
Port-Hamiltonian modeling and control of
a curling HASEL actuator ⋆

Nelson Cisneros, Yongxin Wu , Kanty Rabenorosoa,
Yann Le Gorrec

FEMTO-ST institute, UBFC, CNRS, Besançon, France.(emails:
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Abstract: This paper is concerned with the modeling and control of curling Hydraulically
Amplified Self-healing Electrostatic (HASEL) actuators using the port-Hamiltonian approach.
For that purpose, we use a modular approach and consider the HASEL actuator as an inter-
connection of elementary subsystems. Each subsystem is modeled by an electrical component
consisting of a capacitor in parallel with an inductor, and a mechanical part based on linear and
torsional springs joined to a mass.We identify and validate the model in the experimental setup.
Position control is achieved by using Interconnection and Damping Assignment-Passivity Based
Control (IDA-PBC) with integral action (IA) for disturbance rejection. Simulation results show
the efficiency of the proposed controller.
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1. INTRODUCTION

In recent years one of the most interesting technologies in
the soft robotics field is the Hydraulically Amplified Self-
healing Electrostatic (HASEL) actuator (Acome et al.,
2018).

HASEL actuators blend the advantages of Dielectric Elas-
tomer Actuators (DEAs) and fluid-driven soft actuators,
combining the convenience of electrical control, excellent
electromechanical performance, extensive design flexibil-
ity, and various actuation modes.(Rothemund et al., 2021).
There are different types of HASEL actuators, such as
peano, planar, elastomeric donut, quadrant donut, high-
strain peano, and curling actuators. Some interesting
applications of HASEL actuators can be found in the
literature: a soft gripper for aerial object manipulation
(Kim and Cha, 2021), an actuator powering a robotic
arm (Acome et al., 2018), an electro-hydraulic rolling soft
wheel (Ly et al., 2022), a peano actuator for enhanced
strain, load, and rotary motion (Tian et al., 2022) and soft-
actuated joints based on the hydraulic mechanism used in
spider legs (Kellaris et al., 2021).

We want to study the bending motion because it is valu-
able for modeling and controlling more complex actuators
for example actuators that can mimic fingers. To get a
curling HASEL actuator, a strain limiting layer is added
to change the mechanism from linear to angular deforma-
tion (Rothemund et al., 2021). It is important to have a
reliable model that can represent the system’s dynamics
to control the actuator. Recent works present frameworks
to model HASEL actuators. In (Volchko et al., 2022),
Dynamic Mode Decomposition with Control (DMDc) is
applied to derive a linear model., approximating the sys-
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tem dynamics. The authors in (Hainsworth et al., 2022)
introduce a non-linear reduced-order mass-spring-damper
(MSD) model for a HASEL actuator. However, we can
not use these frameworks directly because we want to
capture the system dynamics and model the mechanical
and electrical parts of HASEL actuators.

Port-Hamiltonian (PH) models are well adapted to repre-
sent multi-physical systems. PH approach is then an excel-
lent candidate to represent dynamics of the HASEL actu-
ator. Interconnection and Damping Assignment-Passivity
Based Control (IDA-PBC) serves as a highly effective
tool for generating asymptotically stabilizing controllers
for Port-Controlled Hamiltonian (PCH) models. (Ortega
et al., 2002). There are previous works using PHS to model
soft robots with energy shaping and IDA-PBC controllers
showing good results. In (Franco et al., 2021b) and (Franco
et al., 2021a), the energy shaping controllers are used to
control the position of a soft continuum manipulator with
large number of degrees of freedom (DOF). In (Ayala
et al., 2022), the IDA-PBC method has been successfully
used to a nonlinear Cosserat rod model using an early
lumping approach. More recently, the authors in (Yeh
et al., 2022) present a port Hamiltonian model with one
DOF of a HASEL planar actuator controlling the position
using IDA-PBC with Integral Action (IA). Comparing
with (Yeh et al., 2022) we model an actuator with bending
motion instead of the linear deformation, this introduces
nonlinearities in the interconnection matrix. We model the
end position drift effect. The main contributions of this
paper are:

• We modeled a curling HASEL actuator using the
port-Hamiltonian approach, to capture both the elec-
trical and mechanical dynamics of the actuator.

• We identify the model comparing with experimental
data and we validated it with different input voltages.



• We designed an IDA-PBC controller to control the
end point position of the curling HASEL actuator.
We add IA to reject disturbances and model uncer-
tainties.

