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Abstract

Landslide processes are one of the dominant agents of erosion and sediment transport on
sediment-mantled slopes in arctic environments. Increased landslide activity is anticipated as
climate change is projected to decrease mountain slope stability. High-Arctic environments
serve as crucial observatories for investigating current and future landslide dynamics within a
changing climate, particularly due to arctic amplification effects. Despite the significance of
Arctic regions, empirical evidence regarding landslide processes in high latitudes is often
lacking. This scarcity can be attributed to the absence of long-term, high-resolution terrain
data with sufficient temporal resolution to assess the impact of meteorological boundary
conditions on landslide dynamics altered by climate change. However, addressing this gap in
empirical evidence is essential for understanding the complex interplay between
meteorological variables and landslide evolution in Arctic environments. This study presents
a unique high-resolution remote sensing dataset within a high-Arctic glacier basin acquired
over a 10-year period. Through the combination of terrestrial laser-scanning and an
autonomous camera network, we were able to investigate the impact of meteorological
boundary conditions on the trigger mechanisms of landslides and unravel paraglacial slope
evolution following recent glacier retreat on the example of the Austre Lovénbreen glacier
basin (Svalbard, Norway). During the observation period, 171 distinct landslide events were
identified. Translational debris slides accounted for approximately 96% of the total sediment
flux observed, with debris flows acting as a secondary agent of sediment transport. The
landslide activity significantly increased between 2011 and 2021. Heavy rainfall events
primarily influence the frequency and magnitude of landslides during the hydrological summer,
while the duration and intensity of the thawing period serve as the principal control for landslide
initiation. In conclusion, this study highlights the significant impact of meteorological factors
on landslide frequency and magnitude within high-Arctic glacier basins, shedding light on the

dynamics of paraglacial slope modification in Arctic environments.
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1. Introduction

Landslides are one of the most dominant erosion and sediment transport processes in
mountainous terrain and often pose a significant risk to communities and infrastructure
worldwide (Ballantyne, 2002; Gariano & Guzzetti, 2016; Zangerl et al., 2008). Climate change
influences a wide range of processes (e.g. glacier retreat, permafrost thaw), which are
projected to decrease the stability of mountain slopes (IPCC, 2014). From a theoretical view,
there are clear indicators that climate change will lead to increased landslide activity (Crozier,
2010; Gariano & Guzzetti, 2016; Huggel et al., 2012; Seneviratne et al., 2012). However,
empirical evidence is often lacking as meteorological boundary conditions altered by climate
change may have different and often contrasting effects on landslide processes(Gariano &
Guzzetti, 2016; IPCC, 2014). As the rate of measured global temperature change increases
with latitude and elevation (Francis et al., 2017; Pepin et al., 2015), high-Arctic environments
are an important observatory for investigating current and future landslide dynamics (Patton

et al., 2019).

Paraglacial slopes are constantly subjected to terrain changes by gravitational mass wasting
processes (e.g. landslides, surface wash, snow avalanches) due to the rapid adjustment of
recently deglaciated landscapes to nonglacial conditions (Ballantyne, 2002; Church & Ryder,
1972). The rapid readjustment of rock walls and drift-mantled slopes through landslide
processes (e.g. rockfall, debris flows and debris slides) may lead to the formation of complex
sediment-mantled slope systems, whose temporal and spatial evolution are influenced by
lithological, glaciological, climatological and topographic conditions (Akerman, 1984; André,
1990, 1996; Ballantyne, 2002; Harris et al., 2009; Jahn, 1967; Mountains et al., 1976; Rapp,
1960)The results of these erosion and sedimentation processes can be seen in the vast areas

of reworked sediment draped over the slopes of Svalbard (De Haas et al., 2015).
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Landslides are a mass of rock, debris or earth moving down a slope (Cruden, 1991), which
develop in time through several stages (Terzaghi, 1950). Besides the material, landslide
processes are structured into different movement types, such as falling, toppling, sliding,
flowing, spreading and slope deformation (Hungr et al., 2014). This study focuses on the
formation of different landslide types (e.g. translational debris slides, debris flows) and hence
utilises the established landslide terminology developed by Cruden & Varnes (1996) and

updated by Hungr et al., (2014).

Translational debris slides are characterised by the downslope movement of granular material
on a planar surface, which may develop flow-like features after moving a specific travel
distance (Hungr et al., 2014). Debris slides are often described as active layer detachments
within permafrost literature and, therefore, related to the thermal impact of these slope-
destabilizing phenomena (e.g. Ballantyne, 2002; French, 2013; Lewkowicz & Harris, 2005). In
contrast, debris flows are rapid and long runout surging flows of water-saturated debris in
established gullies or drainage channels, entraining material along their flow path, which may
lead to the formation of debris fans and levees (Ballantyne, 2002; De Haas et al., 2015; Hungr

et al., 2014).

The impact of landslides on paraglacial slopes is well documented by many authors and
embedded in the paraglacial concept (Ballantyne, 2002; Church & Ryder, 1972). Numerous
studies have investigated talus slope volumes to derive rock wall retreat rates (André, 1986;
Berthling & Etzelmdiller, 2007; Matsuoka, 1991; Rapp, 1960; Siewert et al., 2012). Others
focus on the duration of paraglacial periods affecting the slopes (Mercier et al., 2009). The
ongoing paraglacial response of sediment-mantled slopes through landslide processes has
been assessed and mapped (Curry, 1999; De Haas et al., 2015; Mercier et al., 2009; Rapp,
1960; Tolgensbakk & Sollid., 1980). However, data on the impact of meteorological factors
such as phases with strong rainfall and elevated temperature on the formation of distinct

landslides in the surroundings of retreating glaciers are rare, especially for the high-Arctic
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environment. The reason for this is the lack of long-term terrain data, with a spatiotemporal
resolution high enough to detect slope processes reaching depths of only a few meters, as
suggested by Patton et al. (2019). This study attempts to fill data gaps by applying multi-
temporal terrestrial laser scanning on slopes of the Austre Lovénbreen glacier basin in
Svalbard to investigate the formation characteristics and the temporal evolution of landslide
processes under climate change. Thus, the objectives of this study comprise i) to provide
multi-temporal high-resolution terrestrial laser scan data, ii) identification, characterisation,
and quantification of landslide processes, and iii) investigating the preparatory and triggering
factors for the spatiotemporal evolution of landslides within the Austre Lovénbreen Basin.
Furthermore, we show that translational debris slides are the primary source of sediment
transport on steep sediment-mantled slopes in a high-Arctic glacier valley and that

meteorological factors significantly influence spatial and temporal development.

