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Abstract: This paper is concerned with the port Hamiltonian modeling and control of a
dielectric elastomer actuator used for a cardiac assistance device. The proposed non-linear model
is identified under different applied voltages and pressures, and validated against experimental
results with relative errors of less than 0.3%. Subsequently, two passivity-based controllers
are designed to stabilize the actuator at a desired position. The first controller is designed
using control by interconnection. The second one considers additional integral action to reject
disturbances while preserving the passivity of the closed-loop system.
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1. INTRODUCTION

In the past two decades, there has been a remarkable re-
search interest in soft smart actuators using electro-active
polymers (EAP), especially dielectric elastomer actuators
(DEAs). A DEA is generally composed of an elastomeric
material sandwiched between two compliant electrodes.
When an electric voltage is applied to the electrodes, the
elastomeric material is polarized and undergoes deforma-
tion. The DEAs have particularly been applied in the field
of biomedical robotics due to its advantages such as large
deformation, rapid response time, high compliance, low
power consumption, and good biocompatibility (Gupta
et al., 2019). In this paper we consider a particular ap-
plication of DEAs to cardiac surgery. It has indeed been
shown in (Almanza et al., 2021) that one can replace a
segment of the aorta with a tubular DEA in order to ease
heart failure, as depicted in Fig. 1. In this application the
tubular DEA is initially pre-stretched by blood pressure.
During the diastolic phase, a high voltage (kilo-volt) is
applied to the compliant electrodes, inducing a Maxwell
stress that compresses the elastomer along the thickness
direction. From the fact that the elastomer material is
incompressible, the volume of the actuator is conserved.
The DEA thus expands along the radial direction, reduc-
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ing internal blood pressure. Subsequently, at the end of
systole, the DEA is deactivated and contracts, enhancing
the recoil force of the aorta.

Fig. 1. Schematic representation of a tubular DEA cardiac
assist device in augmented aorta (Almanza et al.,
2021).

Despite the aforementioned considerable advantages, DEAs
exhibit inherent limitations, particularly with respect to
electro-mechanical instability, the major of which is re-
ferred to as snap-through instability (Zhao et al., 2007;
Xu et al., 2010). It comes from the applied interaction
between the electric field and the deformation of the



DEA. With the electric field, the thickness of the DEA
decreases due to the aforementioned Maxwell stress. The
reduction of the actuator’s thickness leads to an increase of
the electric field, causing further thinning of the actuator
until it collapses. This well-known phenomenon has been
observed and analyzed from a material point of view in
(Zhu et al., 2010; Suo, 2010; Dorfmann and Ogden, 2019;
Liu et al., 2021b). To avoid this instability in the cardiac
assist device (illustrated in Fig. 1.), it has been proposed
in (Martinez et al., 2021) to place a rigid tube outside
the tubular DEA to limit the radial displacement without
triggering the snap effect. However, this rigid protection
limits the maximum displacement, reduces the achievable
energy and compliance, and results in a non-soft system.
To tackle this, we propose to stabilize the tubular DEA
in closed-loop using a dynamic controller, instead of the
rigid protection. The idea is to modify both the stability
of this unstable system and its closed-loop performances
using appropriate control strategies.

Several models of DEAs have been proposed in the lit-
erature, their complexity depending on the assumptions
on the considered phenomena such as material visco-
elasticity, nonlinear deformations etc. They are divided
into lumped parameter models and distributed parameter
models. The former considers the DEA as a discrete sys-
tem, where the properties of the elastomeric material and
the electromechanical effects are represented by piecewise
constant parameters, see (Rizzello et al., 2014; Bernat
et al., 2020; Kaaya et al., 2022, 2023). These models
are relatively simple and easy to use for simulation and
control, but they may neglect some phenomena. On the
other hand, distributed parameter models (Garnell, 2020)
take into account the spatial distribution of the elastomeric
material properties. They describe more precisely the be-
havior of DEAs by considering infinitesimal variations in
forces, deformations, and electromechanical interactions.