This paper is organized as follows: Section 2 shows the
experimental setup. Section 3 presents the model of curling
HASEL actuator.We present the parameter’s model iden-
tification in Section 4. In Section 5 the controller design
is presented. Section 6 presents the simulation results and
the conclusions are found in Section 7.

2. EXPERIMENTAL SETUP

The experimental setup is shown in Fig. 1. To measure
the position, we used a profile laser, Keyence LJ-V7080.
We use the high voltage amplifier Trek model 610E.
The HASEL actuator is an Artimus Robotics. We use a
dSPACE card CLP1104 to send and receive signals from
the laser position sensor and the high voltage amplifier.

Fig. 1. Experimental setup laser sensor and curling
HASEL. The right figures show the actuator deforma-
tion. Applying high voltage, the actuator can achieve
a horizontal displacement of approximately 3 [cm].

3. MODELING CURLING HASEL ACTUATOR

In this section, we represent the description and the
working principle of the curling HASEL actuator. We
present the curling HASEL model.

3.1 HASEL actuator description and hypothesis

The curling HASEL actuator is a planar HASEL attached
to a strain limiting layer to get the bending actuation.
The curling HASEL actuator bends when high voltage is
applied.

Fig. 2. Basic subsystem. Left: electrodes are totally un-
zipped. Right: Electrodes are partially zipped when
voltage is applied. The shell is deformed.

The curling HASEL actuator consists of a polymer shell
filled with dielectric liquid and half covered by a pair
of electrodes. When an electric field is applied on the
electrodes, it creates Maxwell stress acting the shell which
pushes the dielectric liquid inside of the shell. This Hy-
draulic pressure changes the shape of the shell and drives
the movement of the actuator. When the shell is de-
formed there is a planar displacement, generating forces
due the hydraulic amplification principles (Rothemund
et al., 2021).

We consider that the actuator depth is uniform, so we
do a two dimension analysis. We model an actuator
conformed by subsystems. We separate each subsystem
model into a chamber and a shell. The chamber is the
area between the electrodes whilst the shell will receive
the dielectric liquid when the electrodes are zipped. The
total volume (volume of the shell plus the volume of the
chamber) is considered constant and the dielectric liquid
is in-compressible. The bending of the bottom film is
modeled as a torsional spring. The top film of the shell
is considered to be elongable and contains mechanical
energy. The elongation is modeled as a linear spring.
The volume of the dielectric liquid in the chamber is
transferred to the shell depending of the applied voltage.
The electrical part of the actuator is conformed by the
electrodes. The electrodes are modeled with a variable
capacitor. The model considers a variable length of the
zipped electrodes. The zipped electrodes length depends
on the applied voltage. The distance between the unzipped
electrodes part is considered constant, see Fig. 2.

3.2 Geometric relations

In this part, we present the geometric relations that link
the angle θ with the zipped electrodes length le. Then,
from θ we can derive the actuator position h(θ), i.e., the
displacement of the actuator end position.

It is crucial to obtain a relation between θ and le because
the electrode’s capacitance can be presented as a function
of le. Therefore it allows us to relate the electrical charge
that depends on the capacitance with the derivative of
the electrical energy respecting the angle θ, joining the
electrical and the mechanical part.

We represent the chamber as a rectangular area and the
shell is modeled as two symmetric triangles. Fig. 2 shows
the model variables of a basic subsystem. Next equations
allow to find the relation between the θ angle and the
zipped electrodes length le.



The area inside the shell is:

As =
1

4
lpLvsin(δ1) (1)
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π + θ

2
− sin−1

(
Lv

lp
sin

(
π − θ

2

))
. (2)

The total area is:

AT = As +Xh(Le − le), (3)

where, Lv and lp are the bottom and the top film. Xh

is the height of the chamber and Le is the length of the
chamber.

The zipped electrodes length is:

le = Le −
1

Xh

(
AT +

Lvlp
4

sin(δ1)

)
. (4)

3.3 Curling HASEL port-Hamiltonian model

In this section we present the port-Hamiltonian model for
the curling HASEL actuator. First, we briefly recall the
port-Hamiltonian model from (van der Schaft, 2000):

ẋ = [J(x)−R(x)]
∂H

∂x
(x) + g(x)u;

y = gT (x)
∂H

∂x
(x),

(5)

where J(x) = −JT (x) is the interconnection matrix,
R(x) = RT (x) ≥ 0 is the dissipation matrix and H is
the total energy of the system (Hamiltonian).

