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With the increasing complexity of cyber-physical systems (CPS), it is interesting to decompose a CPS into sub-systems. This
provides greater modularity and flexibility so that each system can be developed independently, making it easier to maintain.
Also, it can improve its fault tolerance. However, this decomposition of the system can lead to inconsistency. This paper
proposes an approach for early verification of cyber-physical systems decomposition using SysML. We address the limitations
of SysML as a semi-formal language by introducing syntax and static semantics for its structural diagrams. The aim is to
verify structural consistency before defining behavioral aspects. For that, the proposed approach verifies a set of structural
consistency rules within a refinement relation to ensure that sub-components offer at least the same services as the abstract
block and require the same services. Furthermore, the sub-blocks must satisfy all the requirements that the abstract block is
supposed to verify. We used the CyCab as a case study to demonstrate the effectiveness of this approach.

CCS Concepts: • Computer systems organization → Embedded and cyber-physical systems.
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1 INTRODUCTION
Cyber-Physical Systems (CPS) present significant challenges due to their inherent complexity, which arises from
the integration of computational (cybernetic) and physical components. These systems exhibit both structural
and behavioral characteristics, as well as functional and non-functional properties. To manage this complexity
effectively and reduce associated costs, a top-down modeling approach is often employed. This approach involves
starting with an abstract block and systematically decomposing it into smaller, more manageable sub-blocks.
Decomposing a CPS into sub-systems offers several key benefits. Firstly, it enhances modularity, allowing

different components of the system to be developed, tested, and maintained independently. This modularity
simplifies the management of complex systems and enables the reuse of sub-systems across different projects.
Secondly, it increases flexibility by allowing specific parts of the system to be modified or upgraded without
affecting the overall system architecture. However, the decomposition process must be guided by consistency
rules to ensure the integrity of the system. These rules can be considered from multiple perspectives, including
structural or behavioral aspects, as well as inter-model or intra-model consistency [12]. Ensuring consistency
during decomposition is critical to maintaining the system’s reliability and functionality as the design progresses
from abstract models to detailed implementations.

Given that the specification of system behavior is complicated and time-consuming[17], performing an early
verification by assessing a system’s structural consistency that ensures system components’ logical soundness
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and interactions from the initial stages before embarking on detailed behavioral design can significantly optimize
development time and cost. Such verification is essential for guaranteeing system correctness and mitigating the
risk of costly rework during later development stages.

The industry-standard SysML [15] language offers distinct advantages for modeling Cyber-Physical Systems.
It facilitates the creation of comprehensive models, including a system’s cyber and physical aspects, aligning
seamlessly with the Model-Based Systems Engineering (MBSE) approach. However, SysML’s characterization as
a semi-formal language presents a significant limitation. A well-defined formal semantics is necessary for the
ability to perform early verification of structural consistency within SysML models.
This research aims to bridge the critical gap in the early verification of CPS design by proposing a formal

specification of SysML structural diagrams. We achieve this by providing a formal syntax and static semantics for
these diagrams. This formal foundation allows the application of robust verification techniques during the early
stages of CPS design, enabling the systematic assessment of a system’s structural consistency.
To formally define the structural components of SysML, we have used the OCaml [10] language, which is a

functional programming language. OCaml’s strong static type system ensures that many errors are caught at
compile-time rather than at runtime. This feature is particularly beneficial for formal verification as it enhances
the reliability and robustness of the model. The type system helps to enforce consistency rules and invariants
within the model, aligning well with our goal of verifying structural consistency in SysML models. In addition
to its powerful features, OCaml maintains simplicity and readability [14]. Its syntax is designed to be clear and
concise, which aids in understanding and maintaining the formal specifications. This simplicity is crucial for
making our approach accessible and easily understandable to other researchers.
This document is structured as follows: Section 2 provides a preliminary to SysML and OCaml. Section 3

presents our approach to constructing a consistent SysML model. Section 4 introduces the syntax and static
semantics of SysML specifications. Section 5 shows our tool for transforming the XMI format into the proposed
formal specification. Section 6 demonstrates the applicability of our approach to a case study. Section 7 discusses
the applicability of our approach with SysML v2. Section 8 discusses related work and our contributions. Finally,
we conclude this paper in section 9.

2 PRELIMINARIES
This section covers the fundamentals of the SysML and Ocaml languages, which we will use to model and
checking the structural consistency of our system.

2.1 SysML
SysML is a graphical modeling language used in systems engineering. It is based on the Unified Modeling
Language (UML) [16] and is maintained and developed by the Object Management Group (OMG). In our work,
we use version 1.6 of SysML. In the following, we will now introduce some components and diagrams of SysML
that we used in our approach.
Block: A block is a basic unit of modeling that represents a physical or logical entity in a system. Moreover, we
distinguish two types of blocks: a composite block, which is composed of other blocks, and an elementary block,
which is not composed of any other blocks.
Interface block: An interface block is a contract between two systems, specifying what one system expects from
the other and what the latter provides. It also defines the port type.
Proxy port: Proxy ports are always typed by interface blocks, which define the boundary by specifying the
visible features of the owning block through external connectors. These features typically include the services
that the block either provides or requires. A service represents a specific function or capability that an interface
block offers to its environment or expects from other blocks.
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Block Definition Diagram (BDD): Allows to describe the system’s structure by showing the hierarchical
relationships between its blocks.
Internal Block Diagram (IBD): An Internal Block Diagram (IBD) is a graphical representation used in SysML
to show the internal structure of a system or a block within a system. It helps to model the relationship and
composition between various parts or components of a system. The IBD consists of two types of connectors:
delegation connectors which link the block’s ports with the internal parts, and composition connectors which
link the internal parts together. Figure 1 illustrates this concept. There are also two types of delegation connectors:
input delegation connectors, whose source port is the input port of the abstract port, and output delegation
connectors, whose target port is the output port of the abstract port.

