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Abstract: To limit the impact of datacenters on climate change various sustainable and effective solu-
tions are being developed. The Datazero2 project aims to design datacenters running solely on local
renewable energy combined with storage sources. A multi-hour prevision of user demand (workload) or
of IT system usage, using time series, are possible ways to plan energy usage, with the aim of reducing
energy consumption while maintaining a required quality of service. The seasonal component of time
series is a key element, since it indicates one or more periodic phenomena that can be estimated and
implemented in forecasting methods. In this paper, we propose a seasonal study of multiple time se-
ries from different workloads. Seasonality is studied using periodograms, a highly effective Fast Fourier
Transform technique for detecting seasonal patterns. In addition, since the detected seasonal patterns
can be irregular (unexpected, delayed and/or extended user demands or IT system usage), we propose
a distribution-based clustering using the Kruskal-Wallis test and a seasonal peak appearances analysis.
The results show that most of these time series are multi-seasonal (daily and weekly seasonal patterns)
but highly irregular, which can reduce the performance of seasonal forecasting methods.
Keywords: Workload characterization, Workload prevision, Datacenter

1 Introduction
Over the past decade, the datacenter workload have increased by a factor 10. This makes them one of
the most energy-intensive parts of the ICT [20], accounting for 1 to 1.5% of global energy consumption.
In order to limit their potential explosion in energy consumption, enormous efforts have been made,
such as improving the efficiency of electronic components, cooling, power leakage, etc.. Another way
of reducing energy consumption is to predict user demand to only switch-on machines on demand.
Workload prediction is key issue in proactive resource management and auto-scaling. Accurate prediction
of workload is of high importance to mitigate energy consumption, while maintaining the required quality
of service (QoS) level [25]. This is even more important when the datacenter is completely off-grid, in
order to efficiently manage renewable energy sources and storage devices.

The Datazero [29] (2015-2019) and Datazero2 projects (2020-2024) aim to design and operate a
datacenter only fueled by renewable energy. The orchestration between the power and energy manage-
ment (power production and energy storage) and the IT management (workload processing and servers
states) is based on a negotiation process [46]. This process uses workload and power production previ-
sions to determine a power command, that will be applied to the infrastructure during the next time
window, typically the coming 72 hours. A power command is a time series of power values for each
time interval of the time window. In order to operate, the negotiation process needs predictions of the
IT power needs during the given time window. Furthermore, in order to take full advantages of several
energy storage devices (like batteries and hydrogen tank), the prediction must reflect the seasonality of
the demand: indeed, when workloads peaks and troughs are known to occur at given instants in the
future, smarter decisions can be taken to anticipate them, for instance by using batteries on the short
term and hydrogen on the long term.

∗This work was supported by the DATAZERO2 project (“ANR-19-CE25-0016”) and the EIPHI Graduate school (“ANR-
17-EURE-0002”).
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In this work, we propose and assess a methodology to identify seasanality in workloads. To highlight
the seasonal pattern(s) present in each time series, we use a periodogram, a FFT (Fast Fourier Transform)
technique that estimates the spectral power of each frequency. We then analyze the irregularities of each
detected seasonal pattern. These irregularities are evaluated using: (i) a distribution-based clustering
using the Kruskal-Wallis test, (ii) an analysis of the frequency of occurrence of the seasonal peaks.

This paper contributes with a suggestion for using periodograms to detect seasonal pattern(s) in a
time series, instead of box-plots, automatic decomposition and ACF (Auto-Correlation Function). To
estimate the irregularity of a seasonal pattern detected in a time series, we propose an algorithm based on
the Kruskal-Wallis test for clustering the periods We also propose two forecasting models for datacenters:
a multi-hour prevision of system usage based on allocated cores per hour time series, and a multi-hour
prevision of user demand based on several time series.

In the following, related work is detailed in Section 2. The problem definition and objectives are
formally defined in Section 3. Section 4 describes the methodology used to identify and assess seasonality.
Section 5 presents the data sets used and the filters applied. Section 6 presents the seasonal study of
time series for different workloads, i.e. detected seasonal patterns using periodograms and irregularities
using a distribution-based clustering and frequency of occurrence of seasonal peaks depending on time.
Finally, Section 7 gives a characterization use case and Section 8 summarizes the paper, highlighting the
main conclusions and future work.

2 Related Work
In this section we consider the work related to the workload characterization, then more specifically to
seasonal studies. Finally, we review the application of workload characterization and seasonality through
forecasting models and/or methods.