From both theoretical and practical concerns, and in order
to simplify the simulation and control implementation, we
start with a nonlinear and lumped parameter model based
on previous work (Liu et al., 2022), that only focuses
on the deformation of the center of the tube. From the
fact that DEAs are multiphysical, the current model is
formulated under the port-Hamiltonian framework, which
is an energy-based modeling to deal with interactions in
different physical domains (Duindam et al., 2009). This
framework has been applied to model EAP actuators such
as piezoelectric actuators in (Voß, 2010), ionic polymer-
metal composite actuators in (Liu et al., 2021a) and
the DEAs in (Rizzello et al., 2017). Furthermore, port-
Hamiltonian system (PHS) formulations provide a clear
physical interpretation for control design. The Hamilto-
nian (i.e., total stored energy) is a good Lyapunov function
candidate and the system is passive in nature. Therefore,
passivity-based control methodologies such as Control by
Interconnection (CbI) and Interconnection and Damping
Assignment Passivity Based Control (IDA-PBC) (Ortega
et al., 2001) have been investigated for both lumped pa-
rameter PHS and distributed parameter PHS.

The contributions of this paper with respect to other
studies on DEAs under PHS as in (Rizzello et al., 2017)
are the following:

(1) We propose a nonlinear port-Hamiltonian model of a
clamped-clamped DEA tube and validate the model
using experimental data.

(2) A position control based on CbI methodology is
designed. Both energy shaping and damping injection
are investigated in order to achieve the desired closed
loop performances.

(3) An integral action that preserves the PHS structure
has been added in closed-loop. This integral part
improves the system’s robustness to external distur-
bances.

The paper is organized as follows. Section 2 describes the
proposed port-Hamiltonian model of the system. The key
parameters of the model are identified in Section 3 and
the model is validated from experimental data. Section
4 is concerned with control design. The paper ends with
some conclusions and perspectives in Section 5.

2. ENERGY-BASED MODELING

DEAs are multiphysical systems integrating both mechani-
cal and electrical components that are coupled through the
generated Maxwell stress. When it comes to our problem,
the DEA tube is firstly pre-stretched by the inner pressure
Fp(t), and then actuated with the applied voltage U(t).
The assumptions made for the energy-based modeling are
the following:

• The material of DEA is isotropic and incompressible.
• The elastomer is considered ideal, which means that

the electric permittivity (i.e. the product of the vac-
uum permittivity ϵ0 and the relative dielectric per-
mittivity ϵr) is constant.

• The deformation is homogeneous and is supposed to
be radial axisymmetric.

• The mass of the DEA is concentrated in the studied
part.

From the last two assumptions, we can represent our
model as nonlinear mass spring damper system as in
Fig. 2, where m represents the mass of the DEA. The two
symmetric springs of stiffness K1 stem from the actuator
longitudinal deformation, l0 and L(t) being the initial and
actual lengths. The vertical spring of stiffness K2 stands
for the radial deformation. r0 and R(t) refer to the initial
and actual radius of the DEA tube, respectively. Fe(t)
represents the electrostatic force that depends on both the
deformation and the applied voltage.

h(t)

U(t)

Fe = 1
2
Sϵ0ϵr

U2

h(t)2

Fig. 2. Simplified lumped parameter model of a radial
axisymmetric DEA tube.

Given l(t) = L(t)− l0 and r(t) = R(t)− r0, the geometric
relation between r(t) and l(t) writes:

r(t) =
√

(l0 + l(t))2 − l20. (1)



Define p(t) = mṙ(t) the momentum of the tube, one
obtains:

l̇ = L̇ =
∂L

∂r
ṙ =

r

L

p

m
. (2)

According to Fig. 2, the equation of motion for the mass
gives:

ṗ=−2K1l sin θ −K2r −Resṙ + Fe(t) + Fp(t)

=−2K1l sin θ −K2r −Resṙ +
1

2
Sϵ0ϵr

U2

h(t)2
+ Fp(t)

=−2
r

L
K1l −K2r −Res

p

m
+ αL3R3U(t)2 + Fp(t), (3)

where Res is the dissipation that represents the linear
viscoelasticity of the DEA tube, α = 1

2
ϵ0ϵr
V 2 is a constant,

with V denoting the volume of the tube.