Fig. 1. Internal Block Diagram connectors

Requirement diagram: Requirement diagrams are used to describe system requirements. They make it easier to
understand by ensuring the traceability of system development. There are two types of requirements: composites
and elementary (atomic) ones, as shown in Figure 2. Composite requirements are composed of other requirements,
while elementary (atomic) requirements are not composed of any other requirements.

Fig. 2. Composite and Atomic requirements
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2.2 OCaml
In this section, we present the OCaml constructs used in our formalization of SysML diagrams. We focus on
defining types, structures, and functions, with particular attention to recursion in functions.

Type in OCaml
In OCaml, we define custom types using the keyword type. For example, to define a type for a simple arithmetic
expression. We use the following syntax:

type expr = | Int of int | Add of expr + expr | Mul of expr * expr

In this example, the expr type can represent integer values (Int of int), addition expressions (Add of expr + expr),
and multiplication expressions (Mul of expr * expr).

Structure in OCaml
Structures in OCaml are defined using records. We illustrate this with a structure representing a person:

type person = { name : string; age : int; }

This person structure includes fields for the person’s name and age.

Function in OCaml
In OCaml, functions play a crucial role in structuring code and performing computations. To define a function in
OCaml, you use the keyword fun followed by the parameter and the expression to be computed. For instance,
let’s define a simple function that adds two numbers:

let add_numbers x y = x + y

In this example, add_numbers is a function that takes two parameters (x and y) and returns their sum. When a
function calls itself during its execution, it is termed a recursive function. Recursion is a powerful concept that
simplifies the code for operations that involve repeated or nested computations. Let’s consider a classic example
of a recursive function: calculating the factorial of a number.

let rec factorial n = if n <= 1 then 1 else n * factorial (n - 1)

In this example, factorial is a recursive function that calculates the factorial of a given number n. It continues
to call itself until it reaches the base case (n <= 1), at which point it returns 1. The final result is the product of
all the numbers from 1 to n.

3 PROPOSED APPROACH
To provide clarity on our approach, we classify systems based on the complexity of their decomposition and
assembly processes:

Single-Step Assembly (Simple System): In scenarios where the system to be built consists of straightforward
and well-defined components, the assembly can be accomplished in a single step. These systems, referred to as
“simple systems,” involve directly assembling elementary components to meet the abstract specification (see
Figure 3). This approach is typically applicable when the system’s functionality and interactions are relatively
uncomplicated, allowing immediate composition without intermediate refinement stages.
Multi-Step Assembly (Complex System): Conversely, more intricate systems, referred to as “complex

systems” require a multi-step assembly process (see Figure 4). These systems involve the definition of abstract
sub-components, which are subsequently refined by assembling other components. This hierarchical and iterative
refinement process ensures that each sub-component meets its specified requirements before being integrated
into the final system.
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Fig. 3. Simple system

Fig. 4. Complex system

Definition 3.1 (Refinement of a composite SysML block with a composition of blocks). Let � be an abstract block
described with the block definition diagrams ���� and the internal block diagram ���� . Let �1, ..., �= be the
sub-blocks of �, described with their SysML models (see Figure 5). The composition of �1, ..., �= refines the
abstract block � if, there is consistency at the structural level between the composition of the sub-blocks �8 and
the composite block �.

Fig. 5. The proposed structural architecture to model the abstract component
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To verify the consistency, we consider the three following conditions:
- Condition 1 :
For all block B in Set_Blocks and B is composed of a set of blocks {B1,…,Bn} and B provides a Set_of
services {S1,…,Sm} then {B1,…,Bn} provides at least Set_of services {S1,…,Sm}

- Condition 2 :
For all block B in Set_Blocks and B is composed of a set of blocks {B1,…,Bn} and B requires a Set_of
services {S1,…,Sm} then {B1,…,Bn} requires at most Set_of services {S1,…,Sm}

- Condition 3 :
For each block � ∈ Set_Blocks, let {�1, ..., �=} be the sub-blocks composing �, and let ' be a requirement
satisfied by �, where ' is composed of atomic requirements {'1, ..., '<}. The composition {�1, ..., �=}
must collectively satisfy the set of atomic requirements {'1, ..., '<} such that: ∀'8 ∈ {'1, ..., '<}, ∃� 9 ∈
{�1, ..., �=} satisfying '8

In order to confirm the first and second conditions, we will make use of the internal block diagrams and the
connections between different parts via their respective ports. To verify the first condition, as shown in Figure
6, we need to ensure that the services provided by the interface block that types port PInA are included in the
services provided by the interface block that types port PInB.

%�=� ⊆ %�=�

Similarly, for condition 2, we need to verify that the services offered in the interface block that types port PoutC
are included in the service offered by the interface block that types port PoutA.