2.1 Workload characterization
The literature abounds in statistical studies using descriptive methods to analyze cloud and HPC work-
loads to improve scheduling, virtual machine allocation, to generate synthetic workloads close to those
observed or to select the best forecasting methods. In [6], the authors present the state of the art of work-
load characterization in various application domains. The cited articles that consider cloud workloads
mainly focus on jobs/tasks and virtual machines, and the most relevant research questions investigated
refer to resource usage, job arrival and workload pattern. In addition, they present the methodological
approaches and different modeling techniques employed to characterize workloads. Di et al. [11] study
the differences between a cloud datacenter and Grid/HPC systems. Several statistics about jobs and
machines are analyzed and compared. Google jobs are submitted with much higher, more stable fre-
quency and lower resource demand for CPU and memory than that of Grid/HPC jobs. Moreover, noise
of CPU load is 20 times higher and CPU usage is lower and less stable than in Grid/HPC systems.
In [30], as HPC workloads are becoming more diverse at both application and job levels, the authors
present a methodology to characterize workloads and assess their heterogeneity to improve schedulers in
these systems. They assess several jobs characteristics by using methodologies from Feitelson’s book [14].
Jobs, queue and performance are characterized and compared with other HPC systems. In particular,
they observed that 90% of the jobs have inter-arrival times under two minutes and 86-88% run for fewer
than two hours. Also, a trend analysis of the various workload parameters is given. In [49], the authors
propose a method to model the workload in HPC clusters and generate synthetic workloads. In [21] the
authors analyze important variables relevant to resource utilization, the number of CPU cores and VMs
used by considering Physical Machine (PM) level metrics in the context of cloud datacenters.

Clustering is one of the methods used to characterize, describe and analyse workloads according to
different metrics with the same objectives as mentioned above. Sindhu et al. [34] propose a genera-
tive Dirichlet process-based model to characterize cloud workloads This process is performed in several
distinct steps to generate a synthetic workload. First, they identify the number of task domains that
generate the workload, according to different metrics. Then the synthetic workload, based on the task
domains, is compared with the real workload. Other classification methods are also applied in [26], [10],
[4], [28] and [38] with Google, Alibaba, DKRZ and K computer workload datasets, respectively. Similarly,
in [33], the authors use and compare 7 different machine learning algorithms to classify and character-
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ize cloud datasets based on resource usage, to improve capacity planning, resource allocation and task
scheduling. The more significant key factor are task duration and CPU usage. In [3], in the case of
HPC systems, the authors experiment and employ a number of different feature selection methods and
clustering algorithms. The results show that the test dataset could be best divided into three clusters.

Overall, these studies characterize Cloud and HPC workloads using descriptive statistics, trend anal-
ysis and clustering, but do not tackle the characterization of seasonality patterns.

2.2 Seasonal study
To detect seasonality, several methods are used in the literature. Trend and seasonality of the Wikimedia’s
workload are studied over 5 years in [13] by using descriptive statistics, time series analysis and polynomial
splines. They use a simple time series decomposition and boxplots to highlight trend and seasonality.
The request flow time series from the Wikimedia’s workload clearly shows strong daily and weekly
repeating patterns. In [5], the authors characterize the workload of an engineering corporation (aircraft
manufacturer) over a period of 30 months. Distinctive and strong daily and weekly submission seasonal
patterns and grid utilisation are observed by using box-plots, which is not enough to confirm seasonality.
Task volume (execution time and number of cores) and dependencies are also considered to propose an
algorithm that creates jobs based on observed patterns. In [35], the authors propose a seasonal and a
non-seasonal study for time series analysis. In the case of the seasonal study, they propose to use ACF
and PACF (Partial Autocorrelation Function) plots to obtain information regarding seasonality, trends
and stationarity. But, as mentioned in [27], the FFT technique (such as periodogram) outperformed
the ACF because the latter has restrictions in identifying the exact start time of the seasonality, and
the seasonality must be significant before the ACF is able to detect it. The FFT technique is briefly
used in [30] to detect the dominant submission seasonal pattern of the time series of the jobs submitted
per hour, with a daily and weekly repeating patterns corresponding to user working periods, and three
and six months patterns which are related to the allocation rules set by NERSC. However, they do not
mention that the stationarity of the time series has been tested.

Although addressing the detection of strong seasonality, most of these studies only use simple methods
such as (i) box-plots, which lose the dependency between values, (ii) automatic decomposition, which is
only efficient with strong seasonality, or (iii) ACFs, which is complicated to analyse when the time series
presents several seasonality or an insufficiently strong seasonality. Moreover, it is done only for one time
series derived from one or two workloads. Being designed to detect periodicity in behaviors, FFT are
suitable to detect one or more strong or weak seasonal patterns.