2. The Austre Lovénbreen glacier basin

The Austre Lovénbreen basin is dominated by the Austre Lovénbreen glacier, a small land-
based polythermal glacier (Irvine-Fynn et al., 2011) with an elevation ranging from 50 to 550
m a.s.l. The glacier has shown a constant but irregular retreat since the Little Ice Age, and in
2013, it covered a surface area of 4.61 km?, less than 43% of the total basin surface of
approximately 10.45 kmz2. In contrast, the glacier covered almost the entire proglacial area in
the 1930s and about 50% of the basin in the 1980s (Hagen et al., 2003; Marlin et al., 2017).
However, recent studies showed that significant amounts of glacier ice are located below the
sediment-mantled slopes, yielding a 10% uncertainty on the glacier area (Bernard et al.,
2014).The present-day glacier is constrained by alpine mountain peaks, such as Slattofjellet
(580 m a.s.l.), Haavimbfjellet (783 m a.s.l.), and Nobilefjellet (876 m a.s.l.) and the proglacial

area in the north (Figure 1).
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The slopes of the Austre Lovénbreen basin are composed of steep rock walls in the upper
section and unconsolidated angular debris formed by paraglacial erosion processes in the
lower section, which were glacially reworked in several areas. These loose slope sediments
adjust to their natural slope angle, which ranges from 38 to 42°, and thus are highly susceptible

to landslide processes, leading to ongoing morphological changes.
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Figure 1: Geographical and geological setting of the Austre Lovénbreen study site. A) Geological map
of the study site based on the field surveys; Lineations of structural features adopted from Hjelle et al.
(1999); B) Overview map of the Braggerhalvaya with Ny-Alesund and the Study site; C) Extent of the

Austre Lovénbreen glacier in 2017 as seen from NW, with surrounding mountain peaks.

Geologically, the Austre Lovénbreen basin is located in the Kongsvegen group, situated along
the northernmost part of the Tertiary fold and thrust belt of western Spitsbergen, accompanied

by several north-south striking faults and characterised by nine NE- to NNE-vergent thrust
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sheets (Barbaroux, 1967; Bergh et al., 2000; Hjelle et al., 1999; Saalmann & Thiedig, 2001,
2002). The Kongsvegen group consist of low to medium metamorphic rocks, including mica
schists interlayered with marble, quartzite or gneisses, having the highest metamorphic grade
(Bogegga Formation), the greyish to yellowish dolomite marbles (Steenfjellet Formation) and

phyllites with quartzite layers (Nielsenfjellet Formation) (Hjelle et al., 1999).

Located at 78°N, the study site is characterised by a high arctic maritime climate (Eckerstorfer
& Christiansen, 2011). The North Atlantic current moderates the temperature at Svalbard
compared to other regions at the same latitude (Maturilli et al., 2019), resulting in a mean
annual air temperature (MAAT) of - 4 °C in Ny-Alesund, 4 km from the Austre Lovénbreen
glacier, between 1991 and 2020. The snow cover period typically extends from September or
October until June. The average annual precipitation in Ny-Alesund is around 470 mm, with a
peak of monthly precipitation in autumn and winter. However, the amount of precipitation has
been rising sharply in the last few years. The recent temperature increase due to global
warming has been more pronounced around Svalbard than anywhere else on Earth (IPCC,
2021; Nordli et al., 2014). The MAAT in Ny-Alesund increased from -5.7 °C between 1980 and

2000 to -3.6 °C between 2000 and 2020.

3. Material and Methods

3.1. Lidar data acquisition and processing

Terrestrial lidar data acquisition was performed annually from 2012 to 2018 and twice in 2021
using a Riegl LMS-420i (2012), a Riegl LPM-321 (2013-2015) and a Riegl VZ-6000 (since
2016) (RIEGL, 2010a, 2010b, 2016). TLS campaigns in 2019 and 2020 were impossible due
to difficult pandemic restrictions. Two campaigns were conducted in 2021, capturing the pre-
failure (e.g., no observable landslides; 2021-1) and the post-failure state (2021-2). The
technical upgrade of the utilised equipment has followed the overall improvement of available

terrestrial lidar technology since 2012, increasing overall performance (e.g., range, beam
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divergence, resolution, measurement speed) (Telling et al., 2017). The increased range of the
Riegl VZ-6000, allowed the implementation of additional scan positions (e.g., Haavimbfjellet
peak). Since 2016, monitoring almost the entire glacier basin (>95%) has been possible,
whereas previous scans were only conducted in the context of individual slopes. Data gaps
result from occlusions (e.g., crevasses, meltwater channels) and meltwater on the glacier
surface (e.g., laser beam absorption) (Abellan et al., 2014; Prokop, 2008). Referenced colour
images were acquired by the internal camera of the VZ-6000 or a calibrated high-resolution
digital camera mounted on the respective laser scanners. The data acquisition was performed
at the end of the ablation period and in sync with the measurement of the ablation stakes

(Friedt et al., 2012) installed on the Austre Lovénbreen glacier.

More than 300 scans from 13 different scan positions were carried out, resulting in point cloud
resolutions between approx. 0.05 m and 0.40 m within the study site (approx. 0.05 m to 0.20
m at the sediment-mantled slopes). Georeferencing, fine registration of individual laser scans
and subsequent multi-temporal registration was done using an ICP algorithm implemented
within the Riegl RiISCAN Pro software (Besl & McKay, 1992; Chen & Medioni, 1991; RIEGL,
2013). A reference point cloud, derived from an available 5x5 m Digital Elevation Model (DEM)
in UTM coordinates (EPSG:25833), was used for geo-referencing the TLS data (MET Norway,
2021). The DEMs used in the further distance change analysis were derived for every TLS
campaign from the registered and geo-referenced point clouds within CloudCompare with a
resolution of 0.25x0.25 m (CloudCompare, 2021). Interpolation of the data was not performed

to avoid the introduction of errors.

3.2. Mapping and volume calculation

Analyses of terrain changes were investigated through DEMs of Difference (DOD) created
with the software Geomorphic Change Detection 7.4.1.0 (Wheaton et al., 2010) and diffuse

hillshades created with the ambient occlusion method implemented in SAGA GIS (Tarini et
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al., 2006). A spatially variable level of detection with a confidence interval of 95% (LOD95%)
was calculated to differentiate between real changes and data noise (Fey & Wichmann, 2017;
Lague et al., 2013; Prokop & Panholzer, 2009). Landslide processes (e.qg., debris slides, debris
flows) were mapped based on the DOD and hillshades and validated by field surveys. The

results were used as Areas of Interest (AOI).

Several debris slides had their runout onto the glacier. Thus, it was not possible to quantify
the accumulation zone as the exact elevation of the glacier surface during individual sliding
events could not be determined. Therefore, the volume of each debris slide was investigated
using AOI masks of the zone of depletion (Cruden & Varnes, 1996) to reduce uncertainties in

the qualitative analysis and avoid quantifying the adjacent glacier ice volume changes.

3.3 Automated camera system monitoring and image analysis

A comprehensive investigation of causal relationships between meteorological conditions and
the spatial and temporal occurrence of debris slides within the Austre Lovénbreen basin
requires higher temporal resolution than annually performed TLS measurements. Therefore,
a network of autonomous operating cameras (Figure 2) from the long-term observatory project
monitoring the Austre Lovénbreen since 2007, providing a surface coverage of 96% of the
glacier and the adjacent slopes (Bernard et al., 2013; Friedt et al., 2023). Thus, the date of
failure, triggering mechanisms and temporal evolution of individual debris slides could be
investigated, provided that visibility was not limited by poor weather. Furthermore, the
identification, dating and quantification of landslides occurring in the years 2019 and 2020 was
done by the available camera images. An additional TLS campaign in early 2021, before any
seasonal landslide activity occurred, allowed to mitigate data gaps in the time-series of the

annual landslide activity. Furthermore, the camera data allowed for a qualitative analysis of
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landslide activity since 2007 within the Austre Lovénbreen basin, extending the observation

period by five years.

