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Abstract— This paper deals with the control-oriented model-
ing of a multilayered dielectric elastomer actuator based tube.
The actuator is clamped at both sides and performs a radial
displacement. The hyperelastic deformation and the viscoelastic
performance, together with the electro-mechanical coupling are
considered in the model. With the chosen Yeoh’s model for the
Helmholtz free energy function, we aim to model the snap-
through effect of this tubular actuator at high applied voltage.
Simulation results of the nonlinear dynamic model are later
compared with experimental ones in order to identify unknown
parameters of the dielectric elastomer, especially to fit the
snap-through effect and the high frequency performance. With
proper identification process, our model has a good accuracy
to fit the physical system (more than 90.27% for a ramp input
and more than 82.7% for a step input) and is ready for the
future controller design.

Index Terms— Soft robotics, bio-medical robotics, dielectric
elastomer actuators, modeling and identification.

I. INTRODUCTION

Dielectric elastomer actuators (DEAs) were firstly intro-
duced in [1] as a type of electro-active polymer (EAP) actu-
ators. It is composed of a dielectric elastomer surrounded by
two compliant electrodes. With an applied electric field, the
generated Maxwell stress makes the elastomer squeeze along
the thickness direction and expand in area, leading to a large
deformation. The DEAs have advantages of fast response
time, large deformation (the actuation strain usually goes up
to 100%) with low density and low modulus compared to
other kinds of EAP actuators (i.e. shape memory polymer
actuators, ionic polymer metal composite actuators, etc.),
making it a promising compliant actuator for soft robots,
especially for the application of artificial muscles in the
field of bio-medical robotics. Readers are referred to [2] for
detailed reviews of the application of DEAs.

Among the applications, [3] has proposed to implement a
tubular DEA with multilayers replacing part of the ascending
aorta to treat the heart failure. The DEA is firstly pre-
stretched under the internal pressure of the blood. With the
voltage applied at the end of the diastole, the tubular DEA
expands radially. On the other hand, the DEA is discharged
at the end of the systole and contracts. As a result, this
tubular DEA works as a soft robot. With the synchronization
between this robot and the cardiovascular system, the imple-
mented tubular DEA can better ease the deformation of the
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heart and support it to work properly. However, in order to
activate the DEA with sufficient displacement, high voltages
are required that may lead to electric field in the structure
close to the breakdown limit of the DEA. One major factor of
the breakdown in the DEA is the electro-mechanical insta-
bility (also known as snap-through effect). This instability
comes from the relation between the electric field and the
deformation of the DEA. With the electric field applied,
the thickness of the DEA decreases and hence increases
again the electric field, leading to potential breakdown of
the DEA. This well-known phenomenon has been observed
in the literature [4]–[6]. It has also been harnessed in [7]
to design a giant high-speed soft actuator with a volume
change of 1398% within 20 ms. When it comes to the present
research of cardiac assist devices using the tubular DEAs,
this giant high-speed deformation of DEAs is no longer a
virtue. To avoid this instability, [8] put a rigid tube outside
of the DEA in order to limit the radial displacement without
triggering the snap-through effect. But this rigid protection
prevents the maximum displacement and reduces attainable
energy. In order to remove the rigid protection and to use the
actuator in an optimal way without deterioration, we would
like to stabilize the tubular DEA with a dynamic controller.
As mentioned previously, the snap-through instability is due
to the positive feedback between the electric field and the
thickness of the DEA. From the control point of view, this
positive feedback results in multiple equilibrium points of
the DEA model [4], some of which are unstable. The use
of a controller helps both to modify the stability of unstable
equilibrium and to shape the close loop performance. As a
first attempt, in this paper, we will focus on a tubular DEA
with multilayers for the cardiac application and work on its
dynamic modeling and the snap-through problem.