2.3 Prevision
There are many studies on workload previsions in the cloud and HPC fields [25], [19] and some of
them use seasonal patterns and propose adapted forecasting methods. This is the case in [35] where
the authors propose an adaptive prediction model (called TASM) using linear regression, ARIMA, and
support vector regression (SVR) for web applications in the context of cloud computing. One of these
methods is selected depending on the workload properties (linear slow, fast and non-linear slow scale data,
respectively) identified by a workload classifier, and parameters through a heuristic. They experiment
their model with NASA and ClarkNet data by predicting step by step a single value. As a result, TASM
is better than the others (ARIMA, SVR, LR, Naïve) with a MAPE (Mean Absolute Percentage Error)
of 14% and 11%, respectively. Higginson et al. [18] propose an approach to reduce the complexity of
performing a prevision and to produce accurate predictions for complex workloads by investigating the
applicability of different time series modelling techniques with differing levels of seasonality and growth.
First, this approach performs a linear interpolation if there are missing data, then it analyzes time series
data (trends, seasonality...). Finally, each method (TBATS, HES, ARIMA, etc.) is computed to obtain
an RMSE (Root Mean Squared Error). In [32], the authors propose a prediction algorithm based on Holt-
Winters exponential smoothing method to model cloud workload with multi-seasonal patterns by adding
seasonal indices and smoothing equation for each seasonal pattern, and by employing an Artificial Bee
Colony algorithm to optimize its parameters. To assess it, they use many real workload traces, but only
one is shown, namely the Saskatchewan Log that contains HTTP requests. The time series considered
from this log is the number of required CPU. As a result, the algorithm outperforms other exponential
smoothing methods in terms of MAPE, RMSE and percentage of predictions within 25%.
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Finally, we found that, in the literature, the methods used to detect the seasonality in workloads are
not sufficient since multi-seasonality is not studied and fully exploited. Moreover, they focus mainly on
short-term workload previsions (over the next hour) for online modules. There are an increasing number
of suitable forecasting methods: BATS and TBATS [9] (2011), HES with multi-seasonal pattern [32]
(2017), Prophet [37] (2018) or MSTL [2] (2021) to mention just a few.

3 Problem definition and objectives

3.1 Problem definition
Workload forecasting is one of the most frequently used ways of improving datacenter efficiency while
reducing energy consumption. In addition, when the datacenter is completely disconnected from the
grid, as in the Datazero2 project, this helps to maintain its robustness over the long-term. For the
IT management, a workload prevision is needed to anticipate the power consumption of the datacenter
and to plan the switch-on and -off of the machines, while maintaining a QoS level, i.e. not rejecting too
much workload.

As seen in the previous section, the literature focuses mainly on short-term workload previsions for
online modules. In our case, the IT management of the datacenter negotiates offline with the electrical
management and requires a long-term workload prevision to generate a power consumption prevision.
This can be done using time series previsions. We propose two forecasting models:

• The proposed IT system usage forecasting model consists of a time series of the maximum number of
cores allocated by the system per hour as input to the forecasting method. The maximum number
of system allocated cores has been chosen to ensure that the IT management of the datacenter
switches-on a sufficient number of machines to maintain a given QoS level. The forecasting method
returns a prevision for the next 3 days by steps of 1 hour. This forecasting model does not require
any specific knowledge of the user demand, but only how the machines in the datacenter have been
used in the past.

• The proposed user demand forecasting model uses multiple time series as input: number of sub-
mitted jobs per hour, work volume per hour (defined later) and maximum number of requested
cores per hour. These are predicted using a forecasting method adapted to each of them. The
previsions are then used to generate multiple possible scenarios of user demand, based on the con-
fidence intervals given on the previsions. Fig. ?? illustrates how each scenario is created. For each
scenario, jobs are created based on the number of submitted jobs prevision and placed according
to the inter-arrival time distribution (Step 1). Their characteristics are then generated using the
runtime distribution used to give them a deadline (Step 2), work volume (Step 3) and a number of
requested cores (Step 4). The amount of work volume is split between the different jobs. Finally,
these steps are repeated to generate other workload scenarios (Step 5), taking into account the
uncertainty of the previsions.

The work volume per hour represents the volume of instructions to be processed. It is computed,
for each hour, by the sum of the product of the runtime and the number of requested cores of the jobs
submitted during this hour (see formula (1)), where n is the time series size in hour, m the number of
workload jobs over the time period considered, sj the submit time of job j in second, ncj the number
of cores required by the job and rj the runtime of the job in second. The function 1h(sj) is 1 if
sj ∈ h = [3600(t− 1); 3600t[, and 0 otherwise.

∀t ∈ [1, ..., n], workt =

m∑
j=1

1h(sj)ncjrj (1)

3.2 Objectives
To improve the prevision quality, it is essential to know the seasonal components of the time series,
especially for long-term previsions. Note that this study can also be used to improve scheduling in
systems and/or to improve the production of synthetic workloads. Some seasonal patterns are however
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Scenario Generator

Step 1: Job
placement

Step 2: Deadline
attribution

Step 3: Work volume
attribution

Step 4: Nb. of
requested cores

- Nb. of submitted
jobs prevision

- Inter-arrival time
distribution

- Work volume
prevision

- Maximum nb. of
requested cores
prevision

- Runtime
distribution

Step 5: Repeat

Figure 1: Workload scenario generator steps: Job placement (step 1), deadline attribution for each job
(step 2), work volume attribution for each job (step 3), number of requested cores for each job (step 4),
generate a new workload scenario (step 5).

less obvious than others. They can be more or less irregular: peaks and troughs may not always appear
at the same moment, the amplitude of peaks may be stronger or weaker, peaks may be longer or shorter,
etc.. In addition, knowing whether or not one or more seasonal patterns are present in time series
helps to identify which forecasting methods are more suitable than others. For example, ARMA and
exponential smoothing technique are only suited for modeling single seasonality, and unable to account
for multiple seasonal patterns [48], except for Holt-Winter, which has been adapted in [32] to consider
multi-seasonality. In contrast, Prophet and TBATS are suitable for time series with multiple seasonality.
But seasonal irregularities can potentially influence these forecasting methods and compromise their
performance. For these reasons, the objectives of this paper is to study the seasonality of time series
used in the forecasting models and their potential seasonal irregularities.

