T_0)^2]$

Buffer gas can enter into or leave the cell

 $(\beta_{Ne}= 686$ Hz/Torr , $\Delta P/P \approx 10^{-7}$ to reach a stability of $10^{-12})$

 β , δ , γ : gas coefficients *T*: cell temperature \mathcal{T}_o : ref. temperature (273.16K) *P*: total pressure (at 0°C)

Evolution of the buffer gas pressure

$$
P(t) = P_{ext} - (P_{ext} - P_{in}) \times e^{-\frac{t}{\tau}}
$$
\n
$$
T = \frac{V \times d}{K \times A \times P_{ref}}
$$

^C: **permeation rate**

Clock frequency evolution Buffer gas pressure evolution \rightarrow K

 V = volume, d = thickness, A = surface, P_{ref} = Atm. Pres. et $\mathrm{P_{in}},\ P_{ext}$ = Press. in and out of the membrane

Gas permeation: BSG Vs ASG (tests with He buffer gas)

[1] S. Abdullah et al., Appl. Phys. Lett. **106**, 101063 (2015)[2] A. Dellis et al., Opt. Lett. **41**, 12 (2016)

Impact of the Al2O3 coating thickness

uncoated ASG⁴²

 $\overline{5}$

10

15

 10^{-21}

 $\overline{0}$

 20 nm

25

30

35

 $20\,$

 Al_2O_3 thickness (nm)

 40 nm

40

Reduction of He permeation until 20 nm

Not a significant improvementbetween 20 and 40 nm

> C. Carlé et al., ArXiv 2404.07144 (2024) Accepted in J. Appl. Phys. (2024)

> > IEEE Sum, Barbados, July 2024

Also observed with Al2O3 coatings

C. Carlé et al., ArXiv 2404.07144 (2024) Accepted in J. Appl. Phys. (2024)

Increased operation temperature with buffer gas mixtures

Microcells with tunable He-Ne buffer gas mixtures

Use of break-seal gas reservoirs

Science cavity pre-filled with Ne Non-through reservoirs pre-filled with HeHe gas released through fs laser ablation of a wall membrane

V. Maurice et al., Nature Microsystems and Nanoengineering 8, 129 (2022)

Break-seals and make-seals

Gradual increase of Helium Shift of the inversion point with consecutive opening of reservoirs areas**MEMS cells with tunable Ne-He mixture, after wafer sealing**

Conclusions on microwave microcell CPT clocks

Microwave CPT-based microcell clockslow 10⁻¹² range stability at 1 day

Ramsey-based interrogation protocols in MEMS cells

Reduction of the clock frequency dependence to laser field parameters by > 100 (Vs CW regime)

Low-permeation glass wafers and Al2O3 coatings

Reduction of the He permeation by **450** with ASG glass, by **130** with BSG + Al₂O₃ glass Reduction of the <mark>N</mark>e permeation Relevant permeation reduction with a 20 nm-thick Al $_2$ O₃ coating

Cells with He-Ne buffer gas mixtures for increased operation temperature

Microfabricated <mark>break-seal membranes</mark> for fine tuning of buffer gas mixture ratio

Perspectives

Cells with N_2 -based buffer gas mixtures Use of narrow-linewidth VCSELs [1]

Sub-Doppler spectroscopy techniques

Hot vapor interacts with two counter-propagating fields: Doppler-free resonances

Simple architecture: 1 laser + 1 vapor cell / No laser cooling, no UHV

High potential for miniaturization with MEMS cells and integrated lasers/photonics

Microcell optical references at FEMTO-ST

Rb two photon transition at 778 nm at FEMTO-ST

Amplitude of atomic resonance

TPA : second-order non-linear process proportional to the square root of the laser intensity**Behaviour well observed**

Cell temperature
0.5 T $log_{10}(V_{PMT}/T)$ [VK⁻¹] (b) 0.0 -0.5 -1.0 -1.5 2.7 2.8 2.9 3.0 $10^3/T$ [K⁻¹]

> The amplitude of the TPA resonancedepends on the vapor density

Operating points : 12 mW (max for our setup), T = 110 °C

Noise sources

Short-term stability of MEMS-cell optical references

M. Callejo et al., https://arxiv.org/pdf/2407.00841

Z. Newman et al., Opt. Lett. 46, 18 (2021) $[85Rb$ transition!] V. Maurice et al., Opt. Exp. 28, 17, 24710 (2020)

Short-term limits: Photon shot noise and Intermodulation effect

IEEE Sum, Barbados, July 2024

Light-shift (AC Stark) is an important contribution to the mid-term stability of optical references

Light-shift mitigation techniques are planned for improved stability > 100 s [1-3]

Collisionnal shifts to be investigated [about - 1 kHz/K measured]

[1] : V. I. Yudin et al., Phys. Rev. Appl. 14, 024001 (2020) [2]: M. Abdel Hafiz et al., Phys. Rev. Appl. 14, 034014 (2020)[3] D. Li et al., Opt. Express 32, 2 (2024)

Thanks to FEMTO-ST colleagues !

R. Boudot

N. Passilly

M. Abdel Hafiz

C. Carlé

R. Vicarini

J. Breurec C. Rivera Aguilar E. Klinger

Q. Tanguy

A. Mursa

M. Callejo

S. Keshavarzi, now in industry (Germany)

I.Ryger, now in JILA(USA)

M. Petersen, now in Safran(France)

A. Gusching now in PTB(Germany)