438000 439000 440000

438000 439000 440000

Figure 2: Automated camera system monitoring within the Austre Lovénbreen basin. A) Locations of
the autonomous cameras with their individual viewshed. B Camera setup is located on a ridge
southwest of the glacier basin. C) Examples of pictures taken by the northernmost automated camera

system before (left; 14.08.2015) and after (right, 16.08.2015) a small debris slide located on Slattofjellet.

The cameras provided up to three images per day depending on the polar sun cycle and
meteorological boundary conditions. Typical for systems installed in such harsh conditions,
data gaps are associated with temporary system or data storage failure(Bernard et al., 2013).
Analysis of the more than 53.500 images was done manually, as the image's resolution for
the different slopes, combined with lighting and contrast variations, did not allow for an
automated analysis. Due to insufficient image resolution, the identification of landslide
processes on slopes with large distances to the cameras (>1000 m) was limited to mass
movement >100 m3.

10
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3.4 Meteorological data

In this study, meteorological data from two stations were used: I) the airport meteorological
station in Ny-Alesund 8 m a.s.l., roughly 5 km east of the Austre Lovénbreen basin (Maturilli
et al., 2019); and Il) an IPEV Automatic Weather Station located on a ridge southwest of the

glacier basin, approx. 450 m a.s.l. (Bernard et al., 2013).

All meteorological variables used in this study were based on hourly measurements of
temperature and precipitation. MAAT and freezing degree days (FDD) were calculated for the
hydrological year, defined from 1 October to 30 September, to encompass the entire snow
season. The cumulated thawing degree days (TDD) were calculated for full calendar years or
till the failure date of a specific landslide (TDD @ failure), as the main energy source is solar
radiation during summer (Christiansen et al., 2013). In addition to the observation sites, FDD
and TDD were also calculated for different altitudes based on the daily average temperature

gradient between Ny-Alesund and the On-Site station.

Cumulative precipitation parameters were calculated for the hydrological year and the
hydrological summer (1 May to 30 September) to further investigate the influence of rainfall
events in the summer without considering the large quantities of snow falling during the winter
months. In order to assess the influence of heavy precipitation events, the cumulative squared
daily precipitation (Cum. Percipitation?) was used. Daily precipitation data is squared and
consequentially summed up for the entire hydrological summer (Cum. Percipitation2s) or till
the failure date of a landslide (Cum. Percipitation?,s @ failure), assuring that higher rainfall
intensities have a higher impact on the statistical analysis than represented by the cumulative
daily precipitation as shallow planar debris slides are frequently triggered by extreme rainfall

(e.g. Hungr et al., 2014; Peruccacci et al., 2017).
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4. Results

4.1. Landslide formation and characterisation

The Haavimbfjellet and Slattofjellet primarily comprise low-strength and penetrative foliated
phyllites of the Nielsenfjellet Formation, which act as the main starting area for rock falls
(Figure 1 A). No indications of deep-seated landslide phenomena (e.g. tension cracks, graben,
uphill facing scarps) within the Austre Lovénbreen basin could be identified, as commonly
found in similar lithology (Agliardi et al., 2001; Macfarlane, 2009; Zangerl et al., 2010). Glacial
till deposits dominate the current pro-glacial area, reworked by glacio-fluvial erosion.
Sediment-mantled slopes can be observed beneath the steep rock slope sections, reaching

either pro-glacial till deposits or the current glacier surface.

The sediment-mantled slopes are constantly reworked by debris flows, translational debris
slides, and snow avalanches in the winter. Furthermore, the high rockfall activity observed
during the summer provides additional sediment influx. The slope angle of the sediment-
mantled slopes varies between 34 - 40°, whereas areas of intense avalanche activity or debris
flow activity, on average lead to gentler slope angles than sections predominantly formed by

rockfalls.

Between the in-situ bedrock and the scree, a distinct subsurface ice layer is observed in the
Austre Lovénbreen basin, temporarily exposed after a slope failure. Thus, the extent of the ice
layer could be mapped in areas of debris slide activity, and additional data about the scree
thickness could be derived from DODs. GPR measurements by (Bernard et al., 2014) have
shown that the thickness of the ice layer can reach up to several meters and is connected to

the main ice body, given contact of the glacier to the foot of the slope.

12
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Figure 3: DEMs of Difference (TLS data: 2016/2017) and corresponding photographs of debris slides
in 2017. Scarps of the debris slides are visible in the DODs, with red colours uphill corresponding to
debris ablation and blue colours downhill corresponding to debris accumulation. A) Several debris slides
at the snout of the glacier looking upward towards Haavimbfjellet in 2017, triggered by heavy rainfall.
The sub-surface ice layer is exposed up to 115 m above the glacier surface. B) Debris slide at the
slopes of Slattofjellet triggered without any rainfall. An older debris slide deposit with approx. 12 m
height can be seen south of the new deposits (which occurred prior to 2007). The debris slide south of
the older deposit occurred in late 2016 (after the TLS campaign; observed through camera footage)

and thus is visible in the DOD 2016-2017 but not in the provided photo.

An ice layer could also be found on sections of the talus slopes with no direct connection to
the glacier since the 1970s and extends to a height up to 140 m above the present glacier

elevation. Using DODs, a spatial quantification of the talus thickness above the ice layer was
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possible. Hence, it was found that the overall talus thickness gradually decreases from the
glacier front towards the accumulation zones until a relatively thin veneer of diamicton remains

between the rock walls and the glacier ice.

Translational debris slides, and to a lesser extent debris flows, dominated the recent surface
evolution of the slopes found within the Austre Lovénbreen glacier catchment during the
observation period (Figure 3). However, the dominance of observed landslide processes on
the slopes and sediment flux changes significantly from North to South, which also follows the
overall NS-axis of the glacier. The sediment-mantled slopes can be divided into three sections:

[, I, and 11I.
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Figure 4: Overview of all observed landslides from 2011 to 2021 within the Austre Lovénbreen basin
with Detail Views of the most landslide-prone slopes. The slopes were differentiated depending on the
dominant landslide processes observed (Sections |, Il, and Ill, indicated in red). Profile A-A’ is indicated

within Detail View 1.

Section |) is located beyond the extent of the lateral moraines of the Austre Lovénbreen and
Midtre Lovénbreen (Figure 4). The foot of the slope has been glaciated during the maximum
extent of the LIA in 1920, as seen in aerial photographs. The predominant agents of sediment
transport during the observation period were debris flows (n = 11), also indicated by the much
gentler slope angles (33 - 37°) found in Section | than anywhere else observed within the study

area. Furthermore, the talus slopes are deeply incised by debris flow channels, which are
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often framed by levees. No debris slides (n = 0) have been observed within this area, and no

indication of debris slide deposits could be found.

Section 1) has experienced gradual deglaciation since the 1970s, as seen in Marlin et al.,
(2017). The most dominant landslide processes are translational debris slides (n = 18) and, to
a lesser extent, debris flows (n = 4). The debris flows occurred during the observation period
only in the upper section of the talus slopes without reaching the valley floor (Figure 4).
However, older debris cones with distinct debris flow channels and levees are located within
this section. Lobate debris slide deposits are common at the foot of the slope and have been

observed forming on the previous glacier surface or adjacent to the glacier.