4 Methodology
The methodology we propose in order to analyse the seasonality present in a given workload dataset and
the suitability of the time series for prevision is the following:

1. Filter the dataset to remove corner cases

2. Identify seasonality using periodograms

3. Assess the irregularity of time series seasonal patterns, using a distribution-based clustering using
Kruskal-Wallis test

4. Check for seasonality peaks appearance, examining the frequency of occurence depending on time.

This section details steps 2 to 4, while the data filtering will be presented along with the dataset in the
following section.

4.1 Identification of seasonality
To identify the seasonality of time series, we use periodograms, an FFT technique, as time series can be
view as a sum of cosine waves with varying amplitudes and frequencies [42]. As a result, a time series
can be expressed by (2).
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∀t ∈ [1, n], xt =

n/2∑
j=1

β1(
j

n
) cos(2πωjt) + β2(

j

n
) sin(2πωjt) (2)

Where n is the number of observed data item, ωj = j/n the frequencies set and β1(
j
n ) and β2(

j
n ) the

regression parameters. For each frequency, the regression parameters are estimated. Then the amplitude
(spectral power) is given by (3).

∀j ∈ [1,
n

2
], P (

j

n
) = β̂1

2
(
j

n
) + β̂2

2
(
j

n
) (3)

A large value of P ( j
n ) indicates more importance for the frequency j/n in explaining the oscillation

in the observed time series. Before applying a periodogram to a time series, it is necessary to check that
it is stationary, i.e. mean, variance and covariance do not change over time. This is performed using
statistical tests such as Augmented Dickey Fuller (ADF) test [12] and Kwiatkowski-Phillips-Schmidt-
Shin (KPSS) test [24]. The main difference is that ADF test uses null hypothesis that a series contains a
unit root (stationary or trend stationary if not), while KPSS test uses null hypothesis that the series is
stationary (unit root if not). We use the ADF and KPSS tests by considering that a P-value lower than
an empirical α threshold of 0.05 for ADF and upper than 0.05 for KPSS denotes that the time series
is stationary. If the time series is not stationary, this may be caused by a trend (in this case, we use
the Locally Weighted Scatterplot Smoothing, LOWESS [7] to remove the trend) or a strong variation in
values (in this case, we differentiate the time series i.e. by substracting from each value of the series the
value that precedes it to obtain a stationary series).

4.2 Assessing the irregularity of time series
To assess the irregularity of the time series, we check if seasonal periods derive from the same distribution.
If so, this means that the values observed for each sample span over the same interval, and that peaks,
troughs and intermediate values have the same order of magnitude. This is an important point in
assessing the suitability of seasonal forecasting methods. if the time series includes a trend, it is removed
beforehand using LOWESS to study seasonal periods around the trend and prevent it from affecting the
distribution of seasonal periods.

The Kruskal-Wallis test [23] is used to check if two or more given samples are significantly different
or not from a distribution point of view. The test is significant if the samples are derived from the same
distribution. However, if the test is not significant, it does not identify the sample(s) derived from one
or more different distributions. One can use a Conover-Iman post-hoc test [8], which is a test based on
the same principle as the Kruskal-Wallis test, by comparing samples in pairs. But even if it indicates the
sample(s) contributing to the insignificance of the Kruskal-Wallis test, it does not indicate how many
different distributions are present in the time series.

For this reason, we propose a distribution-based clustering using the Kruskal-Wallis test (see Algo-
rithm ??). It is computed if the Kruskal-Wallis test applied to all samples of the seasonal pattern is
not significant and if the Conover-Iman test indicates that more than one sample is concerned (using an
empirical α threshold of 0.05 for both tests). This clustering process is simple: the algorithm takes as
input the set of samples D and the α threshold is initiated by creating a set of clusters C and a cluster
C1 containing the first sample (line 2 to 4). Then, starting with the second sample, for each sample,
the Kruskal-Wallis test is applied between the sample and each cluster. If the test is significant for one
cluster, this means that the sample and those in the cluster are derived from the same distribution. In
this case, the sample is allocated to the cluster concerned (line 6 to 12). On the other hand, if the test
is not significant with all clusters, this means that the sample is not derived from the same distribution
as those of the clusters tested. If so, a new cluster is created and the sample is allocated to the latter
(line 13 to 14). This process ensures that the samples in a given cluster are derived from the same
distribution, and that each cluster is different from the others.