%$DC� ⊆ %$DC�

Fig. 6. Simple connection

However, in cases where we have multiple input delegation ports, as shown in Figure 7, we need to ensure
that the services offered in the interface block that types port PInA are included in the services offered by the
interface block that types port PInB union PInC.

%�=� ⊆ %�=� ∪ %�=�

Another possible scenario is where we have several output delegation ports, as shown in Figure 8. In such a
situation, we need to verify that the services offered by the interface blocks that type the POutB union POutC
port are included in the service offered by the interface block that types the POutA port.

%$DC� ∪ %$DC� ⊆ %$DC�

If there is an internal part offering a service required by another part linked by output delegation with the
composite block, we remove the required services before verifying the inclusion, as shown in Figure 9. In this
case, we have to verify that the services offered in the interface block, which types port POutC minus the services
offered in the interface block, which types port POutB are included in the service offered by the interface block,
which types port POutA.

%$DC� − %$DC� ⊆ %$DC�

ACM J. Emerg. Technol. Comput. Syst.

 



Construction of consistent SysML models applied to the CPS • 7

Fig. 7. Multiple In delegation connections Fig. 8. Multiple Out delegation connections

Fig. 9. Delegation connection with composition connection

Based on these conditions, we can deduce that checking the consistency of delegationINs is different from
checking delegationOUTs.

As SysML lacks formalism and to automate verification, we need to formally define the SysMLmodels specifying
the architecture of a CPS. The proposed formal specification is defined in section 4.

4 FORMAL SPECIFICATION OF SYSML ARCHITECTURAL DIAGRAMS

4.1 Syntax of SysML structural diagrams
We propose a formal model to specify all SysML diagrams to analyze the architecture of a CPS specified with
SysML and verify its structural coherence. We propose formalizing the block, interface block, port, requirement,
block definition diagram, and requirement diagram.

Definition 4.1 (Formal Requirement). A formal requirement is defined by the following type:

type requirement = { id : string ; name : string ; text : string; }

- 83 is the identifier of the requirement,
- =0<4 is the name of the requirement,
- C4GC is the textual description of the requirement.

To model the requirement diagram, we first need to define a structure we will refer to as coupleReq, which is
defined by a pair that associates a requirement with a list of requirements.
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type coupleReq = requirement * requirement list

Definition 4.2 (Formal Requirement diagram). A formal requirement diagram is defined by the following type:

type reqDiagram = { iR : requirement ; sR : requirement list ; relC : coupleReq list }

- 8' is the name of the initial requirement of the diagram,
- B' is the finite set of requirements in the diagram,
- A4;� ⊆ (' ∗ % ((') is the composition relation, where % ((') is the set of subsets of SR,

Definition 4.3 (Formal Interface block). A formal model for a SysML interface block �� is defined by the following
type:

type interfaceBlock = { nameIB : string ; opIB : string list}

- =0<4G�� is the name of the interface block,
- >?�� is the set of functions that the block requires or offers.

Definition 4.4 (Formal Port SysML). The formal SysML port is defined by the following type:

type port = {nameP : string ; typeP : blocInterface ; directionP : string; connectorInterneSBC : string list }

- =0<4% is the name of the port,
- C~?4% is the interface block that types the port.
- 38A42C8>=% is the direction of the port (in or out).
- 2>==42C>A�=C4A=4(�� is the set of functions required by the block which contains this port and which
are satisfied internally by composition.

To model the Block we first need to define couplePorts, which is defined by a pair that associates two ports. In
order to represent all port connections.

type couplePorts = port * port

Definition 4.5 (Formal SysML Block). The formal SysML block � is defined by the following type:

type block = { name : string ; pinB : port ; poutB : port ; connectorsInB : port list; connectorsOutB : couplePorts
list; sRB : requirement list}

- =0<4 is the name of the block B,
- ?8=� is the In port of the block B,
- ?>DC� is the Out port of the block B,
- 34;460C8>=�=� = {(?8 , ? 9 ) BD2ℎ 0B (?8 , ? 9 ) ∈ %>ACB × %>ACB ∧ ?8 .38A42C8>= = ? 9 .38A42C8>= = �# }, the set of
connectors that link the ports of the sub-blocks (parts) with the ports of the composite block. They are
called delegation IN connectors.

- 34;460C8>=$DC� = {(?8 , ? 9 ) BD2ℎ 0B (?8 , ? 9 ) ∈ %>ACB × %>ACB ∧ ?8 .38A42C8>= = ? 9 .38A42C8>= = $*) }, the
set of connectors that link the ports of the sub-blocks (parts) with the ports of the composite block. They
are called delegation OUT connectors.

- B'� is the set of requirements that the block satisfies.
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To model the Block Definition Diagram we first need to define coupleBloc, which is defined by a pair that
associates a block to a set of blocks. In order to associate each block with its sub-blocks.

type coupleBlock = block * block list

Definition 4.6 (Formal Block Definition Diagram). The formal BDD of a system S is defined by the following type:

type fBDD = {iBs : block ; sBs : block list ; suBs : coupleBlock list }
- 8�B is the main block,
- B�B is the set of all blocks in the system,
- BD�B the set of couples that connect each block to its sub-blocks,

4.2 Static semantics
Static semantics define the meaning of the structures permitted by the syntax. It encompasses rules that ensure a
syntactically correct sequence of symbols is meaningful within the model or program’s context. In essence, static
semantics verify properties that must hold before execution, such as type correctness, proper initialization, and
adherence to logical rules that maintain the integrity of the model.