Section Ill) comprises talus slopes in contact with the currently retreating glacier and is the
largest area. The talus evolution is dominated by translation debris slides (n = 129) that can
be found on all talus slopes adjacent to the current glacier extent. Runout lengths of up to 25
m (Figure 3B & 5C) could be observed forming lobate debris slide deposits. Limited debris
flow activity (n = 6) was observed during the observation period, responsible for less than 2%
(Figure 7 & Table 1) of the total sediment flux observed on the slopes. Debris flow channels

are merely superficial (< 0.5 m depth), and the formation of levees could not be observed.

4.2. Landslide kinematics

The translational debris slides observed within the study site are defined by their shared
rupture surface formed at the contact zone between the talus scree and the subsurface ice
layer present within the slopes of the Austre Lovénbreen basin. As observed through the

image analysis, they show a rapid first-time failure primarily initiated by heavy rainfall events.
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326  Figure 5: Overview of the Austre Lovénbreen glacier from the summit of Haavimbfjellet with cascading
327 detail views; peaks and Ny-Alesund are indicated. A) Photograph of the talus slopes of Slattofjellet
328  adjacent to the glacier. B) Hillshade of the 2017 TLS, Profile A-A’ is indicated; C) Photo of the largest
329 debris slide deposit found within the study site; person for scale. The camera system documented the
330 initial failure in 2010. D) Trench at the front of the debris slide deposit. A solid ice core could be found

331  after approximately 40 cm.
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Due to the similarity regarding the kinematics of the observed translational debris slides, it was
possible to identify five phases of debris slide induced evolution. The slope along Profile A-A’
(Figure 5B) has been chosen to visualise the ongoing slope adjustment through a documented
representative example as high-resolution TLS data since 2014 is available, and no previous
slope failure could be identified. Thus, the entire process chain could be observed in one
example. Therefore, the schematic cross-sections (Figure 6) are based on the TLS data of the
observed debris slide events between 2017 and 2021. However, the thickness of the sediment
layer, debris slide deposits, subsurface ice layers and the ablation of the glacier are
exaggerated within the model by a factor of 1:2 to allow for better visibility. The initial pre-
failure topography (TLS 2016) and the 1936 topography (Girod et al., 2018) have not been
altered to preserve the original slope angle and provide a conformal representation of the

morphology of the pre-failure slope.

Phase 1 depicts the typical sediment-mantles (pre-failure) slope system within Section Il of
the Austre Lovénbreen basin. The upper section is characterised by steep rock walls
consisting of low-strength phyllites with quartzite interlayers (S166/34) with scree deposits
below extending onto the glacier until a thin veneer of rockfall and snow avalanche deposits
remains. The glacier has lost roughly 55 m in elevation between 1936 (Girod et al., 2018) and
2016. Furthermore, (Bernard et al., 2014) have shown that a significant amount of glacier ice
continues below the current extent of the talus. Field observations after several slope failures
indicate the presence of a sub-surface ice layer (Figure 3) at least to an elevation of 299 m
a.s.l., which is approximately 94 m above the glacier level in 2016 at this position. The full
extent and thickness of the ice layer in the upper sections of the slope at Profile A-A’ is not

known and thus only inferred (Figure 6A).

Phase 2 is characterised by a rapid first-time failure followed by retrogressive sliding above
the main scarp. On 27.08.2017, a translational debris slide occurred at profile A-A’ as the sub-

surface ice layer was exposed, which acted as the rupture surface. Retrogressive sliding
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above the main scarp started soon after, until the exposed ice layer was covered with sediment
within approximately five weeks (until 06.10.2017). The primary debris slide deposit had a
volume of 3181 + 318 m?3 with a runout length of roughly 8 m onto the glacier surface, which
formed a lobate tongue-shaped deposit. The maximum scarp height was approximately 4.20

m, as shown via DOD.

The slope failure occurred after a two-week period of increased air temperatures, with daily
maxima reaching up to 11.3°C in Ny-Alesund three days prior. Limited rainfall was observed
within the two weeks prior to the slope failure. Quantifying the glacier ablation until the initial
slope failure was impossible. However, the ablation at the foot of the slope between the

corresponding TLS campaigns (17.08.2016 — 20.09.2017) was approximately 1.9 m.

Phase 3 corresponds to the slope readjustment after a debris slide during winter and spring
(06.10.2017 until 08.07.2018 for the schematic cross-section) through the continuous
retrogressive failure of the main scarp and snow avalanches in the winter, the morphological
features of the main scarp are overprinted. Furthermore, an increased creep of areas above
the debris slide scarp could be observed within the TLS data utilising an IMCORR approach
(Fahnestock et al., 1992; Scambos et al., 1992), which may lead to a thinning of the remaining

talus.

Phase 4 comprises two main processes: |) the secondary debris slide, occurring above the
initial debris slide, and IlI) the re-adjustment of the debris slide deposit on the glacier.
Secondary debris slides can be commonly found with the Austre Lovénbreen basin triggering
above the initial debris slide. The interval between two consecutive events can take several
years, depending on the meteorological boundary conditions. However, a secondary debris
slide occurred the following year (08.07.2018) at Profile A-A’. Following the same pattern as
the initial slope failure, the sub-surface ice layer is exposed, followed by a retrogressive failure

of the main scarp until the ice layer is again covered in debris. Lateral and frontal toe collapse
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of the initial debris slide deposit was observed, forming a steep crest and a small talus apron
in front of the main debris slide deposit, forming a similar morphology as a small talus-derived
rock glacier (Figure 6, Phase 3). No height change was measured by TLS at the top of the
deposit, indicating that the debris slide material has neither settled nor that the glacier ice

below has melted.

Phase 5 corresponds to the long-term adjustment of the sediment-mantled slope towards a
stable equilibrium. Continued loss of glacier ice has led to additional frontal and lateral toe
collapse of the debris slide deposit at the base of the slope. Underneath this deposit, the buried
glacier ice is preserved according to the thickness of the scree material above, forming a steep
sediment apron (Figure 6, Phase 5, Detail view). The melting of glacier ice is interrupted under
the debris deposits, which act as the temporary stable slope foot. The sediment-mantled slope
further adjusts to the new slope angle defined by the debris slide deposit. Snow avalanches
further erode debris slide features (e.g. scarps) on the slope. The increased creep above the

slope failures reduces to pre-failure velocities.

At Profile A-A’ from the debris slide deposit, a scree apron with a height of approximately 5
meters and a thickness of 40 cm had formed after four years. The top of the debris slide
deposit has settled at the crest by a maximal 0.3 m within three years and can be considered
stable. The largest debris slides (e.g. longest runout lengths) located on the glacier may show
flow features after several years, as the glacier ice drags the deposit along the main flow
direction. Thus, larger deposits may bear strong morphological similarity to small protalus rock
glaciers, except for a core of glacier ice. Debris slide deposits show no measurable creep if

located beyond the extent of the Austre Lovénbreen glacier.