The Hamiltonian of the system is :

H(t) =
1

2

p(t)2

m
+K1l(t)

2 +
1

2
K2r (l(t))

2
. (4)

Choosing the energy variables as x1 = l and x2 = p,
equation (2) and (3) can be reformulated under the PHS
in the following explicit input-state-output form:

ẋ(t) = (J(x)−Rh)∇xH(x) + g1(x)u1(t) + g2u2(t),
y1(t) = gT1 (x)∇xH(x),
y2(t) = gT2 (x)∇xH(x),

(5)

where J(x) =

 0
r

L
(x1)

− r

L
(x1) 0

 is the skew symmetric

interconnection matrix and Rh =

[
0 0
0 Res

]
is symmet-

ric and non negative dissipation matrix. The co-energy
variables are derived from the partial derivative of the
Hamiltonian, which gives:

∇xH(x) =

[
2K1x1 +K2L(x1)

1

m
x2

]
. (6)

We consider u1(t) = U(t)2 and u2(t) = Fp(t) as two

inputs with input matrices g1(x) =

[
0

αL(x1)
3R(x1)

3

]
and

g2 =

[
0
1

]
. Hence, y1 and y2 are the power-conjugated

outputs.

3. PARAMETERS IDENTIFICATION

Several physical parameters in the nonlinear PHS model
(5) are unknown and necessitate to be identified according
to experimental measurements. The experimental setup
has been developed at the Integrated Actuators Labora-
tory of EPFL and is depicted in Fig. 3. It consists of a
DEA tube, a piston that exerts pressure input, two wires
that apply voltage to the DEA, a pressure sensor hidden
below, and a 2D laser sensor to measure the radial profile
deformation.

Similar to the strategy presented in (Liu et al., 2022), the
identification process is conducted in two steps. Firstly,
the DEA tube is actuated only by applying a pressure as
illustrated in Fig. 4a. According to the deformation at the
middle point of the tube (blue line in Fig. 4b), the DEA is

Fig. 3. Experimental setup of the tubular DEA under
measurement.

in a quasi-static state. One can then identify the stiffness
K1 and K2 of the two springs. This is realized using
the Parameter Estimator application in @Simulink. The
optimization method is the Nonlinear least squares and the
applied algorithm is Trust-Region-Reflective. The relative

(a) Input pressure. (b) Middle point deformation.

Fig. 4. Identification of K1 and K2 with applied pressure.

errors between the simulation results and measurements
of the deformation at middle point are presented in Fig. 5,
and are less than 0.3%.

Fig. 5. Relative errors for the identification of K1 and K2.

In a second instance, with the piston staying at previous
fixed position, we apply a step voltage of 5 kV in order to
identify the dissipation parameter Res and the parameter
α of the input matrix. The input signals are shown in
Fig. 6. The comparison between the experiment and sim-
ulation results are depicted in Fig. 7a. The corresponding
relative errors are presented in Fig. 7b, which are less than
0.3%.

The resulting values of the identified parameters are listed
in Table 1. The validation of the model is then carried out
with a step voltage of 4 kV. According to the relative errors
illustrated in Fig. 8, the proposed model can approximate
the behavior of DEA tube within a certain deformation
range.



(a) Input pressure. (b) Input Voltage.

Fig. 6. Input signals for the identification of Res and α.

(a) Middle point deformation. (b) Relative errors.

Fig. 7. Comparison between measurements and simulation
results for identification of Res and α.

Table 1. Identified parameters of DEA tube.

Parameters Values Units

K1 21003 kN/m
K2 84.072 kN/m
α 5.514 kF/m7

Res 754 N · s/m

(a) On the validation of
K1 and K2.

(b) On the validation of
Res and α.

Fig. 8. Relative errors on the validation with step voltage
of 4kV.

4. PASSIVITY-BASED CONTROL

The objectives of the controller are twofold. On one
hand, we would like to assign the desired position of
the DEA tube with a dynamic controller and ensure the
closed-loop stability. Moreover, due to the fact that model
uncertainties and external disturbances are inescapable in
practical applications for DEAs, another objective is to
improve the robustness of the closed-loop system to these
perturbations. In what follows, we study two controllers,
CbI and CbI with integral action, which helps to achieve
these two objectives and preserve the PHS structure of the
system.