Before giving the static semantic, we introduce some useful auxiliary functions:
• BD1� (1) : the set of sub-blocks of the block b.
• 8=2;D!8BC (!1, !2) : a boolean value. It equals true if all elements of L1 are included in L2.
• B>DBCA02C8>=�;4<4=C (!1, !2) : a set of elements that exists in L1 and does not exist in L2.
• D=8>= (1.2>==42C>AB�=�) : all the services offered by all the blocks connected to the block b with a
delegation input connection

• �C><82'4@ (1) : the set of atomic requirements verified by the block b.
Given an 5 ��� 4, 4 = {81B; B1B; BD1B} and a A4@�806A0< A4@� , A4@� = {8'; B'; A4;� ; A4;�}, we can define the

static semantics as follows:
Ensure that the services provided by the abstract block are also provided by its sub-blocks. We must first

combine the services offered by all the sub-blocks connected to the abstract block’s input port. After that, we can
check if the abstract block’s services are included in the combined services of the sub-blocks.

S1 [4]
def
=∀1 ∈ B�B ∧ BD1� (1) ≠ {} ∧ ∃ (1.?8=�, ?1) ∈ 1.34;460C8>=�=� ∧ BD1� (1) ≠ {} ∧ 8=2;D!8BC

(1.?8=�.C~?4% .>?�, (D=8>= (1.2>==42C>AB�=�)))
Ensure that the sub-blocks do not require more services than the abstract block. To this matter, we add up

all the services required by the sub-blocks linked to the abstract block with a DelegationOut relationship. Then,
we subtract the services offered by internal components. At the end we check whether the remaining services
belong to the list of services required by the abstract block or not.

S2 [4]
def
=∀1 ∈ B�B ∧ BD1� (1) ≠ {} ∧ ∃ (?1, 1.?>DC�) ∈ 1.34;460C8>=$DC� ∧ 8=2;D!8BC

(B>DBCA02C8>=�;4<4=C (?1.C~?4% .>?�, ?1.2>==42C>A�=C4A=4(��) , ?2.C~?4% .>?�)
For each block B, we collect all these atomic requirements in a list L1. then, we collect all the atomic requirements

of its sub-blocks in a list L2. Finally, we check if all the elements of L1 are included in L2.

S3 [4, A4@�]
def
= ∀1 ∈ B�B ∧ BD1� (1) ≠ {} ∧�C><82'4@ (1, A4@�) ∈ �C><82'4@ (BD1� (1, A4@�))

The algorithm 1 receives a formal block definition diagram. Then, it goes through these blocks individually and
checks that each of them verifies S1 and S2. Algorithm 2 receives a formal block definition diagram and a formal
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requirement diagram. Then, it goes through these blocks individually and checks that each one verifies S3. The
implementation of these two algorithms in the OCaml language can be found in the listings 11 and 12 of the
Appendix A. Therefore, the structural consistency of our model is captured by this static semantics, our model is
consistent if the static semantics is true.

Algorithm 1 Service consistency
INPUTS :
The initial block ``bc" and the system BDD ``bdd"
OUTPUTS :
List of blocks annotated with true if the block verifies the first and the second conditions,
otherwise the block will be annotated with false

BEGIN
LET (D1� = (D1 (12, 133) and result = CAD4;
IF (S1 (bc) AND S2 (bc)) Then result = CAD4;
ELSE result = 5 0;B4;
WHILE (D�� ! = ∅ Do

LET 18 ∈ (D��,
result = result AND (S1 (18) AND S2 (18))
IF (D1 (18 , 813) != ∅ THEN
result = result AND B4AE824�>=B8BC4=2~ (18 , 133) ;

END IF
(D�� = (D�� − 18;

END WHILE;
Return A4BD;C

END

5 TRANSFORMATION TOOL
Eclipse Papyrus is an open-source modelling tool in the larger Eclipse Modeling Project. It provides a platform for
creating various models, particularly those based on standard modelling languages such as the Unified Modeling
Language (UML) and its profiles, SysML (Systems Modeling Language). Eclipse Papyrus typically saves SysML
diagrams and models in the XMI (XML Metadata Interchange) format produced by the Object Management
Group (OMG). The XMI format allows the interchange of objects and models through an XMI-formatted file.
Figures 10, 11, and 12 show an example of how SysML element data is represented in the XMI file. Figure 10

illustrates how requirements are represented. Figure 11 shows how the exigence hierarchy is represented. Figure
12 shows how the mapping between blocks and requirements is represented.

We developed a tool to automate the transformation of the SysML model into the proposed formal specification.
However, some naming conventions must be respected during the modelling process with papyrus.

- Convention 1: Block names must end with the word “block”.
- Convention 2: Interface block names must begin with the name of the associated block and end with
either “InterfaceIn” or “InterfaceOut”.

- Convention 3: Port names must end with “PortIn” or “PortOut”.
- Convention 4: The name of the delegation connectors that start from the block to parts must end with
“Delegation-IN”.

- Convention 5: The name of the delegation connectors that start from the parts to block must end with
“Delegation-OUT”.