Combining basic subsystems we can represent the overall
dynamical behavior of the HASEL actuator. The model
can be extended to n ∈ N subsystems. The subsystems
share the same input voltage.

Fig. 3 shows the schematic of the interconnection of four
subsystems. The total energy of the system is composed
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Fig. 3. Four interconnected subsystems. The same voltage
is applied to the entire system.

of the next elements:

H(θ, lp, p, ϕ,Q) = Hθ(θ) +Hlp(lp) +Hg(θ)+
Hp(p) +Hϕ(ϕ,Q)+HQ(Q,ϕ, θ, lp).

(6)

The first term of the energy (6) is the potential energy
related to the torsional spring:

Hθ =
1

2

n∑
i=1

Kbiθ
2
i =

1

2
θTKbθ (7)

where Kb = diag[Kb1 Kb2 . . . Kbn ] is the stiffness matrix
and θ = [θ1 θ2 . . . θn] presents the angular vector of each
subsystem.

The second term of the energy (6) is the potential energy
related to the linear springs:

Hlp =
1

2

n∑
i=1

Ki(lpi
− Lpi

)2 =
1

2
(lp − Lp)

TK(lp − Lp), (8)

where K = diag[K1 K2 . . . Kn] and lTp = [lp1
lp2

. . . lpn
].

The total potential energy related to the gravity is:

Hg =

n∑
i=1

Hgi (9)

The kinetic energy is then given by:

Hp =
1

2
pTM−1p, (10)

where M is the matrix of inertia and p is the vector of
angular momentum pT = [p1 p2 . . . pn].

The electrical energy has two components, the energy
related to the magnetic flux that allows us to represent
the drift effect and the energy related with the charge.
The inductor discharges the capacitor along the time.

Hϕ =
1

2

n∑
i=1

ϕ2
i

Li
=

1

2
ϕTL−1ϕ (11)

The energy stored in the capacitor is:

HQ =
1

2

n∑
i=1

Q2
i

Csi

=
1

2
QTC−1Q, (12)

where ϕT = [ϕ1 ϕ2 . . . ϕn] is the magnetic flux, L
is the inductance of the equivalent electric circuit L =
diag[L1 L2 . . . Ln]. C = diag[Cs1 Cs2 . . . Csn ] is the
capacitance of the equivalent electric circuit and Q =
[Q1 Q2 . . . Qn]

T is the charge. The capacitance of the

zipped part of the electrodes is C1i =
ϵ0ϵrwlei

2t , the ca-

pacitance of the unzipped part is C2i =
ϵ0ϵrw(Le−lei )

2t+Xh
the

capacitance of one subsystem is Csi = C1i+C2i . The input
gain is gaT = [ga1 ga2 ... gan]. To capture the nonlinear-
ities of the system the input gain is a nonlinaer function
that depends of the angular position gai = γ1 cos (γ2θi).
The inverse value of the equivalent electric circuit resis-
tance is defined as the matrix R̄ = diag[ 1

R1

1
R2

... 1
Rn

]. The

damping system is b = diag[b1 b2 ... bn]. The resistance
associated to the inductance is rL = diag[rL1

rL2
... rLn

].

We define the term d = diag
(

2As

lp

)
. The proposed port-

Hamiltonian model of the curling HASEL actuator is:
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Fig. 4. (4a) Model identification, fitness: 90.7%. (4b) Input
signal.
θ̇
˙lp
ṗ

ϕ̇

Q̇


︸ ︷︷ ︸

ẋ

=


0 0 I 0 0
0 0 d 0 0
−I −d −b 0 0
0 0 0 −rL I
0 0 0 −I −R̄


︸ ︷︷ ︸

J−R


∇θH
∇lpH

∇pH
∇ϕH
∇QH


︸ ︷︷ ︸

∇xH

+


0
0
0
0

R̄ga(θ)


︸ ︷︷ ︸

g

Uin; (13)

y =(R̄ga(θ))TC−1Q︸ ︷︷ ︸
gT∇xH

.

The output y = ie is the current that is the power
conjugated variable of the input voltage. The energy
balance equation can be computed as:

∂H

∂t
= −∂HT

∂x
R
∂H

∂x
+ yTu;

∂H

∂t
≤ yTu = ieUin.