4.1 Control by interconnection

The control by interconnection consists in connecting a
passive controller to the plant in a power-preserving way,
as illustrated in Fig. 9. The controller is designed to be
a PHS. Therefore the closed-loop system is again a PHS
(van der Schaft, 2017).

Plant system (5)

Controller (7)

−

u1 y1

ucyc

Fig. 9. Control by interconnection illustration.

We propose the following structure for the controller:{
ẋc = (Jc(xc)−Rc(xc))∇xcHc1(xc) + gc(xc)uc,

yc = gTc (xc)∇xc
Hc1(xc),

(7)

where xc denotes the control state, Hc1 is the controller
Hamiltonian, Jc(xc) = −Jc(xc)

T , Rc(xc) = Rc(xc)
T ≥ 0,

gc(xc) represents the input matrix of the controller, and
uc and yc are its power-conjugated input and output. It is
associated to a Hamiltonian Hc1(xc(t)).

The passive interconnection between the plant (equa-
tion (5)) and the controller (equation (7)) writes:

u1 =−yc, (8)

y1 = uc, (9)

such that:

uT
1 (t)y1(t) + uT

c (t)yct = −yTc y1 + yT1 yc = 0. (10)

Therefore, the closed-loop system reads:[
ẋ
ẋc

]
=

[
J(x)−Rh −g1(x)g

T
c (xc)

gc(xc)g
T
1 (x) Jc(xc)−Rc(xc)

] [
∇xHd(x, xc)
∇xc

Hd(x, xc)

]
,

(11)[
y1
yc

]
=

[
g1(x)

T 0
0 gTc (xc)

] [
∇xHd(x, xc)
∇xc

Hd(x, xc)

]
, (12)

with closed-loop Hamiltonian as:

Hd(x, xc) = H(x(t)) +Hc1(xc(t)). (13)

We would like to get an energy function in terms of the
plant state x only, i.e. Hd(x), so that we can assign the
minimum of Hd at the desired position and characterize
it in terms of the plant state. To achieve this, we look for
structural invariants, also called Casimir functions C as
proposed in (Ortega et al., 2001). It is an invariant on a
submanifold of the (x, xc) space parameterized by x. It is
looked for in a linear format as:

xc = F (x)− C. (14)

From the condition that dC
dt = 0, we obtain:[

∂F

∂x

T

(x), −I

] [
J(x)−Rh −g1(x)g

T
c (xc)

gc(xc)g
T
1 (x) Jc(xc)−Rc(xc)

]
= 0,

(15)
which yields the following matching equations:



∂F

∂x

T

(x)J(x)
∂F

∂x
(x) = Jc(xc), (16)

Rh
∂F

∂x
(x) = 0, (17)

Rc(xc) = 0, (18)

∂F

∂x

T

(x)J(x) = gc(xc)g
T
1 (x). (19)

The solution of matching equations (16)-(19) leads to
Jc = 0, Rc = 0, and

F (x1) = βx1, (20)

with

β =
L

r
αL3R3gc. (21)

Therefore, if we properly initialize xc such that C = 0, we
get always an algebraic relation between xc and x1 that
writes:

xc = βx1. (22)

We choose :

Hc1 = (Kα −K1) l
2−2Kαll

∗+Kα(l
∗)2−K2rr

∗+
1

2
K2 (r

∗)
2
,

(23)
such that :

Hd = Kα(l − l∗)2 +
p2

2m
+

1

2
K2(r − r∗)2, (24)

with Kα the desired stiffness of the longitudinal springs in
closed-loop.

The input is hereby:

u =

(
−2 (Kα −K1)x1 + 2Kαl

∗ +K2r
∗L

r
(x1)

−Rd
x2

m

) 1
L
r αL

3R3
.

(25)

The first term of u works as energy shaping that modifies
both the closed-loop stiffness and equilibrium point, and
the second term is a damping injection with Rd a closed-
loop dissipation parameter that is free to choose.

The equivalent closed-loop system writes:

ẋ = (J(x)−Rn)∇xHd(x), (26)

with Rn =

[
0 0
0 (Rd +Res)

]
and

∇xHd(x) =

 2Kα(x1 − x∗
1) +K2L

(
1− r∗

r

)
1

m
x2

 .