Figure 6: Schematic cross-sections depicting the slope evolution at Profile A-A’ between 2016 and 2021
with an example picture of the largest debris slide deposit within the Austre Lovénbreen basin. Phase
1) State of the pre-failure slope found in 2016. The extent of the sub-surface ice layer is partially known
from studies by Bernard et al. (2013), and the state of the glacier in 1936 (Girod et al., 2016) is indicated.
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Phase 2) Initial translational debris slide observed on 27.08.2017, exposing the sub-surface ice layer.
Retrogressive sliding was observable for several weeks after. Phase 3) Slope readjustment between
06.10.2017 and 08.07.2018 through the continuous retrogressive failure of the main scarp and snow
avalanches. Phase 4) Secondary translational debris slide on the upper section of the slope. Lateral
and frontal toe collapse of the initial debris slide deposit protects the glacier ice from melting. Phase 5)
Long-term adjustment of the sediment-mantled slope towards a stable equilibrium between 2018-2021.
Continued loss of glacier ice has led to additional frontal and lateral toe collapse of the debris slide

deposit at the base of the slope. Underneath this deposit, the buried glacier ice is preserved.
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4.3. Magnitude and frequency of landslide events

During the observation period, 171 distinct landslide events could be identified. These
encompass 147 translational debris slides, 21 debris flows and 3 rock falls (>1m3). Smaller
rockfall events were commonly observed during the field campaigns, but individual events
could not be differentiated via the TLS data. Debris slides were responsible for approx. 96%
(Vpebris siides: 122889.3 m?3) of the entire sediment flux observed at the slopes of the Austre
Lovénbreen basin (Table 1). Thus, debris flows act as a minor agent of sediment transport

(Voebris Flows: 4981.7 m3), except within Section | (Figure 4).
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Figure 7: Boxplot of all observed landslides per year (left) and the relationship between the landslide

volume and area (right).

The observed landslides vary strongly in volume, extent, and depth throughout the years, with
debris slides ranging from 12.5 + 4.9 m3to 9295.8 + 502.5 m? with an average volume of 835,9
m3 and debris flows from 18.8 £ 5.4 to 996.4 + 106.5m?3 with an average volume of 237.2 m3
(Figure 7). However, there is a strong correlation between the area and volume of landslide
processes due to the subsurface ice layer acting as the common rupture surface plane (Figure

7, right).
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The frequency and magnitude of individual landslide events greatly fluctuate within the

observation period (Figure 7, left). However, a significant increase in the overall landslide

activity (R2 = 0.57; P-Value = 0.0068) can be observed between 2011 and 2021 (Figure 8).
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Figure 8: Total Debris slide area (red) and volume (blue) per year observed within the Austre

Lovénbreen basin. Linear fit with a 95% confidence interval for the debris slide area is indicated in grey.

Table 1: Landslide volume, area and quantity for debris slides and debris flows observed between 2011

and the TDD, cumulative daily precipitation for the hydrological summer (Cum. Pns) and cumulative daily

squared precipitation for the hydrological summer (Cum. P2%). Debris slide volumes have been

calculated using a spatially variable LOD (confidence interval of 95%).

Year Debris Slide Debris Slide Debris Flow Debris Flow n TDD Cum.Prs Cum.P?:s

Area [m?] Volume [m3] Area [m?] Volume [m3] [°C] [mm] [mm]
2011 8525.9 No Data 4 0 0 0 630 148 1023
2012 4521.8 1827.6 £ 227.8 2 0 0 0 545 135 1120
2013 12946.2 7943.3 £ 637.8 3 0 0 0O 553 264 2381
2014 0 0 0 0 0 0 449 242 2769
2015 14716.2 6445.8 £ 802.2 8 38239 551.6+109.7 1 616 166 1507
2016 36852.5 15473.9+17188 36 18604.8 24454 +327.6 8 687 243 3667
2017 28373.1  18407.1+12024 15 8970.1 1064.1+1939 9 649 220 3943
2018 31150.9 20557.5+1440.1 13 0 0 0 624 269 3912
2019 23910.1 3172.0 £ 367.1 4 0 0 0 59 126 779
2020 74570.7  42524.6 +5563.4 27 0 0 0 729 143 856
2021 35234.6 6829.1 £ 1308.2 39 6050.2 920.4+254.8 3 547 152 1991
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4.4. Impact of meteorological parameters on landslide formation

Throughout the monitoring programme, the date of failure of 106 translational debris slides
could be identified within a range of hours or days, depending on meteorological conditions

(e.g., clouds, fog, excessive rain), through the long-term monitoring network.
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Figure 9: Daily mean air temperature and daily precipitation at the Ny-Alesund meteorological station

from 2010-2021. Periods of observed landslide activity are indicated in red.

The time of failure for the observed debris slides ranges from late August till the beginning of
October (Figure 9), when the maximum thaw depths are reached. However, single events
could also be observed in the lower altitudes during July. No in-situ data for the thaw depth
was available within the slopes. Thus, the annual maximum thawing degree days measured
in Ny-Alesund (TDD) serve as a proxy value to quantify the overall heat input during the year

projected onto the entirety of the Austre Lovénbreen basin (Figure 10). The majority of
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precipitation at Ny-Alesund during the hydrological year falls during the winter period as snow.
Thus, the cumulative precipitation during the hydrological summer is better suited to quantify

the impact of precipitation on landslide formation within the Austre Lovénbreen basin (Figure

10).
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Figure 10: Thawing Degree Days measured at Ny-Alesund (8 m a.s.l.), the IPEV Automatic Weather
Station within the Austre Lovénbreen basin (approx. 450 m a.s.l.), and a TDD calculated exemplary for
200 m a.s.l. based on the height-dependent temperature gradient of the available datasets and the

cumulative precipitation for the hydrological year and summer.
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Figure 11: Thawing degree days (TDD @ failure) and cumulative squared daily precipitation during the
hydrological summer (Cum.Precipitation?,s @ failure) were calculated for the date of the initial slope

failure of 106 individual debris slides observed between 2011-2021.

A general trend between debris slide volume and meteorological boundary conditions can be
observed for individual debris slide events. Higher temperatures (TDD @ failure) and rainfall
intensities (Cum.Precipitation2,s @ failure) observed during the years lead to larger debris
slides. Furthermore, a cluster of primary temperature-induced debris slides occurring in 2020

can be observed (Figure 11).
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Figure 12: Impact of rainfall on debris slide formation. Figure 13: The thermal dependency of debris slide
Cumulative squared daily precipitation (hydro. formation with the Austre Lovénbreen basin. No
Summer) and debris slide volume per year between debris slides were observed within a year when the

2011 and 2021. TDD was below 545 °C.

477 When analysed per year, a strong correlation (R2 = 0.94) between the cumulative squared
478  daily precipitation (Rainfall2 hydro. summer) and the total landslide volume per year could only
479  be found when temperature outliers were not considered (Figure 12). Since 2007, a TDD of at
480 least 545°C had to be reached for any debris slides to occur, indicating a thermal threshold
481 necessary for debris slide formation within the Austre Lovénbreen basin beyond heavy rainfall
482  events (Figure 13). This is outlined from 2007 till 2010 and 2014, when no debris slides were
483  observed (Figure 14), even though a potentially sufficient amount of rainfall was given (Figure
484  12). Thus, atemperature threshold necessary for heavy rainfall events to trigger an initial slope
485 failure can be assumed. Furthermore, as in 2020, debris flows occurred without observable
486 rainfall prior to the slope failures (meteorological stations; automated camera network) beyond

487 a TDD of 700 °C.
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Figure 14: Increase of TDD in Ny-Alesund since
1975. Since implementing the automated camera
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Figure 15: Impact of temperature and (TDD) and
precipitation (Cum. Precipitation?,s) on the debris slide
formation per year (R2 = 0.91). Residuals are indicated in

red.