ACM J. Emerg. Technol. Comput. Syst.
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Algorithm 2 Requirement consistency
INPUTS :
The initial system block ``bc", system BDD ``bdd" and requirement diagram ``reqD"
OUTPUTS :
true if the block verifies the third condition otherwise false

BEGIN
Let SubB = (D1 (12, 133); and finalListBc = �C><82'4@ (12);
and resultat = CAD4;

IF 5 8=0;!8BC�2 = ∅ Do result = 5 0;B4;
WHILE (D�� != ∅ Do

Let 18 ∈ (D��,
finalListBi = �C><82'4@ (18);
finalListBc = finalListBc - finalListBi;
IF (D1 (18, 133) != ∅ Do
resultat = A4@D8A4<4=C�>=B8BC4=2~ (18, 133, A4@�) ;

END IF
(D�� = (D�� − 18;

END WHILE;
IF A4BD;C == CAD4 and 5 8=0;!8BC = ∅ DO

Return CAD4

Else
Return 5 0;B4

END IF
END

Fig. 10. Requirement information representation in XMI file

The first and second conventions are necessary to differentiate between blocks and interface blocks since the
“.Uml” file generated by Papyrus uses the same tags for both. The third convention allows us to differentiate
between port In and port Out since the “.Uml” file generated by Papyrus does not allow us to differentiate between
them. The fourth and fifth conventions allow us to differentiate between the Assembly and delegation connectors.
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Fig. 11. Relationship between requirements representation in XMI file

Fig. 12. Mapping between blocks and requirements representation

6 RUNNING EXAMPLE
To illustrate our proposal, we present the case study of a CyCab car, which is a component-based system [2],
developed by INRIA 1, and considered as a case study in the ANR TACOS2 project, which is a French research
initiative. The ANR TACOS project aims to develop a component-based methodology for specifying high-safety
systems, particularly in land transportation, from the initial requirement stages to the development of formal
specifications. The CyCab is a small, electric, and automatic vehicle used as a means of transportation designed
primarily for autonomous transport. It allows users to move around via a set of pre-installed stations. It is
controlled by a computer system and can be automatically piloted in many modes.

One of the critical aspects of the CyCab system is its modular design, which enhances both maintenance and
fault tolerance. By decomposing the CyCab system into distinct sub-systems, such as the station components,
sensors, and computing units, we improve the ease of identifying and isolating faults. This decomposition not
only supports more efficient troubleshooting and repairs but also allows for the seamless integration of new
features without disrupting the existing system. This modular approach is vital for maintaining the reliability
and safety of the CyCab, particularly given its role in autonomous transport.
To illustrate our approach, we consider the following constraints: A CyCab has a dedicated road where the

stations are equipped with sensors and computing units. There are no obstacles on the road. The driving of the
CyCab is guided by the information received from the stations, which allows the CyCab to be located relative to
the stations.The (Starter ) receives a signal from the station to activate the vehicle. The vehicle is also equipped

1Institut National de Recherche en Informatique et Automatique
2Trustworthy Assembling of Components: from requirements to Specification
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with an emergency halt button associated with the Emergency Halt (EH) component. The emergency halt button
can be activated anytime during the movement of the CyCab.

6.1 Modeling
To specify the architecture of a CPS, in this case, the CyCab, we propose to use the following SysML diagrams:
the Block Definition Diagram (BDD), the Internal Block Diagram (IBD), and the Requirement Diagram (REQD).
Figure 13 represents the BDD of the composite block CyCab, which is connected by compositional relations with
its sub-blocks. And the IBD of CyCab, Station and vehicle blocks are illusstred in Figures 14, 15 and 16.

Fig. 13. Block Definition Diagram of the CyCab block

Figure 17 represents the requirement diagram of the system. the requirement GECC, Global Maximal Energy
Consuming of CyCab, indicates that the CyCab must not exceed the energy consumption limit. This require-
ment contains the requirements for the ECS (Maximum Energy Consumption of Station Component) and ECV
(Maximum Energy Consumption of Vehicle Component). The ECS requirement contains the requirements ECSS,
the maximum energy consumption of the sensor component, and ECCU, the maximum energy consumption of
the computing unit component. The ECV requirement contains the requirements ECVC, the maximum energy
consumption of the vehicle core component; ECSR, the maximum energy consumption of the starter component;
and ECEH, the maximum energy consumption of the emergency stop component.
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Fig. 14. Internal Block Diagram of the CyCab block

Fig. 15. Internal Block Diagram of the Station block

Fig. 16. Internal Block Diagram of the Vehicle block
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Fig. 17. The CyCab requirement diagram

6.2 Transformation
After modeling the Sysml diagrams, we proceed to the transformation step, We introduce the file generated by
Papyrus into the tool presented in section 5, which will generate the formal specification. However, given the
size of the case study, we will not be able to include the specification of the entire case study in this paper.
In the following we will present some specifications: In listing 1, we can find the GECC, ECS, and ECV

requirements specifications. In listing 2, we find the formal specification of the requirement diagram. In listing 3
shows the formal specifications for the vehicle input and output interface blocks. In listing 4, we find the formal
specification of the vehicle’s input and output ports and that of the VC, noting that it contains the additional
information that it is internally connected to a block that provides it with the reset service. This information
will be used when checking structural consistency. Listing 5 shows the formal specifications for the station and
vehicle block. Finally, in listing 6, we find the formal specifications for the IBD.