Finally, each cluster is composed of samples having the same distribution. The number of clusters
thus indicates the level of irregularity of the time series. From one seasonal pattern to another, values
may differ considerably with the number of clusters.
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Algorithm 1: Distribution-based clustering algorithm
Data: D, α
Result: C

1 begin
2 C ← ∅
3 for di ∈ D do
4 if C = ∅ then C1 ← {di}; C ← C ∪ C1
5 else
6 allocation← False; m← card{C}
7 for j ← 1 to m do
8 p← KWtest(Cj , di)
9 if p ≥ α then

10 Cj ← Cj ∪ {di}
11 allocation← True
12 break

13 if not allocation then Cm+1 ← {di}; C ← C ∪ Cm+1

4.3 Checking for seasonality peaks
When seasonality is regular, both peaks and troughs appear at the same time, making forecasting easier.
In the opposite case, it can be more complicated for forecasting methods to accurately predict the
appearance of these peaks. We investigate the appearance of seasonality peaks to assess their recurrence,
the results in section 6 showing that time series, for a given seasonal pattern, present several distributions
considering the number of clusters. This is done by studying manually the frequency of occurence of
seasonal peaks depending on the time of day and the day of the week, while the results show that time
series are mainly daily and weekly seasonal.

4.4 Reproducibility
The source code and the complete set of experimental data and resulting figures is available in open
access on the Git of the research team for reproducibility1.

5 Data sets used

5.1 Presentation
We study the seasonality of four time series from six real workload logs from the Parallel Workloads
Archive. The time series derived from these workloads are the number of system allocated cores per
hour, the number of requested cores per hour, the work volume per hour and the number of submitted
jobs per hour. The purpose of the first time series is to predict the system utilization. The purpose of
the three other time series is to generate a workload prevision.

We study HPC workloads from the Parallel Workloads Archive. We made this choice because cloud
workloads such as Google Traces [47] or Alibaba Traces [1] do not last enough time to confirm seasonal
patterns, except for the 5-year Wikimedia’s workload, which has already been studied [13] but is assessed
in this work considering the request flow and the number of bytes per hour time series.

The first workload log, called Ciemat Euler [31], [40] consists of 9 263 012 jobs from the Euler super-
computer located at the Centre for Energy, Environment, and Technology Research in Madrid, Spain.
The recording period is approximately 9 years, from November 2008 to December 2017. In November
2008 the cluster were composed of 144 nodes. In November 2009, 96 more nodes were added and, until
the end of the recording period, the configuration is 240 blade nodes for a total of 1920 cores. All
nodes are composed of dual Xeon 4-core 2.96 GHz or 3.0 GHz processors and 2 GB RAM per core. Job
runtimes are mainly less than 10 hours, with CPU node utilization mostly between 20% and 90%. Note
that the utilization does not exceed 60% for the first two years as new nodes were added in November
2009, before reaching 100% locally for 3 years and then decreasing to a maximum of 80%.

1https://gitlab.irit.fr/sepia-pub/open-science/seasonal-study-of-user-demand-and-it-system-usage-in-datacenters
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The second log, called ANL (Argonne National Laboratory) Intrepid [39], [36], is a record, from
January to September 2009, of 68 936 jobs from a large Blue Gene/P system called Intrepid. It consists
of 40 960 4-core nodes with 2GB per node for a total of 163 840 cores and remains the same during the
entire duration of the recording. As for the CIEMAT Euler workload log, job runtimes are mainly under
10 hours, but with node utilization mostly between 0 and 100%. Note that the utilization exceeds 100%
several times. This is possibly due to the application of resource constraints by the scheduler [15].

The third log, called PIK IPLEX [43], contains more than 3 years (April 2009 to July 2012) worth
of accounting records from the 320-node IBM iDataPlex cluster at the Potsdam Institute for Climate
Impact Research (PIK) in Germany, for a total of 742 964 jobs. Each node is composed of 8 cores and 32
GB of memory. In the whole system, there are 2 560 cores. Job runtimes are mainly under 4 days and
can reach up to 30 days. As for the ANL Intrepid workload log, the utilization can exceed 100% several
times for the same reason.

The fourth workload log, called RICC [44], consists of 447 794 jobs from May to September 2010.
It contains several months worth of accounting records from the RICC (RIKEN Integrated Cluster of
Clusters) in Japan, from a cluster of 1024 nodes, each with 12 GB of memory and two 4-cores CPUs.

The fifth log, called MetaCentrum [41], [22], consists of 5 731 100 jobs from January 2013 to April
2015. Note that the scheduling system was significantly reconfigured in the middle of this period and
some nodes change. MetaCentrum is composed of a varying number of heterogeneous clusters with
between 4 and 384 cores and between 3 and 6144 GB of memory per machine, depending on the cluster.
In most cases, job runtimes are less than 10 hours, and can reach up to 30 days. Regarding the utilization,
we note an increase due to system configuration changes and scheduler reconfiguration.

The last log, called UniLu Gaia [45], consists of 51 987 jobs from May 2014 to August 2014 used
for large data problems and physical simulations. These data originate from the Gaia cluster at the
University of Luxemburg. Gaia is a heterogeneous cluster that has been upgraded several times, with a
total of 151 nodes and 2004 cores. Over 50% of jobs have a runtime of 10 minutes or less. The utilization
varies mainly between 20% and 80%.

All workload traces include information on jobs but do not include information about applications
nor the input data.