Ultimately, the best description of the increase in debris slide magnitude is achieved for all

data points (2012-2021) with a linear model that includes both temperature (TDD) and heavy

rainfall (Cum. Precipitation2hs) variables (Figure 15). The negative interaction term shows that

the effect of temperature and rainfall variables is less than the sum of the individual effects.
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5. Discussion

5.1 Data limitations

In the present study, the slopes of the Austre Lovénbreen glacier basin were monitored with
terrestrial lidar for a 10-year period (2012-2021) and autonomous cameras for 15 years (2007-
2021). After a stable period from 2007 to 2011, slope failures could be observed almost every
year by TLS and the automated camera network. Particular advantages and deficiencies of

the applied remote sensing techniques became evident in our study.

The multi-temporal TLS data allowed us to detect and quantify complex and incremental
terrain changes between individual TLS campaigns within a distance-variable level of
detection at a confidence interval of 95% (LOD95%). However, the limited temporal resolution
of TLS (i.e. one measurement per year) does not provide sufficient information to investigate
the trigger mechanisms of slope processes. Whilst the automated camera network's main
purpose was to evaluate snow cover in the most remote and inaccessible areas (Bernard et
al., 2013; Friedt et al., 2023), it proved particularly effective for qualitative landslide detection.
Daily camera images provided key information about the failure date, duration, trigger
mechanisms, and kinematics of landslides, as well as additional qualitative weather
observations within the study area while increasing the observation period by five years. Data
gaps within the TLS data could also be amended as the failure dates of almost all large
translational debris slides (>2000 m3) could be identified. Thus, the temporal limitations of the

TLS data were reduced significantly.

The visual detection of landslide processes was primarily limited by data gaps resulting from
temporary system or data storage failures of individual cameras and camera resolution. Given
that landslides of lesser size or limited visual impact were hard to distinguish from lighting and
contrast variations between individual images. Whilst it was possible to identify the event time

of 106 translational debris slides (n = 147) within the range of hours or days depending on the
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visibility during or after rain events (e.g. fog, cloud cover), only 7 debris flows (n = 21) and no
rock falls could be identified. This is unsurprising due to the differences in the average volume
between the different landslide types, as shown by the good correlation between the landslide
area and size within the study area (Figure 7). While small-scale landslide events (< 100 m3)
at larger distances from the cameras are often difficult to detect, it must be emphasised that
the network was originally not designed for this task. Furthermore, the 49 small-scale events
(< 100 m3) between 2012 and 2021 only accounted for approx. 2% of the total paraglacial
sediment transfer via landslides. This may introduce certain data biases within the
investigation of trigger mechanisms and magnitude on an individual level (Figure 11) but does
not affect the statistical analysis of the annual landslide activity (Figures 12, 13 & 15) as the
guantification of landslide processes was derived from the TLS data. The identification of
landslide processes prior to available TLS data based solely on the automated camera
network as the ALS-Data from 2010 (NPI, 2014) proved insufficient to quantify landslides
within the level of detection. Thus, only the landslide areas of the four translational debris

slides in 2011 were mapped (Table 1).

5.2 Spatiotemporal variation of dominant landslide processes within the paraglacial

period

Across the Austre Lovénbreen Basin, translational debris slides were the dominant agent of
paraglacial sediment transport (96%) between 2012 and 2021, modifying the steep sediment-
mantled slopes (Figure 7 & Table 1). With increasing distance from the glacier terminus, a
spatial shift of the dominant landslide processes from debris slides (Section Ill) towards debris
flows (Section I) could be observed (Figure 4). Mercier et al., (2009) described a lateral
succession of different landslide processes at Colletthggda (7.5 km north-east from the study
site), with translational slides in proximity to the glacier that are succeeded by debris flows,

gullying and rill erosion during later stages of paraglacial slope evolution.
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Debris flows are generally considered the primary source of erosion and sediment transport
acting within the paraglacial period (Ballantyne, 2002; Ballantyne & Benn, 1994; Chiarle et al.,
2007; Curry, 1999; Evans & Clague, 1994; Owen, 1991). However, modification of steep
sediment-mantled slopes by translational debris slides may be extensive given recent glacier
retreat (Ballantyne, 2002) and thus is limited by a temporal and spatial component. Similar
observations were made on ice-cored scree slopes and moraines in Svalbard (Mercier et al.,
2009), the Canadian Rocky Mountains (Mattson & Gardner, 1991), and the Vestfold hills in

East Antarctica (Fitzsimons, 1996).

Given the consensus that the rate of primary paraglacial sediment transfer reaches a peak
soon or immediately after deglaciation and declines thereafter (Ballantyne, 2002), as
expressed by the exponential exhaustion model of paraglacial sediment reworking
(Ballantyne, 2002; Cruden & Hu, 1993) or similar relaxation curves (Church & Ryder, 1972),
translational debris slides can be the dominant agent of the primary sediment transport on
paraglacial slope systems. Due to their spatiotemporal connection to glacier downwastage
and retreat, as shown within a rapidly changing environment such as the Austre Lovénbreen

basin.

The paraglacial sediment transport pre-dominantly by translational debris slides within the
Austre Lovénbreen basin indicates that the slope system is generally at an early stage of
development. Observed debris flows, and associated landforms (e.g., levees and debris
cones) only dominate slope sections (Figure 4, Section I). The impact of debris flows was
marginal for the entire basin (3.9%; 4981.7 m3 £+ 886.2 m3) and was primarily located in
Section | (2,9%; 3709.9 £ 644.9 m3). Thus, Section | may present a more advanced and to a

degree stable stage of slope development.

The initial strong sediment flux by translational debris slides is followed by a decline of

available unstable sediment sources until only sporadic debris flow activity remains. Our
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observation fits well into the concept of an exponential exhaustion model of paraglacial
sediment reworking. A decline of paraglacial sediment transport with increasing distance to
the glacier terminus and shifting dominant mass wasting processes was also observed
through vegetation studies at the nearby Colletthggda and was connected to the decay of

dead-ice within the slopes (Mercier et al., 2009).

The impact of translational debris slides on paraglacial slope modification may also be
underestimated, given a lack of data with a high spatiotemporal resolution. Translational debris
slides and associated landforms (e.g. scarps, deposits) are overprinted or eroded by other
processes. Erosion of debris slide landforms by snow avalanches was observed between
2018 and 2021 at Profile A-A’ (Figure 6, Phase 5) and the lack of translational debris slides or
older debris slide deposits within Section | may be caused by an overprint through other

processes, such as debris flows and snow avalanches.