Given a desired radial deformation of 0.1 mm, by assigning
Kα = 5 × 107 and Rd = 104, the simulation results are
presented in Fig. 10a. The control input is illustrated in
Fig. 10b. One can see that the control input corresponds
to a steady input voltage of U = 2.4kV, which is within
an admissible range.

4.2 Control by interconnection adding an integrator

The controller designed by CbI methodology focuses on
stabilizing the closed-loop system (26) to a given set point
for x1. However, it cannot reject the error that occurs in
the presence of disturbances, indicating that the previous
closed-loop Hamiltonian Hd cannot be considered as a

(a) Radial deformation (b) Input signal.

Fig. 10. Simulation results for CbI.

Lyapunov candidate for the perturbed system. This is due
to the fact that our input-output pair is no longer passive.
Therefore, it is necessary to add a robust controller in the
closed-loop.

We consider a constant disturbance force da adding on the
same port of the input, which is formulated as:[

ẋ1

ẋ2

]
= (J(x)−Rn)

[
∇x1

Hd(x)
∇x2Hd(x)

]
+

[
0

ui − da

]
, (27)

where ui is the robust control input. It has been proposed
in (Ferguson et al., 2017) and (Ferguson, 2018) that adding
an integral action to (27) can both reject the disturbance
and preserve the passivity of the closed-loop system. The
restrictions of applying integral action can be avoided by
relaxing the structure of the storage function associate
with the integral action scheme. In particular the storage
function can mix the plant state x2 with the integrator
states xci as:

Hc (x2, xci) =
1

2
∥ γx2 − xci ∥2 Ki, (28)

with γ and Ki the tuning parameters of the controller.

The closed-loop system containing both the CbI and the
integral action reads:[

ẋ1

ẋ2

ẋci

]
=

 J(x)−Rn
γ
r

L
−γRd + η

−γ
r

L
−γRd − η −γ2Rd − γη

[
∇x1Hcl

∇x2Hcl

∇xciHcl

]
+

[
da
0
0

]
(29)

with
Hcl(x, xci) = Hd (x) +Hc (x2, xci) . (30)

The partial derivatives of the Hamiltonian Hcl(x, xci) are
calculated as:

∇x1
Hcl =∇x1

Hd, (31)

∇x2Hcl =∇x2Hd + γKi (γx2 − xci) , (32)

▽xci
Hcl =−Ki (γx2 − xci) . (33)

The integral dynamics is formulated as:

ẋci =− γ
r

L
∇x1

Hcl − (γRd + η)∇x2
Hcl

−
(
γ2Rd + γη

)
∇xci

Hcl

=− γ
r

L
∇x1

Hd − (γRd + η)∇x2
Hd,

(34)

with ∇x1Hd and ∇x2Hd detailed in equation (26). From
the dynamics of x2 in equation (29), the integral action
law is:

ui = −ηKi (γx2 − xci) . (35)

We keep with the previous control scenario as in subsection
4.1. From t = 2.5s a perturbation is added, which is



presented in Fig. 11a. With controller parameters Rd =
106, γ = 1, η = 1 and Ki = 10, one can see that the
proposed control ui can reject the disturbance.

(a) Radial deformation. (b) Control input ui.

Fig. 11. Simulation results for CbI and integrator.

5. CONCLUSION AND PERSPECTIVES

In this paper, we have proposed a nonlinear dynamic
model of a DEA tube. This model is characterized by two
linear springs along the longitudinal direction, and a verti-
cal one, actuated by an electrostatic force that depends on
the actuator’s thickness. This electromechanical coupling
is a source of instability. The parameters are presented in
a lumped parameter form, and the system is represented
in the port-Hamiltonian framework. Unknown physical
parameters have been identified with a step voltage of 5
KV, and have been validated with another step voltage of 4
KV. Subsequently, passivity-based controllers, i.e. control
by interconnection with and without integral action, have
been applied on the proposed model. The dynamic con-
troller aims to achieve the desired position in a reasonable
response time, and to reject external disturbance forces.

Future works are to implement the designed controller on
the experimental setup, and enhance the model by consid-
ering the electric dynamics, nonlinear material properties
and then extend both the model and control to distributed
parameter systems.
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