5.2 Filters
Since the clusters were already running before starting logging their activity and after stopping logging,
some jobs that were using the resources are not present in the original log, i.e. jobs started before logging
and jobs finishing after the end of the log. For this reason, we remove the time window corresponding to
the longest recorded job from both ends of the recording period. This filter is applied to all workloads
and all time series to compare them with each other later in terms of irregularity. This allows us to keep
only the time period during which all jobs currently being processed are known and minimize the time
during which jobs are being processed but not recorded. For example, in the Metacentrum workload log,
jobs submitted before January 1, 2013 run on the machines, but are not mentioned in the log. The same
goes for jobs submitted before April 17, 2015 and not finished before this date. The longest job recorded
in the log is 5045 hours (wait time + runtime). So we decide to keep only the jobs from July 30, 2013
to September 19, 2014.

Also, to be closer to a cloud datacenter and to maintain the same machine configuration over the entire
period, a second filter is applied only to the Metacentrum workload to obtain another workload, called
Filtered Metacentrum, by removing jobs run on specific architecture or hardware (i.e. large number of
CPU, GPU, etc.) [16]. A subset of seven of the partitions (number 7, 9, 11, 14, 15, 18 and 19) of the
machines is kept, with servers of 12-16 CPU cores and 12-134 GB memory.

After applying these filters, the ANL Intrepid workload log retains 83% of jobs and 4474 hours, the
Ciemat Euler workload log retains 94% of jobs and 73903 hours, 71% and 24% of jobs and 9985 and
9538 hours for the Metacentrum and the Filtered Metacentrum workload logs, respectively. The PIK
IPLEX workload log retains 93% of jobs and 26005 hours, and only 22% and 25% of jobs and 1198 and
1138 hours for the RICC and the UniLu Gaia workload logs. Note that these filters are not applied to
the Wikimedia’s workload log, for which we have no information on requests or their processing.
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Figure 2: ANL Intrepid - Number of system allocated cores

6 Seasonal characterization

6.1 Seasonal periods
Firstly, we identify the seasonality present in the time series by applying the periodogram defined in
Section 4. First, we check that time series are stationary according to the KPSS and ADF tests. If not,
we remove the trend, or differentiate.

Fig. ?? shows for instance the periodogram of a ANL Intrepid workload time series. The figure
presents the appearance of frequencies in the time series, the higher the spectral power the more present
is this frequency. Note that peaks for which the number of seasonal patterns observed is less than 6 are
not considered [17], which corresponds to the minimum sample size required to do a time series analysis.
Peaks appear at different low frequencies depending on workloads and time series. These frequencies
mostly correspond to daily (ωj ≃ 0.04Hz) and weekly (ωj ≃ 6.0 × 10−3Hz) seasonality, as can be seen
on the figure.

Table 1 shows the power spectral density values (or amplitude), explained by (3), obtained from dif-
ferent workloads and for different periods. These values indicate how strongly frequencies are represented
in the time series. Periods with significant peaks are indicated and the strongest peaks are highlighted.
All time series are mainly based on a daily period and the majority of time series have two or more
seasonal periods. However, there are some notable exceptions:

• For the maximum number of system allocated cores time series, the RICC workload presents no
seasonal periods.

• For the maximum number of requested cores per hour time series, periods are mainly daily and
weekly, but the Ciemat Euler workload present a daily period only.

• For the work volume per hour time series, the period is mainly daily, and weekly for ANL In-
trepid workload, with the exception of the Filtered Metacentrum workload that shows no seasonal
patterns.

• For the number of submitted jobs per hour, PIK IPLEX workload have no seasonal patterns. For
other workloads, the daily period is the strongest seasonal pattern. Note that ANL and RICC
workloads have equally strong weekly seasonal periods.
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Table 1: Power spectral density values of different workload time series depending on daily (24h), semi-
weekly (84h), weekly (168h), monthly (730h) and bi-monthly (1460h) seasonal period. "NoS" means
that no seasonality has been detected.

Period System allocated cores
ANL I. Ciemat E. Metac. F. Metac. PIK I. RICC UniLu G.

24h 2.7 × 1011 1.7 × 108 3.0 × 108 NoS 3.8 × 108 NoS NoS
84h 4.1 × 1011 NoS NoS NoS NoS NoS NoS
168h 9.2 × 1011 3.2 × 108 3.3 × 108 1.2 × 108 4.3 × 108 NoS 3.0 × 107

730h NoS NoS 4.2 × 108 1.5 × 108 NoS NoS NoS
1460h NoS NoS NoS NoS 5.7 × 108 NoS NoS

Requested cores
ANL I. Ciemat E. Metac. F. Metac. PIK I. RICC UniLu G.