5.3 Landslide initiation and trigger mechanisms

Different meteorological parameters control landslide processes (Crozier, 2010; Gariano &
Guzzetti, 2016; Patton et al., 2019) and thus, from the overlying climate (Gariano & Guzzetti,
2016; Matthews et al., 2018; Patton et al., 2019; Soldati et al., 2004). Factors such as
topography, lithology, geological structures, in-situ stresses, groundwater flow, glacial
conditioning, permafrost and availability of sediment sources define the pre-disposition for
potential slope instabilities (Crosta et al., 2013; Rechberger et al., 2021). Landslide trigger
mechanisms can be further correlated to climatic conditions or their fluctuation, chiefly
temperature and precipitation (Ballantyne, 2002; Crozier, 2010; Dhakal & Sidle, 2004; Gariano
& Guzzetti, 2016) and thus also other correlated processes (e.g. permafrost degradation,
glacier retreat). Additionally, recent deglaciation may impact landslide initiation through
reduced lateral support, stress-redistribution, dead-ice outcropping, or the rapid melting of ice-

cored bodies (Ballantyne, 2002; Mercier et al., 2009). However, quantifying the impact of
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meteorological factors on landslide processes is challenging as combined effects may have
different and often contrasting effects (Gariano & Guzzetti, 2016; IPCC, 2014) depending on

the slope system and landslide type.

However, studies in comparable paraglacial environments concluded that paraglacial
sediment transfer by landslides occurs annually, and the spatial distribution of dead ice within
sediment-mantled slopes is the main control of paraglacial sediment transfer (primarily debris
flows) rather than meteorological events (Ballantyne, 2002; Ballantyne & Benn, 1994; Mercier
et al., 2009). By contrast, we could show that meteorological factors primarily explain the
frequency and magnitude of landslide processes during a 10-year observation period (Figure
15). The spatial occurrence and extent of the subsurface ice layer within the slopes is the main

predisposition factor determining the dominant landslide process (Figure 4; Sections 1 and 3).

Heavy rainfall events during the hydrological summer are the main triggering factor
contributing to the magnitude and frequency of translational debris slides (Figure 12). In
contrast, the temperature regime during a given calendar year (expressed by TDD in this
study) is the primary control for debris slide initiation (Figures 13 & 14). As below a certain
temperature threshold (TDD ~545 °C), no landslides could be found between 2007-2021, even
though heavy rainfall events were observed within the summer. A cluster of debris slide events
without any unambiguous trigger (rainfall) occurred in 2020 when the warmest summer period
was registered (TDD >700 °C). Therefore, the cause may be due to increased melting of the
subsurface ice layer found within the slopes, given sufficient subsurface heat transfer (Figure
11). Similarly, Mercier et al. (2009) described extensive erosion rates primarily caused by
meltwater-induced translational slides and dead ice scouring in areas adjacent to the glacier

margin, thus also implying a weather-induced component.

Furthermore, Mattson & Gardner (1991) identified meteorological factors (e.g. heavy rainfall;

temperature increase) to be contributing factors for the formation of rapid translational debris
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slides along an ice layer within slopes adjacent to the Boundary Glacier (Alberta, Canada).
They associated periods of warm weather, most conductive to ablation of the glacier with 5
observed translational debris slides (n = 25). However, they noted that these temperature-
triggered debris slides were generally of lesser magnitude as they only contributed 14% to the
total sediment flux from the slopes. At the Austre Lovénbreen only 9 translational debris slides
(n = 107) were identified as temperature-induced with above-average magnitudes

(1131.6 + 150.1 m3) (Figure 11, indicated in red).

Given that the rupture surface of all translational debris slides was the clearly observable ice-
debris interface (Figure 6) and a certain temperature threshold needed to be reached before
debris slides can form (Figure 14). Based on our observations, it can be assumed that the
annual thaw depth has to penetrate the ice layer in order to trigger debris slides. Furthermore,
the observed translational sliding characteristics indicate that the planar ice-debris interface is
the main weakness zone most likely affected by annual thawing and water infiltration. The
water source may be either from heavy rainfall events or meltwater from the ice layer, given

sufficient subsurface heat transfer within a year.

By contrast, debris flows were only detected during 4 years of the 10-year period of available
TLS data (Figure 7). Observation via the automated camera networks showed that they
occurred erratically after rainfall events of varying intensity. However, years with above-
average rainfall during the summer period showed increased debris flow activity (Table 1).
Statistical correlation with rainfall activity or individual heavy rainfall events was limited due to
the short observation period (only four years with debris flows). Nonetheless, debris flow
initiation and magnitude are closely linked to heavy rainfall events in mountainous regions and
the usage of rainfall thresholds as minimum conditions for debris-flow triggering is widely
accepted (Hubl, 2018; Hurlimann et al., 2019; Peruccacci et al., 2017; Stiny J, 1910;

Zimmermann & Haeberli, 1992).
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Case studies in comparable paraglacial environments, such as the Fabergstglsdalen
(Ballantyne & Benn, 1994) and Colletthggda (Mercier et al., 2009) found that paraglacial
sediment transfer by debris flows occurs annually on steep sediment-mantled slopes and is
not dependent on meteorological extreme events. However, the comparability of those case
studies may be limited as the annual average rainfall found at the Fabergstglsdalen (Central
Norway) is considerably higher than at Kongsfjorden. Thus, it is more likely that rainfall
thresholds could have been reached every year at the Fabergstalsdalen. Whereas the
observation period at Colletthggda was limited and fieldwork was only conducted in 1996 and

2004.

Debris flows initiated by translational debris slides (debris flowslide after the Varnes
classification; Hungr et al. (2014)), as seen by Ballantyne & Benn (1994) at the
Fabergstalsbreen (Norway), could not be observed within the study area. As debris flowslides
are caused by excess pore-pressure or liquefaction of material originating from the landslide
source (Hungr et al., 2014), the lack of rainfall in the Kongsfjorden area may impede their

development.

Infiltration and in-situ melting at the debris-ice interface may reduce the shear strength and
the grain interlocking-dependent cohesion of the debris. The water that fills the pore space of
the sediment body after rainfalls may also increase shear stress. However, rainfall
accumulation at the interface depends on the sediment cover's permeability and depth
(Mattson & Gardner, 1991). Snow melt and heavy rainfall events during the early summer did
not affect translational debris slide initiation, as percolation of rainwater within a frozen debris
body may be limited. However, non-conductive heat transfer by rainwater during the spring
and summer may be a contributing factor. Furthermore, the continuous downwastage of the
glacier at the foot of the slopes did not cause any translational debris slides but rather led to
an adjustment of the slope foot by creep processes, as observed from 2007 to 2011 and in

2014.
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5.4 Spatial extent and origin of sub-surface ice layer within the sediment-mantled

slopes

Due to the difficulty of the terrain, the spatial extent of the subsurface ice layer within the
sediment-mantled slopes could only be investigated at fresh scarps of the debris slides, where
the ice is outcropping. Thus, it is currently unknown if the ice within slopes unaffected by
translational debris slides (e.g., Section 1, Figure 4) has either decayed or accumulated a

sufficient protective debris cover.