Up to now, various models of the DEAs have been
proposed in the literature, most of which are static and are
dedicated to material science, see [9]–[12] for example. In
order to study the stability and the design of a controller,
a dynamic DEA model is necessary. Compared to static
models, the dynamic ones are more challenging with time
dimension added. Moreover, the viscoelastic property should
be considered to describe both the dissipation and the oscilla-
tion. In terms of the mathematical formulation, the dynamic
models of DEAs can be divided into distributed parameter
models and lumped parameter ones. The former is formu-
lated by partial differential equations (PDEs), and simulates
the dynamic properties precisely [13], [14]. However, these
models are difficult regarding the numerical simulation and
the controller implementation, because the PDEs need to be



properly approximated. To the best of our knowledge, there
is no work on the controller design based on the distributed
parameter models of the DEA in the literature. Different from
the aforementioned one, the lumped parameter models first
approximate the DEA into several segments under reasonable
assumptions, and then propose dynamic models accordingly
with ordinary differential equations. As a result, they are sim-
pler for the simulation and controller design. The accuracy
of the lumped parameter models can be improved by adding
more segments. Many researches about the lumped parameter
models of the DEA have been investigated, most of which
deal with DEA strip [15], and conical DEAs [16]–[18]. The
dynamic model of the rolled DEA tube has been investigated
in [19] and [20], in which they work on the elongation of
the DEA. Different from this existing model, we will focus
on a more complicated configuration dedicated to the cardiac
assist device where the DEA tube is clamped at two sides
and generates radial deformation with the applied pressure
and electric field. The circumferential force will also be
considered in the model. Both the small deformation and the
large snap-through deformation will be studied. Moreover,
the contributions stem from the identification of the snap-
through effect in the model. This modeling is necessary
for the future controller design in order to achieve large
deformation and to avoid the electro-mechanical instability.

The paper is organized as follows. Section II proposes the
nonlinear dynamic model of the tubular DEA. For a first
attempt, the tube will be simplified as a 1D model with one
degree of freedom (DOF). The electro-mechanical coupling
will be studied in the model. Identification of unknown
parameters of the established model is performed in Section
III. Comparisons between simulated and experimental results
are also given. Finally, Section VI presents conclusions and
perspectives.

II. DYNAMIC MODELING OF THE TUBULAR DEA

The models of the DEAs are multiphysical and consider
both the mechanical deformation and the electrical part as
well as their couplings. When it comes to our problem,
the tubular DEA with multilayers is clamped at both sides,
and will be pre-stretched with the inner pressure p(t), and
actuated with applied voltage V (t), which are depicted in
Fig. 1, with the zoom of the DEA on the right of the figure.
The fabrication of the DEA with multilayers is detailed in
[3]. A sectional view of the multilayers is illustrated in Fig.
2. It is firstly composed of four active layers of elastomer
with positive and negative electrodes superimposed, which
is presented in Fig. 2a. The initial thickness of each active
layer is denoted by hao. This active layer is used to calculate
the electric field. On the other hand, two passive layers are
added and helps to protect the electrodes and to isolate the
high input voltage in order to guarantee the safety when
the tubular DEA will be implemented in the body in the
future. The DEA is then rolled twice (cf. Fig. 2b) in order to
improve the bonding of the actuator [8]. The initial thickness
of the DEA tube is represented by ho and will be used to
calculate the mechanical deformation. We assume that the

layers are ideally coated, such as no slipping happens during
the deformation. The temperature is considered constant, so
the thermal influence is neglected.

Fig. 1: Clamped-clamped multilayered tubular DEA.

hao

Passive layer Active layer

Positive electrode Negative electrode

(a) Multilayered DEA before
rolling.

ho

(b) Multilayered DEA after
two rolls.

Fig. 2: Section view of DEA multilayers before deformation.

Before modeling, we give the following assumptions:
Assumption 1: The material of the DEA is isotropic and

incompressible.
Assumption 2: The elastomer is considered ideal, which

means that the electric permittivity (i.e. the product of the
vacuum permittivity εo and the relative dielectric permittivity
εr) is a constant.

Assumption 3: The deformation is homogeneous and is
supposed to be radial axisymmetric.