24h 4.1 × 1012 1.7 × 108 2.2 × 109 3.6 × 108 6.9 × 108 3.0 × 109 1.4 × 107

168h 2.8 × 1012 NoS 1.2 × 109 4.5 × 108 6.2 × 108 3.6 × 109 3.8 × 107

730h NoS NoS 9.2 × 108 1.9 × 108 NoS NoS NoS
Work volume

ANL I. Ciemat E. Metac. F. Metac. PIK I. RICC UniLu G.
24h 4.8 × 1019 2.8 × 1016 1.4 × 1017 NoS 7.9 × 1016 2.2 × 1017 6.5 × 1015

168h 2.7 × 1019 NoS NoS NoS NoS NoS NoS
Number of submitted jobs

24h 2.2 × 104 8.5 × 107 1.8 × 108 3.9 × 107 NoS 3.5 × 106 4.3 × 105

168h 2.5 × 104 NoS NoS NoS NoS 3.1 × 106 NoS
730h NoS 4.5 × 107 NoS NoS NoS NoS NoS
1460h NoS 4.3 × 107 NoS NoS NoS NoS NoS

In the case of the Wikimedia’s workload, both time series are stationary by removing the trend.
Periodograms show in both cases a very strong daily seasonality and less pronounced weekly and semi-
weekly seasonality. In comparison with [13], an additional semi-weekly seasonality has been identified.

6.2 Seasonal distribution-based clustering
Having identified the different seasonality present in workloads, we now investigate their potential irreg-
ularities. In this section, we focus on determining if all samples of a seasonal period are based on the
same distribution by using the distribution-based clustering algorithm presented in section 4.

Fig. ?? shows some examples of clustering results of different workloads and time series for different
time periods using the distribution-based clustering algorithm. Each line represents a cluster from which
the samples in that cluster are derived: it is constructed using a smoothing process from the density
distribution of the values of a time series. The number of clusters is given in Table 2 (presented after). In
most cases, the difference between two clusters resides in the distribution tail from which the samples are
derived (see the distribution tail in Fig. ??), in some values being more present for certain distributions
than others (see Fig. ?? and Fig. ??), or in medians differing significantly when distributions of the
clusters have the same shape (see Fig. ??).

Table 2 shows the number of seasonal pattern samples and the number of clusters for the different
time series studied. The maximum number of requested cores and system allocated cores time series
are the most irregular in terms of distribution, considering the number of clusters. For example, the
3079 Ciemat Euler day samples are divided into 87 and 73 clusters, respectively, while there are only 13
clusters with the work volume time series. Note that there is an exception with the number of submitted
jobs time series, which presents 233 clusters. In all cases, whatever the workload and time series, there
are sufficient clusters to suggest that seasonality is irregular in terms of distribution. In other words,
from one seasonal pattern to the next, the amplitude of the peak and/or trough may strongly vary.

In the case of the Wikimedia’s workload, the request flow time series shows 3 clusters for daily
seasonal pattern (with 365 samples), 4 clusters for semi-weekly seasonal pattern (with 104 samples) and
4 clusters for weekly seasonal pattern (with 52 samples). The number of bytes per hour time series
presents approximately the same results with 4 clusters for daily seasonal pattern, 3 clusters for semi-
weekly seasonal pattern and 4 clusters for weekly seasonal pattern. This shows that time series from this
cloud workload are much less irregular than those from HPC workloads.
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Figure 3: Distribution-based clustering results of different workload time series and for different time
periods.
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Table 2: Number of seasonal pattern samples / number of clusters for different workload time series
depending on daily (24h), semi-weekly (84h), weekly (168h), monthly (730h) and bi-monthly (1460h)
seasonal period. "NoS" means that no seasonality has been detected.

Period System allocated cores
ANL I. Ciemat E. Metac. F. Metac. PIK I. RICC UniLu G.

24h 186 / 14 3079 / 87 416 / 22 NoS 1083 / 104 NoS NoS
84h 53 / 8 NoS NoS NoS NoS NoS NoS
168h 26 / 6 439 / 34 59 / 13 56 / 11 154 / 26 NoS 6 / 5
730h NoS NoS 13 / 6 13 / 4 NoS NoS NoS
1460h NoS NoS NoS NoS 17 / 9 NoS NoS

Requested cores
ANL I. Ciemat E. Metac. F. Metac. PIK I. RICC UniLu G.

24h 186 / 9 3079 / 73 416 / 20 397 / 21 1083 / 101 49 / 11 47 / 13
168h 26 / 5 NoS 59 / 9 56 / 12 154 / 26 7 / 3 6 / 5
730h NoS NoS 13 / 5 13 / 4 NoS NoS NoS

Work volume
ANL I. Ciemat E. Metac. F. Metac. PIK I. RICC UniLu G.

24h 186 / 6 3079 / 16 416 / 4 NoS 1083 / 11 49 / 4 47 / 4
168h 26 / 6 NoS NoS NoS NoS NoS NoS

Number of submitted jobs
ANL I. Ciemat E. Metac. F. Metac. PIK I. RICC UniLu G.

24h 186 / 8 3079 / 233 416 / 28 397 / 20 NoS 49 / 5 47 / 2
168h 26 / 5 NoS NoS NoS NoS 7 / 2 NoS
730h NoS 101 / 29 NoS NoS NoS NoS NoS
1460h NoS 50 / 21 NoS NoS NoS NoS NoS

6.3 Seasonal peaks
Finally, in this section, we investigate the appearance of seasonality peaks to assess their recurrence and
considering the results given by the based-distribution clustering.