Reconstructions of the Austre Lovénbreen glacier based on aerial imagery from 1923
(Mittelholzer, 1923) and 1936 (Girod et al., 2018) show the glacier elevation up to 75 m (55 m
at Profile A-A’; Figure 6A) above the current level. The Little Ice Age (LIA) ended on Svalbard
in the 1920s (Svendsen & Mangerud, 1997) and studies have shown that the LIA corresponds
well with the maximum glacier extension of the Holocene (Bftaszczyk et al., 2009; Farnsworth
et al., 2020; Humlum et al., 2005; Martin-Moreno & Allende-Alvarez, 2016; Snyder et al.,
2000). Thus, the reconstructed heights from 1936 potentially show the state of the Austre
Lovénbreen close to the maximum extent within the Holocene. Therefore, a glacial origin of
the subsurface ice layer up to 70 m above the current glacier level can be assumed, as also

shown by investigations by Bernard et al. (2014) based on Ground Penetrating Radar.

Indicating that the dead ice within the lower sections (max. glacier elevation) of the slopes is
at least 85 years old and potentially much older in the upper section. Whereas the conceptual
model of morphological slope evolution based on vegetation studies at Colletthggda assumed
that the melting of the last dead-ice bodies (10-150 m a.s.l.) occurs roughly 35 years after

deglaciation (Mercier et al., 2009).

Formation of segregation ice within the debris could be responsible for the ice within the upper
slopes of the Austre Lovénbreen basin. However, a glacial origin cannot be entirely discarded,

considering the thickness and continuity of the observed ice layer up to 245 m a.s.l. within the
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sediment-mantled slopes at the current glacier terminus (~130 m a.s.l.) (Figure 3). Thus, ice
sampling and age dating are required to assess the origin of the ice layer and the spatial extent

within Section 1 (Figure 4).

5.5 Temperature thresholds on landslide activity

The duration and intensity of the thawing period and thus the maximum thaw depth at the end
of the summer thaw season (ATD) was identified as the primary control for initiating debris
slides (temperature threshold; TDD ~545 °C). Whereas the average ATD or the maximum
depth of the 0 °C isotherm for two consecutive years is used to define the active layer thickness
(ALT) (Schaefer et al., 2011), only the annual maxima (ATD) is relevant as a trigger factor for
translational debris slides. Several studies have shown the dependence of ALT, and thus ATD,
on meteorological factors (i.e. precipitation, snow cover, mean annual air temperature and
variation) and specific site parameters (i.e. substrate, topography, hydrology, vegetation)
(Strand et al., 2021; Zhang & Stamnes, 1998). The depth of thaw is usually assumed to be
controlled by conditions during the thawing season and thus is often positively correlated with

TDD, as shown by the simplified variant of the Stefan equation:

Equation 1 Z = ENTDD

where Z is the depth of thaw; TDD the Thawing Degree Days (TDD); and E is the edaphic
factor, which is a scaling parameter summarising site variability and can be calculated given
a known Z and TDD for a specific location (Hinkel & Nicholas, 1995; Stefan, 1890; Strand et
al., 2021). Site-specific E-values for the Austre Lovénbreen basin were calculated using either
the maximum TDD within a year (TDD) or the Thawing degree days during the initial triggering
of a translational debris slide (TDD @ failure). The thaw depth was assumed to be equivalent
to the maximum thickness of the dated 106 landslides, given that the rupture surface was
alone the planar subsurface ice layer. However, the calculated E values varied strongly, and

no correlation was found with landslide thickness. Considering the relative homogenous
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material found on the sediment-mantles slopes, the main reason might be due to snow cover
variations, the impact of rainfall on the non-conductive heat transfer processes by water during
a year and the different landslide trigger mechanisms (e.g. rainfall or meltwater-induced).
Assessment of the spatial variation of these factors would require a 3D modelling approach in
combination with an expansion of the current monitoring network. Nonetheless, a strong
correlation between the TDD and landslide activity during a year (R = 0.70) could also be

observed within the Austre Lovénbreen basin.

Furthermore, a potential temperature threshold can be assumed based on the observations
between 2007 and 2021. Whilst a definition of a sharp temperature threshold for potential
landslide activity within the Austre Lovénbreen basin is not possible due to the limited dataset,
a transition zone between years of landslide activity (minimum TDD~545°C) and inactivity
(TDD~450°C) could be found (Figures 13 & 14). Debris flows were also not observed in years
below a TDD of ~545°C. However, this may be due to the above-explored data biases affecting

smaller landslide phenomena between 2007 and 2011.

The impact of winter air temperatures, expressed by the Freezing Degree Days (FDD), on
landslide activity was investigated for the study site and individual landslide as, in certain
cases, a correlation between thaw depths and FDD could be found in other regions of Svalbard
(Strand et al., 2021). A weak correlation between FDD and landslide activity during a year
(R = 0.26) was found, and further shifts in the arctic maritime climate may change this as the
FDD may also be considered a thermal reset between individual thaw periods. No trend for
FDD could be identified between 2011 and 2021 (R = 0.02). The impact of FDD on the depth
of thaw also depends on the thickness, duration and consistency of the snow cover (Strand et
al., 2021). Climate change can be expected to further facilitate the observed landslide
processes, given that temperature thresholds during either the thawing or freezing period are

exceeded.
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6. Conclusions

Landslide processes affecting steep sediment-mantled slopes in the studied Austre
Lovénbreen basin are investigated based on several methods, consisting of (i)
geomorphological mapping, (ii) multi-temporal TLS surveys, and (iii) visual monitoring via an

automated camera network and subsequent image analysis.

Multi-temporal TLS campaigns with a high spatial resolution allowed us to detect and quantify
complex terrain changes between the TLS campaigns within the level of detection in the range
of centimetres (LOD95%). The combined analysis of quantitative TLS data with qualitative
data from the automated camera network allowed for investigating the impact of
meteorological factors on landslide trigger mechanisms, kinematics and the evolution of

paraglacial slopes following glacier retreat and downwastage.

With increasing distance to the glacier terminus, a spatial and temporal variation of landslide
processes from translational debris slides towards debris flows was observed, indicating a
lateral succession of processes dominating the paraglacial evolution of the sediment-mantled

slopes. Generally, landslide frequency and magnitude decreased with distance to the glacier.

Landslide phenomena were the most dominant source of surface change, with respect to the
retreat of the glacier itself, during the observation period. Translational debris slides accounted
for 96% of paraglacial sediment transport affecting sediment-mantled slopes in the studied
Austre Lovénbreen basin and are controlled by a combination of meteorological factors,
foremost rainfall and temperature. The spatial distribution of an ice-layer within slopes serving
as the rupture surface of observed translational debris slides and the thermal regime during a
year are the main aspects enabling potential translational debris slides. However, heavy
rainfall events within the hydrological summer are the main factor contributing to the
magnitude and frequency of the slides. A weak correlation between debris flow activity and

increased rainfalls during the observation period could be found.
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Finally, the increased landslide frequency and magnitude within the observation period
showed the acceleration of climate-induced changes modifying the landscape within this high-
Arctic environment. Our results show that the intensity of the thawing period and heavy rainfall
events are crucial for paraglacial adjustment of steep sediment-mantled slopes. The expected
continuous temperature rise and heavy rainfall events may further facilitate landslide

processes in the Arctic.

We stress that long-term observatories, such as the Austre Lovénbreen glacier basin, are
irreplaceable for future research focusing on glacial and paraglacial responses to climate
change in the high-Arctic as the quantification of these processes may serve as additional
climate change proxies to indicate past and present climate alterations and may provide
insights also relevant for other regions as climate change is more pronounced at higher

latitudes.
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