Assumption 4: There is no torsion in the tube. Only the
flexion is taken into account.

From Assumption 3, the configuration of the tubular DEA
in 3D as illustrated in Fig. 1 can be simplified as a 1D
clamped-clamped membrane as presented in Fig. 3, where
2lo denotes the initial longitudinal length, and 2l represents
the length in the deformed configuration. h denotes the
thickness of the DEA tube after deformation. ro and R
stand for the initial average radius and the deformed average
radius of the tube, respectively. The tubular DEA undergoes
its largest radial deformation at the center point, where
the thickness is the thinnest due to the aforementioned
incompressibility and the volume conservation law in As-
sumption 1. As a result, the snap-through instability would

2lo

ro
ho

(a) Initial 1D configuration. (b) Deformed 1D configuration.

Fig. 3: Simplified 1D configurations of the DEA membrane.
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Fig. 4: Simplified 1D model of the deformed DEA.

preferably occur around this point. For a first attempt, we
only focus on the center point deformation of the tubular
DEA. Therefore, the 1D membrane presented in Fig. 3b can
again be simplified such as in Fig. 4, where m denotes the
mass of the DEA, θ represents the deflection of the elastomer,
Fp is the applied pressure force inside the tube, Fdea is the
generated electro-mechanical force of the DEA tube in the
longitudinal direction, Fhoopi represents the hoop force of
the ith segments in the circumferential direction [21], and
Fcir refers to the resultant circumferential force projected in
the radial direction. Both Fdea and Fhoopi will be detailed
in Subsection II-B and Subsection II-C, respectively.

A. Geometric configuration

We define the axial stretch λ1, circumferential stretch
λ2 and thickness stretch λ3 as: λ1(t) = l(t)/lo, λ2(t) =
R(t)/ro, and λ3(t) = h(t)/ho. According to Assumption 1,
the product among λ1(t), λ2(t) and λ3(t) follows:

λ1(t)λ2(t)λ3(t) = 1. (1)

We suppose that the active layer deforms the same way as
the total thickness h(t). Hence, we get the current thickness
of the active layer ha as:

ha(t) = haoλ3(t) =
hao

λ1(t)λ2(t)
. (2)

With the relation giving l2(t) = l2o + (R(t)− ro)
2, one

can express λ1(t) as a function of λ2(t):

λ1(t) = f(λ2(t)) =

√
1 +

r2o
l2o

(λ2(t)− 1)
2
. (3)

The angle θ(t) is calculated as follows:

sin θ(t) =
R(t)− ro
l(t)

=
ro (λ2(t)− 1)√
l2o + (λ2(t)− 1) r2o

. (4)

B. DEA force along the longitudinal direction

In this subsection we study the electro-mechanical force
Fdea generated along the longitudinal direction of the DEA,
which represents the coupling among the hyperelastic stress
of the elastomer, the Maxwell stress generated by the electric
field, the viscoelastic stress and the visco damper stress.
This coupling was firstly modeled in [22] using the Prony
series. Later [23] first proposed that this coupling can be
represented analogously based on rheological elements with
several springs and dampers. According to the literature, two

main basic types of rheological models are used for the
DEAs, e.g. the Kelvin-Voigt model [24] that consists of a
spring and a damper in parallel, and the Zener model [16],
[25]–[29] that is composed of a parallel combination of a
spring with a spring-damper element in series. Other gener-
alized rheological models have been proposed to get more
precise information about the model, like the generalized
Kelvin-Maxwell model [15], [18], [19], [30]–[32], which is a
combination of the aforementioned Kelvin-Voigt model with
spring-damper elements in parallel. We therefore apply the
Generalized Kelvin-Maxwell model (cf. Fig. 5) to replace
the nonlinear spring and damper as depicted in Fig. 4a. The
upper spring-damper elements in parallel in Fig. 5 represent
the viscoelastic stress σvis, the damper in parallel represents
the visco damper stress ση and the nonlinear spring stands
for the coupled hyperelastic stress and Maxwell stress in
DEA along the longitudinal direction σm. The adding of
ση comes from the experimental results. We have found
that the simulation results with only σm and σvis do not
fit the experimental measurements, especially regarding the
response time and the initial oscillations. Furthermore, the
addition of more viscoelastic elements does not improve the
fitting. Therefore, we introduce the third visco damper stress
and consider it as a linear term as a first attempt. Similar
phenomenon has also been reported in [18]. The following
part of this subsection will formulate these stresses in details.