Fig. ?? shows frequency of occurrence of seasonal peaks of different workload time series and for
different time periods. Note that, for each figure, only workloads and time series for which the seasonality
in question has been detected are considered. In the case of daily periods (see Fig. ??), peaks appear
mainly between 9 am and 6 pm, and more rarely at night between 00 am and 7 am. This trend is similar
for all workloads and all time series. For weekly periods (see Fig. ??), seasonal peaks occur mainly during
the day on weekdays.

In the case of the Wikimedia’s workload, seasonal peaks of the request flow time series mainly appear
at 3 pm in 46% of cases, and between 1 pm and 11 pm in all cases (>99%), Monday in 60% of cases and
Tuesday in 29% of cases. Seasonal peaks of the number of bytes per hour time series mainly appear also
at 3 pm (40%) and between 1pm and 11pm (>99%), Monday (56%) and Tuesday (27%).

6.4 Synthesis
Box-plots can highlight seasonality, but are not a sufficient method due to the loss of dependency between
successive values. Automatic time series decomposition is effective when there is only evident seasonality.
Finally, ACFs are difficult to interpret, and the seasonal pattern(s) must be evident to be perceived. For
these reasons, we propose to use an FFT technique (periodogram) that provides trivially clear evidence
of the seasonal pattern(s). This technique requires the time series studied using the KPSS and ADF
tests to be stationary.

Irregularities were evaluated using two methods: (i) a distribution-based clustering using the Kruskal-
Wallis test, highlighting the number of distributions representing the samples of the seasonal pattern(s)
of the time series, and (ii) an analysis of the frequency of occurrence of the seasonal peaks, indicating
that peaks do not appear at the same hour or on the same day. We show that the studied time series
for forecasting are not regular, and some of them are less regular from the distribution-based clustering
algorithm point of view.

The study can be extended by studying the days composing the clusters (predominantly weekend
days in some clusters, predominantly weekdays in others) and their size, to deduce the most dominant
distributions. The same can be done with seasonal peaks, by separating weekdays and weekend days. If
there are significant differences between clusters and/or between weekdays and weekend days, this could
be used to switch to a different forecasting method, or to adapt the parameters of the method depending
on the day.
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Yearly seasonality was studied, particularly with the Ciemat Euler workload which has sufficient
patterns (9 years) after filtering and considering the minimum number of patterns required to study
seasonality according to [17], but this seasonality was not detected.

7 Characterization use case example
To illustrate the results of the previous sections, we apply the seasonal study using 2 multi-seasonal
forecasting methods (TBATS and Prophet) to the number of submitted jobs time series from ANL
Intrepid workload, which presents equally strong daily and weekly seasonal patterns identified using the
periodogram. These seasonal patterns are input parameters for TBATS and Prophet. A total of 3000
observations divided into training data (2928) and test data (72) are considered.

Fig. ?? shows previsions using TBATS and Prophet forecasting methods, respectively. The prevision
covers the next 72 hours. As can be seen, the 95% confidence interval covers the majority of real data,
which shows the relevance of our prevision. TBATS confidence interval is larger than that of Prophet. The
mean absolute error (MAE) and the root mean squared error (RMSE) made with TBATS and Prophet
are 13.4 and 14.8, and 12.1 and 15.0, respectively. Prophet makes fewer errors than TBATS according
to MAE, but they are greater according to RMSE. Note however that, due to the irregularity of seasonal
patterns, particularly the appearance of seasonal peaks, previsions underestimate and overestimate the
number of submitted jobs and, at some time steps, seasonal peaks appear before or after what the
forecasting model predicts.

8 Conclusion
To study seasonal patterns of cloud workload time series, most of the literature use simple methods
such as box-plots, automatic decomposition or ACFs, but these methods have their weak points. Being
designed to detect periodicity in behaviors, FFT techniques are suitable to detect one or more strong
or weak seasonal patterns. Moreover, these studies are limited to one or two time series and, in most
cases, cloud workloads do not last enough time to confirm seasonal patterns, which can present some
difficulties for generalization. For these reasons, we explore the seasonality of different time series from
several HPC workloads in detail.
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Seasonal patterns in HPC workloads are not obvious because of the many irregularities due to un-
expected, delayed and/or extended user demands or IT system usage. In this work, we have studied
the seasonality of different time series from several workloads to obtain information that will be useful
when applying forecasting methods. We also proposed a distribution-based clustering algorithm using
the Kruskal-Wallis test and a seasonal peak appearances analysis for assessing the irregularities of the
time series. Results show that in most cases, several seasonality are present, but behave more or less
irregularly.

These seasonality encourage us to use seasonality-based forecasting methods, such as ARMA, TBATS
or Prophet. However, irregularities may reduce the performance of these methods. For this reason, in
future work, we plan to compare with different seasonal forecasting methods, as well as other methods
such as recurrent neural network (RNN) or support vector regression (SVR). The two forecasting models
(IT system usage and user demand) will be assessed by investigating the most suitable forecasting
methods for each time series. For the user demand forecasting model, forecasting methods will be
combined in the best possible way to create different scenarios. Subsequently, we will integrate the
results in a real environment (Datazero2).
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