Listing 1. Requirements
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let gecc = { id = ``00"; name = ``GECC"; texte = ``Global energy consuming

of the Cycab: the CyCab must not exceed an appropriate maximum energy

consumption"}

let ecs = { id = ``01"; name = ``ECS"; texte = ``Global energy consuming of

the Station: the Station must not exceed an appropriate maximum energy

consumption"}

let ecv = { id = ``02"; name = ``ECV"; texte = ``Global energy consuming of
the Vehicle: the Vehicle must not exceed an appropriate maximum energy

consumption"}

Listing 2. Requirement diagram

let reqD = { iR = gecc ;

sR = [ gecc ; ecs ; ecv ; ecss ; eccu ; ecvc ; ecsr ; eceh ] ;

relC = [ (gecc , [ecs ; ecv]) ;(ecs , [eccu ; ecss]) ;(ecv , [ecsr ; eceh ;

ecvc])] ; }

Listing 3. Interface block

let vehicleininterface = { nameIB = ``vehicleInInterface"; opB = [ ``far" ;

"halt" ;"start" ] }

let vehicleoutinterface = { nameIB = ``vehicleOutInterface"; opB = [ ``spos

" ] }

Listing 4. Ports

let vehicleportin = {nameP = ``vehicleportin" ;typeP = vehicleininterface ;

directionP = ``in" ;connectorInterneSBC = []}

let vehicleportout = {nameP = ``vehicleportout" ;typeP =

vehicleoutinterface ;directionP = ``out" ;connectorInterneSBC = []}

let vcportout = {nameP = ``vcportout" ;typeP = vcoutinterface ;directionP =

``out" ;connectorInterneSBC = ["reset" ]}

Listing 5. Blocks

let stationblock = {name = ``StationBlock" ;pinB = stationportin ;poutB =

stationportout;connectorsOutB = [(cuportout ,stationportout ) ] ;

connectorsOutBIn = [( stationportin ,sensorportin ) ] ; sRB = [ecs] ; }

let vehicleblock = {name = ``VehicleBlock" ;pinB = vehicleportin ;poutB =

vehicleportout;connectorsOutB = [(vcportout ,vehicleportout ) ] ;

connectorsOutBIn = [( vehicleportin ,vcportin ) ;( vehicleporti

Listing 6. Block definition diagram

let bddD = {

iBs =cycabblock;

sBs = [ cycabblock;stationblock;vehicleblock;cublock;sensorsblock;

starterblock;vcblock;ehblock ] ;
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suBs = [ (cycabblock ,[ stationblock;vehicleblock ]) ; (stationblock ,[ cublock

;sensorsblock ]) ; (vehicleblock ,[ starterblock;vcblock;ehblock ]) ] ;

}

6.3 Structural consistency checking
Finally, after transforming the SysML models into the proposed formal specification, we verify the structural
consistency using the implementation of algorithms 1 and 2. We specify that our case study contains all the
special cases considered in our approach. The IBD of the station contains the simple cases from which the services
offered by the station must be included in the service offered by the sensors and the services required by the CU
must be required by the station. The IBD of the vehicle contains two special cases, where the services offered by
the vehicle must be included in the services offered by the VC union starter, and the services required by the
VC must be included in the services required by the vehicle, but given that it is connected to the EH input port,
we must first subtract the services offered by the EH from the list of services required by the VC. Also for the
consistency of the mapping between blocks and requirements, we must verify that the atomic requirements that
the GECC (ECSS, ECCU, ECVC, ECSR, ECEH) block verifies are included in the atomic requirements that the
ECS(ECSS, ECCU) union ECV (ECVC, ECSR, ECEH) block verifies.

Figure 18 shows the result of verifying our model. We can see that all the blocks are annotated with “consistency
is verified”. Therefore, we can say that our model is structurally consistent.

Fig. 18. Result of the consistency verification

Now, if the Station block offers an extra service of switching “off” the station (see Figure 19), The formal
specification of the input block interface will be represented as follows:

let stationininterface = { namexB = ``stationInInterface"; opB = [ ``spos"

; ``off" ] }

Figure 20 shows the result of verifying the model after the modification. We can see that the block Station is
inconsistent because the CU and Sensor sub-components cannot provide the service of turning off the station.
Specifically, the inconsistency arises because neither of these sub-components offers the “off” service that is
required by the Station block. For our system to be consistent, one of the sub-components of the Station that
is connected with an IN delegation connection must offer the “off” service. This inconsistency was avoided in
our approach by ensuring that all required services for a composite block are provided by at least one of its
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sub-components. Without this verification step, the system might behave unexpectedly or fail to perform critical
operations, such as turning off the station. Our approach helps identify such inconsistencies early in the design
process, thereby ensuring the robustness and reliability of the CyCab system.

Fig. 19. Station block with OFF service

Fig. 20. Verification result after editing the station interface

7 DISCUSSION ABOUT THE APPLICABILITY OF OUR APPROACH ON SYSML V2
In SysML v1, associations are commonly used to model port connections. However, these associations are
abstract and do not provide details about the connection between ports. This abstraction can lead to potential
inconsistencies, as there is no explicit mechanism to ensure that the services required by one port are provided by
the connected port. SysML v2 [1] addresses these limitations by introducing interfaces that rigorously define port
connections. Defined by interface definitions (interface def), specify the connection protocols and the services
that must be provided or consumed by the connected ports. Table 1 gives some correspondence from SysML v1
to SysML v2.