···

σm

ση

σvis

σdea

Fig. 5: Rheological representation of the stress σdea along
the longitudinal direction.

a) Hyperelastic stress and Maxwell stress: The de-
formation of the elastomer is hyperelastic, which indicates
that the relation between the mechanical stress and strain
is no longer linear, and should be derived from the energy
density function W (λ1, λ2, λ3, D), where D stands for the
electric displacement. Because of the incompressibility in
(1), W (λ1, λ2, λ3, D) can be reduced as a function that only
depends on λ1, λ2 and D. For an ideal dielectric elastomer
as supposed in Assumption 2, W (λ1, λ2, D) is actually the
sum of the Helmholtz free energy Ws(λ1, λ2) and the electric
charge energy, which is formulated as below:

W (λ1, λ2, D) =Ws(λ1, λ2) +
D2

2εoεr
. (5)

The relation between D and the electric field E is formulated
as D = εoεrE, where E is calculated from the applied
voltage as:

E =
V

ha
. (6)



Different formulations about the Helmholtz energy Ws exist
in the literature. Here we apply the Yeoh’s model [33]
because of both its accuracy for large strain deformation and
its simplicity with the reduced polynomial form, which can
be expressed as follows:

Ws(λ1, λ2) = C1 (I1 − 3) + C2 (I1 − 3)
2
+ C3 (I1 − 3)

3
,

(7)
where C1, C2 and C3 are constitutive material parameters
to be identified. From [33], the coefficient C2 is negative
and C1 and C3 are positive. I1 denotes the first invariant of
the left Cauchy-Green deformation that is written by I1 =
λ21 + λ22 + 1/

(
λ21λ

2
2

)
.

The stress σm is therefore calculated from W (λ1, λ2, D)
as in [9]:

σm = λ1
∂Ws

∂λ1
− εoεrE

2

= λ1

(
C1 + 2C2 (I1 − 3) + 3C3 (I1 − 3)

2
) ∂I1
∂λ1

− εoεrE
2,

(8)
with ∂I1

∂λ1
= 2λ1 − 2

λ3
1λ

2
2
= 2f (λ2)− 2

f(λ2)
3λ2

2

.

b) Viscoelastic stress: The spring-damper elements in
parallel at the top of Fig. 5 stand for the viscoelastic behavior
of the DEA with its stress σvis formulated as:

σvis =
∑
j=1

σvisj , (9)

with

σvisj = kjεkj = ηj ε̇ηj ,

εm = εkj + εηj ,

and

σ̇visj= kj ε̇kj = kj (ε̇m − ε̇ηj)

= kj λ̇1 −
kj
ηj
σvisj = kj

∂λ1
∂λ2

λ̇2 −
kj
ηj
σvisj ,

(10)

where kj and ηj denote the stiffness and the damper coeffi-
cient of the jth parallel spring-damper element, respectively.
εm, εkj and εηj represent the strain deformation of the
hyperelastic part, and of the jth viscoelastic part.

c) Visco damper stress: For the sake of simplicity, we
first consider a linear relation for the visco damper stress ση
in Fig. 5, which is formulated as:

ση = ηoλ̇1 = ηo
∂λ1
∂λ2

λ̇2, (11)

where ηo represents the damping coefficient.
Therefore, the coupled electro-mechanical force Fdea gen-

erated in the DEA along the longitudinal direction is calcu-
lated by:

Fdea = (σm + σvis + ση)A1, (12)

with A1 referring to the cross section area in the longitudinal
direction of the tube, that is formulated as:

A1 =
2πroho
f(λ2)

. (13)

C. DEA force along the circumferential direction

Besides the electro-mechanical force in the longitudinal
direction, the tubular DEA generates also a force in the
circumferential direction as illustrated in Fig. 4. Fhoopi is
calculated from the hoop stress σhoop, which is formulated
as:

σhoop = λ2
∂Ws

∂λ2
− εoεrE

2

= λ2

(
C1 + 2C2 (I1 − 3) + 3C3 (I1 − 3)

2
) ∂I1
∂λ2

− εoεrE
2,

(14)
with

∂I1
∂λ2

= 2λ2 −
2

λ32λ
2
1

= 2λ2 −
2

λ32f (λ2)
2 .

The resultant circumferential force Fcir projected in the
radial direction as illustrated in Fig. 4a gives:

Fcir =
n∑
i=1

2 (σhoopA2) sin
(αi
2

)
≈ 2π (σhoopA2) , (15)

with the cross section area A2 calculated as A2 = hl.

D. Equation of motion

According to Fig. 4, the equation of motion for the center
point of the tube writes:

mro
d2λ2
dt2

(t) = p(t)A3(t)− 2Fdea(t) sin θ(t)− Fcir(t),

(16)
with A3(t) = 2π (ro +R(t)) l(t) representing the inner
surface area.

By choosing the state variables as follows:

x =
(
x1 x2 x3 · · · xj+2

)T
=
(
λ2 λ̇2 σvis1 · · · σvisj

)T
,

(17)

and substituting (3), (6), (8), (10)-(15) into (16), the state
space representation of the DEA dynamics is formulated as:

ẋ1 = x2, (18a)

ẋ2 = − 2

mro

σm(x1, V ) +
∑
j

xj+2 + ση(x1, x2)


·A1(x1) sin θ(x1)−

2π

mro
σhoop(x1, V )A2(x1)

+
A3(x1)

mro
p(t), (18b)

ẋ3 = k1
∂λ1
∂x1

x2 −
k1
η1
x3, (18c)

...

ẋj+2 = kj
∂λ1
∂x1

x2 −
kj
ηj
xj+2. (18d)



III. PARAMETERS IDENTIFICATION OF THE MODEL

After the modeling of the tubular DEA, the parameters C1,
C2, C3, ηo, kj and ηj in (18) are unknown and necessitate
further identification to fit the experiment results. There is
a trade-off between the model accuracy and the numerical
simplicity, we thus choose j = 2 in (9), which indicates two
pairs of spring-damper elements in Fig. 5. The dimensions
of the DEA tube are listed in Table. I. The mass m of the
tube is calculated from ρ and the volume.

TABLE I: Dimensions and known parameters of the DEA.

Names Parameters Values Units
Length lo 24.5 mm
Radius ro 15 mm

Initial thickness ho 1 mm
Active layer hao 100 µm

Volume density ρ 103 kg/m3

Vacuum permittivity εo 8.854× 10−12 F/m

The experimental setup is illustrated in Fig. 6. Both the
active layers and passive layers of the DEA are silicone films
(Elastosil 2030 from Wacker) with a thickness of 100 µm and
20 µm, respectively. The compliant electrodes are composed
of LSR 4305 with carbon powder [3]. A pneumatic system
imposes a pressure into the tubular DEA with the position of
the piston, and a pressure sensor (Baumer) is used to measure
it. The high voltage is generated by the voltage amplifier
(Trek) and applied to the DEA tube. Both the profiles of the
pressure and voltage are controlled in Labview. The radial
deformation of the tubular DEA is measured by the 2D laser
(Gocator).

Input pressure

Input voltage

DEA tube with
small deformation

2D laser

Pressure
sensor

(hidden)

Fig. 6: Experimental setup of the tubular DEA under mea-
surement.