Table 1. Mapping between SysML v1 and SysML v2

SysML v1 SysML v2
Part property / Block Part / Part def

Proxy port / Interface block Port / Port def
Interface / Interface def

Even if SysML v2 significantly improves modeling by introducing interface definitions that define connection
and binding port services, it still needs to detect the structural inconsistency we propose in our approach. To
illustrate this, we modeled the CyCab’s Station structure with SysML v2 (see Listings 7, 8, 9, 10) and included
a service that the station offers ”off”. Figure 21 illustrates the IBD of the station generated from the textual
notation. After building the project, no errors were detected, although a consistency condition was broken when
an abstract block “Station” offers more services than the composition of its sub-blocks (Sensor,Cu). This underlines
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the need for our proposed structural consistency check to guarantee the integrity of these models. While our
approach is applicable to SysML v2, it requires adaptation to accommodate the textual notation specific to SysML
v2. The new structure, including interface definitions and connection protocols, necessitates adjustments in the
algorithms used for structural consistency checking. These modifications will ensure that the integrity of the
models is maintained within the SysML v2 framework, thereby extending the utility of our approach in this
updated context.

Listing 7. Port def

port def IB_Station_in {
in ref action pos {}
out ref action halt {}
out ref action far {}
out ref action off {}}

port def IB_Station_out {
out ref action halt {}
out ref action far {}}

port def IB_Sensor_in {
in ref action pos {}
out ref action spos {}}

port def IB_Sensor_out {
out ref action spos {}}

port def IB_CU_in {
in ref action spos {}}

port def IB_CU_out {
out ref action halt {}
out ref action far {}}

Listing 8. interface def

interface def Station_Sensor_Interface{
end port pp : IB_Station_in;
end port pp_conj : IB_Sensor_in;
bind pp_conj.pos = pp.pos;}

interface def Sensor_CU_Interface{
end port pp : IB_Sensor_out;
end port pp_conj : IB_CU_in;
bind pp_conj.spos = pp.spos;}

interface def CU_Station_Interface{
end port pp : IB_CU_out;
end port pp_conj : IB_Station_in;
flow pp_conj.far to pp.far;
flow pp_conj.halt to pp.halt;}

Listing 9. Part def

part def Station {
port pStation : IB_Station_in;
port pStation_out : IB_Station_out;
part def Sensor{

port pSensor : IB_Sensor_in;
port pSensor_out : IB_Sensor_out ;}
part def CU{
port pCU : IB_CU_in;
port pCU_out : IB_CU_out ;}
connection def Station_Sensor {

end part block1 : Station;
end part block2 : Sensor;
interface :Station_Sensor_Interface connect block1.pStation to block2.pSensor; }

connection def Sensor_CU {
end part block1 : Sensor;

end part block2 : CU;
interface :Sensor_CU_Interface connect block1.pSensor_out to block2.pCU;}
connection def Cu_Station {
end part block1 : CU;
end part block2 : Station;
interface :CU_Station_Interface connect block1.pCU_out to block2.pStation ;} }

Listing 10. Sensor usage

part station : Station {
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part sensor : Sensor {}
part cu : CU{}
interface : Station_Sensor_Interface connect pStation to sensor.pSensor;
interface : Sensor_CU_Interface connect sensor.pSensor_out to cu.pCU;
interface : CU_Station_Interface connect cu.pCU_out to pStation_out ;}

Fig. 21. Station IBD in SysML v2

8 RELATED WORK
This section reviews some related work done by researchers in the field of structural consistency verification and
contrasts our approach with contract-based design approaches.

In [3], the authors propose verifying the consistency between the architectural views of various heterogeneous
models and the base architecture (BA) of the complete system by using typed graphs to represent architectural
views and the base architecture. The consistency between a view and the base architecture can be reduced to the
existence of an appropriate graph morphism between the typed graphs of the view and the base architecture. In
[13], the authors propose a methodology for validating static properties using Z, a formal specification language,
to formally express and verify a CPS modeled using UML deployment diagrams. The authors in these works do
not use SysML to model their systems.
Many authors have been working on the verification of the structural consistency of UML diagrams. The

authors in [11] define formal semantics for UML sequence diagrams, ensuring consistency between sequence
diagrams and other UML models like class diagrams and state diagrams. The formal semantics they present
involve checking the consistency of sequence diagrams with class diagram declarations and their hierarchical
structure. In [5], the authors provide a formal approach to the traceability of requirements and consistency
verification in UML models. The authors propose a framework for verifying UML diagrams, including syntactic
correctness, inter-diagram consistency, and requirement traceability. The authors in [18] focus on systematically
identifying consistency rules for UML diagrams. Their research aims to provide an updated and consolidated set
of UML consistency rules, offering a detailed overview of the current standards in this area. The study emphasizes
the interdependence of different UML diagrams and the necessity for them to maintain consistency with each
other to ensure the accuracy and integrity of software design models. However, none of these works included the
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internal block diagram or requirement diagrams when checking structural consistency. Other works focused on
verifying the consistency between model-based security analysis (MBSA) and model-based systems engineering
(MBSE). The authors in [8] focus on ensuring structural consistency between MBSE and MBSA models by using
consistency links to build confidence in the security analysis. The authors in [19] propose an approach for
harmonizing systems engineering and security assessment models. This is achieved by verifying the structural
consistency of these models through three key elements: blocks, ports, and connections and support the languages
that integrate them, such as SysML. Unlike our approach, which uses structural consistency to check whether
the decomposition of a system is correct, this work verifies the structural consistency between MBSE and MBSA.
In various related works, authors often transform SysML specifications into formal representations like