We first identify the three parameters for Yeoh’s model
C1, C2 and C3 as well as εr with a ramp input where the
viscoelastic oscillation has less influence. Initial values of
the parameters to be estimated are listed in Table II. The
viscoelastic parameters are chosen randomly. The initial state
variables are x(0) =

(
x1(0) x2(0) x3(0) x4(0)

)T
=(

1 0 0 0
)T

.
The identification process is carried out with the nonlinear

graybox in System Identification toolbox of Matlab. The
identification method is chosen to be ‘lsqnonlin’, and the

TABLE II: Initial values of the parameters to be estimated.

Names Parameters Values Units
Yeoh’s coefficient C1 195 kPa
Yeoh’s coefficient C2 −1.5 kPa
Yeoh’s coefficient C3 2.5 kPa

Relative dielectric permittivity εr [2.8, 3.1]
Damping of ση ηo 500 kPa · s

Stiffness of σvis1 k1 10 MPa
Damping of σvis1 η1 500 kPa · s
Stiffness of σvis2 k2 10 MPa
Damping of σvis2 η2 500 kPa · s

solver is ‘ode45’. We first fix the two coefficients C2 and
C3 and only identify C1 and εr with input signals shown in
Fig. 7a. This simplification is reasonable because C2 and C3

has less influence for the small deformation with input volt-
age of 4kV. The comparison between the identified results
and the experimental results of center point deformation is
shown in Fig. 7b. One can notice that with the identification
process, our model fits well the experimental results with an
accuracy of 96.99%. The identified C1 is therefore 333.056
kPa and εr is 2.8.

0 5 10 15 20
0
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(V
)

Input #1: Voltage

0 5 10 15 20

Time (seconds)

0

50

100

(m
m

H
g)

Input #2: Pressure

(a) Ramp inputs to the
tubular DEA. (b) Comparison of experiment

with the identification.

Fig. 7: Identification with a ramp input (input voltage am-
plitude = 4 kV).

Next we identify C2 and C3 with large deformation
and especially taking into account the snap-through effect.
The pneumatic system follows the same dynamic as in
the previous experiment. Input pressure is thus similar to
Fig. 7a before the snap-through effect. The amplitude of
input voltage after 9.56 s changes to 7kV. According to
Fig. 8a, there is a huge discrepancy between the simulation
results and the experimental one when the deformation is
larger than 18.5 mm, which indicates that the identified C1

and εr together with the initial guess of C2 and C3 are not
precise to predict the large deformation with high applied
voltage. Following the same system identification algorithm,
and fixing the initial values of C1 and εr as identified
previously, the comparison between the experimental center
point displacement and the simulation one is shown in Fig.
8b, with the new identified parameters C2 being −32.5032
kPa and C3 being 2.86041 kPa. The model now can better
simulate the snap-through effect with a good fitting of 95.7%.
The deformation strain along λ2 direction is 100%. We now
focus on the relation between applied pressure and the middle



point deformation of the tubular DEA after 9.56 s when the
input voltage becomes constant. From the red circle of Fig.
9, when the deformation is larger than 24 mm, the tubular
DEA undergoes a huge displacement with a small increase of
pressure. As mentioned in the Introduction, the snap-through
effect comes from the relation between the input electric
field and the system output, i.e. the deformation of the DEA.
According to [4], the relation has multiple equilibrium point,
some of which are unstable such that the DEA can jump
from one equilibrium state to another, thus leading to the
snap-through phenomenon. In order to avoid this effect, it is
possible to change the number of the equilibrium state and
to modify the stability of unstable ones [34], which will be
our next step on this tubular DEA model.

(a) Comparison before the
identification of C2 and C3.

(b) Comparison after the iden-
tification of C2 and C3.

Fig. 8: Identification with a ramp input (input voltage am-
plitude = 7 kV).

Fig. 9: Relation between the pressure and middle point
deformation of the DEA after 9.56 s.

After the identification of C1, C2, C3 and εr, we will
investigate the visco damper and viscoelastic elements and
their influence on the tubular DEA at high frequency. There-
fore, the tubular DEA is firstly pre-stretched with a constant
pressure of 95mmHg, and then activated with a step input
voltage of 4 kV. The voltage is then removed after 10 s. Input
profiles are illustrated in Fig. 10a. The identified hyperelastic
parameters C1, C2 and C3 as well as εr are fixed. Following
the same identification procedure, we obtain the comparison
between the identified center point deformation and the
experimental one as depicted in Fig. 10b. With the identified
parameters summarized in Table. III, the response time and
the deformation at steady state of the simulation results fit
well the experimental data with an accuracy of 96.31%. The

oscillations around 0.7 s is zoomed in Fig. 10b. This is
due to the viscoelastic properties of the elastomer. Moreover,
according to this figure the tubular DEA returns to its initial
position after the discharge.

(a) Step inputs to the tubu-
lar DEA.

(b) Comparison of experiment
with the identification.

Fig. 10: Identification with a step input (input voltage am-
plitude = 4 kV).

TABLE III: Identified values of the parameters.

Names Parameters Values Units
Yeoh’s coefficient C1 333.056 kPa
Yeoh’s coefficient C2 −32.5032 kPa
Yeoh’s coefficient C3 2.86041 kPa

Relative dielectric permittivity εr 2.8
Damping of ση ηo 745.854 kPa · s

Stiffness of σvis1 k1 19.6758 MPa
Damping of σvis1 η1 6495.68 kPa · s
Stiffness of σvis2 k2 2.414 MPa
Damping of σvis2 η2 6508.21 kPa · s

To validate the identified parameters as listed in Table. III,
we have also compared the simulation results of the middle
point deformation of the tubular DEA with different applied
voltage of amplitude of 5 kV, 5.5 kV and 6 kV, respectively.
The simulation results are illustrated in Fig. 11a and Fig. 11b
with voltage profile of ramp and step inputs. According to
the following comparisons and the calculated goodness of fit
value, the identified model has a very good agreement with
the ramp input of more than 90.27%. The simulation results
of step input are not as accurate as the ramp inputs, but the
accuracy is still more than 82.7% as depicted in Fig. 11b.
One can notice a small discrepancy of response time between
the identified deformation of the tube and the experimental
measurement from Fig. 11b. Another identification process
of step input has been performed with three viscoelastic
elements in (18). However, the goodness of fit value does
not improve compared to Fig. 10b. Therefore, one possible
reason for the discrepancy may be the non-linearity of
viscoelastic of visco damper element that is not considered
in the current model.

IV. CONCLUSIONS

In this paper we have proposed a nonlinear dynamic model
for the tubular DEA. Different from the existing work, the
deformation of our tubular DEA model is more complex
compared to similar tubular actuators. Both the radial defor-
mation and the circumferential force are considered in the



(a) Ramp inputs with volt-
age amplitude of 5 kV, 5.5
kV and 6 kV, respectively.

(b) Step inputs with voltage am-
plitude of 5 kV, 5.5 kV and 6
kV, respectively.

Fig. 11: Validations of the identified parameters.

nonlinear and multiphysical model. Moreover, our dynamic
model succeeds in simulating the snap-through effect with
a high voltage applied to the DEA tube as illustrated in
Fig. 8b. Both the hyperelastic and viscoelastic properties of
the DEA are taken into account and validated in experiment
with two types of input. Apart from the application to
cardiac assist device, our model of tubular DEAs can be
adapted to other soft bio-medical robotics systems such as
the peristaltic micro-pump to deliver medicine inside the
human body. For the control design aspect, the next step will
be to investigate this snap-trough effect with the established
dynamic model and propose a controller in order to modify
the equilibrium point of the system and to avoid this electro-
mechanical instability. From the modeling point of view,
we have simplified the tubular DEA with a one DOF that
concentrates only on the center point deformation of the tube.
This simplification helps to facilitate the stability analysis
and control design. Once the controller is validated, a more
precise model of multiple DOFs will be considered.
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