automata or Petri nets to enable verification, which typically requires detailed behavioral specifications. For
example, in [4], SysML blocks are first translated into automata using behavioral diagrams to achieve formal
verification. While this transformation allows a comprehensive verification, it heavily depends on the availability
of behavioral specifications, which may not be feasible in the early stages of system design. Our approach, in
contrast, introduces a formal specification framework based on consistency rules that can be derived solely
from the structural specification of the system. This enables early verification of structural consistency without
requiring behavioral specifications, thus providing a critical advantage in ensuring system integrity at an early
design stage.
Contract-based design approaches provide a way to analyze both structural and behavioral properties of

diagrams. Formalisms and tools, such as AGREE (Assume Guarantee REasoning Environment) [7] uses composi-
tional reasoning to verify component-level assumptions and guarantees within a system architecture. PACTI
(Passivity And Compatibility for Timed Interfaces) [9] focuses on checking the passivity and compatibility of
timed interfaces, while OCRA (Operational Contracts for Real-time Applications) [6] leverages contracts to
ensure the correct behavior of real-time systems. Our approach, focused on verifying the structural consistency
of SysML models, complements these contract-based methods by ensuring the logical soundness and proper
interaction of components before detailed behavioral specifications are considered. By integrating structural
consistency verification into the early stages of CPS design, we provide a foundation for subsequent behavioral
verification using contract-based approaches.

9 CONCLUSION AND PERSPECTIVES
Given the increasing complexity of cyber-physical systems, this paper proposes a new approach for verifying
the decomposition of a CPS using the SysML language. By enabling increased modularity, flexibility, and fault
tolerance, this decomposition is a crucial step towards ensuring the safety and reliability of these systems.
The approach consists of an early verification of the structural consistency of cyber-physical systems modeled
with SysML structural diagrams before defining behavioral aspects. To formalize this verification process, we
address SysML’s limitations for formal verification and introduce syntax and static semantics for structural and
requirement diagrams. These enhancements allow us to verify a set of structural consistency rules within a
refinement relation, ensuring the formal verification of structural consistency within the model. To demonstrate
the effectiveness of our approach, we have applied it to a case study involving the design of a cyber-physical
system for a self-driving taxi service known as the CyCab.

While the current approach only addresses the problem of structural consistency of structural and requirements
diagrams. We believe that future research could involve extending the verification rules to cover behavioral
diagrams and more rules for structural diagrams.
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A PROGRAMS
In 11 and 12, we can find a proposal implementation of the algorithms 1 and 2 in the OCaml language using the
OCaml SysML specification proposed in section 4. The first program receives a block definition diagram (bddD)
and the initial block (b) as input, while the second program receives a block definition diagram (bddD), the initial
block (b), and the requirement diagram.

Listing 11. Service consistency verification

let first = ref 0 ;;
let rec serviceConsistency b bddD = let suBb = ref (fsuB b bddD.suBs) in

let result = ref true in
if (S1 b.connectorsOutB) && (S2 b) then (result := true) else (result := false ) ;
if !first == 0 then

if !result then Printf.printf ``The consistency is verified : %s\n%!" b.name else Printf
.printf ``Error in the consistency : %s\n%!" b.name ; first := 1;

suBb := supp b !suBb;
while !suBb <> [] do

match !suBb with
|[] ->()
|hd::l -> (

if !result == false then (result := true) ;
if fsuB hd bddD.suBs <> [] then

result := !result && S1 hd.connectorsOutB && S2 hd;
if !result then Printf.printf ``The consistency is verified : %s\n%!" hd.name else

Printf.printf ``Error in the consistency : %s\n%!" hd.name ;
if fsuB hd bddD.suBs <> [] then result := !result && serviceConsistency hd bddD;
suBb := supp hd !suBb; )

done;
match !result with

true -> true;
| false -> false ;;

Listing 12. Requirement consistency verification

let first = ref 0 ;;
let rec requirementConsistency b bdd reqD = let suBb = ref (suB b bdd.suBs) in

let finalList = ref (AtomicReq b reqD)in
let result = ref true in
if !finalList = [] then result := false else result := true;
if !first2 == 0 then

if !result then Printf.printf ``The consistency is verified : %s\n%!" b.name else
Printf.printf ``Error in the consistency : %s\n%!" b.name ; first2 := 1;

while !suBb <> [] do
match !suBb with
|[] -> ()
|hd::l->

(let finalList2 = ref (AtomicReq hd reqD) in

ACM J. Emerg. Technol. Comput. Syst.

 

https://doi.org/10.3390/app12125880


24 • Adel Khelifati et al.

finalList := soustractionElement !finalList !finalList2;
if suB hd bdd.suBs <> [] then result := requirementConsistency hd bdd reqD;
if !result then Printf.printf ``The consistency is verified : %s\n%!" hd.name else

Printf.printf ``Error in the consistency : %s\n%!" hd.name ; suBb := supp
hd !suBb; )

done;
match (! result , !finalList) with

true , [] -> true
| _ , _ -> false;;
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