(14)

4. MODEL IDENTIFICATION AND VALIDATION

We identified the sensitive parameters through simulation.
We use the Levenberg–Marquardt optimization algorithm
(MathWorks, 2020) to obtain the parameters Kb, b, L,
γ1 and γ2. We show the system identification results that
consists of four interconnected subsystems in Fig. 4. We
validated the model with two datasets, one with negative
inputs and another with positive inputs, as shown in Fig.
5.

The fitness between the model and the experimental data
was computed with the fit values that represents the
error norm with the normalized root mean squared error
(NRMSE) as the cost function.

fit(i) =
∥ xref (:)− xdata(:) ∥
∥ xref (:)− (xref (:)) ∥

(15)

where ∥ . ∥ is the 2-norm of a vector.

Then we use a the Matlab command goodnessOfFit with
the cost function NRMSE to obtain the model fitness. The
identified parameters are shown in Table 1.

5. POSITION CONTROL DESIGN

In this work, we want to control the end point position
of the curling HASEL actuator. To this end, we propose
an IDA-PBC design method. This method aims to find a
state feedback control law β(x) so that we can map the
open-loop system to a closed-loop system with the desired
behavior in the following form.

ẋ = (Jd −Rd)∇xHd. (16)
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Fig. 5. (5a) Model validation, negative input fitness:
85.46% (5b) Input signal. 5c) Model validation, pos-
itive input fitness: 89.33% (5d) Positive input signal.
We can observe the model’s behavior in response to a
variation of 10% around the nominal values.

Symbol Value Units Definition

Lp 0.015 m Length of top film
Lv 0.015 m Length of bottom film
Le 0.015 m Length of electrodes
Xh 0.002 m Chamber high
m 0.047 kg Mass
ϵr 2.2 F/m Relative permittivity
ϵ0 8.854x10−12 F/m Vacuum permittivity
w 0.05 m Actuator width
t 18x10−6 m Film thickness
Ri 10 Ω Resistance
rL 20 Ω Resistance
L 150 F Inductance
K 200 N/m Spring constant
Kb 0.202 Nm/rad Torsional spring constant
b 0.0199 kgs Damping
γ1 104.33 - Gain parameter
γ2 7.67 - Gain parameter

Table 1. Model parameters.

Fig. 6 shows the control scheme. The desired equilibrium
points x∗ (θ∗, l∗p ϕ∗ and Q∗) and the state variables x
(θ, lp, ϕ and Q) are the controller (β(x)) inputs. We can
define the desired interconnection and dissipation matrix
as:

Jd −Rd =


0 0 J13 0 α1

0 0 J23 0 α2

−J13 −J23 −r33 J43 α3

0 0 −J43 0 α4

−α1 −α2 −α3 −α4 −r55

 , (17)

where J13, J23, J43, α1, α2, α3 and α4 are the control
design parameters to be determined. The desired total
energy can be defined with the desired equilibrium position
of the actuator as:

Hd = (θ − θ∗)T K̃b(θ − θ∗) + (lp − l∗p)
T K̃(lp − l∗p)

+PTM−1P + (ϕ− ϕ∗)T K̃ϕ(ϕ− ϕ∗)

+(Q−Q∗)T K̃Q(Q−Q∗)

(18)

The derivative of the desired total energy respected to the
state variables is



∇xHd =


K̃b(θ − θ∗)

K̃(lp − l∗p)
M−1p

K̃ϕ(ϕ− ϕ∗)

K̃Q(Q−Q∗)

 . (19)

To get a state feedback matching the closed-loop system
with a desired PH system ẋ = (Jd − Rd)∇xHd defined
above. We need to solve the following matching conditions

g⊥[J −R]∇xH = g⊥[Jd −Rd]∇xHd, (20)

with g⊥ is a full rank annihilator of the input matrix g.
One can choose the annihilator as following:

g⊥ =

1 0 0 0 0
0 1 0 0 0
0 0 1 0 0
0 0 0 1 0

 . (21)

We find J13, J23, J43 as a function of α1, α2, α3 and α4.

J13 =diag((diag(M−1p))−1(M−1p− α1K̃Q(Q−Q∗))); (22)

J23 =diag((diag(M−1p))−1(dM−1p− α2K̃Q(Q−Q∗))); (23)

r33 =diag((diag(M−1p))−1(∇θH + d∇lpH + bM−1p (24)

+ α3K̃Q(Q−Q∗)− J13K̃b(θ − θ∗)− J23K̃(lp − l∗p)

+ J43K̃ϕ(ϕ− ϕ∗))).

J43 =diag((diag(M−1p))−1(rLL
−1ϕ− C−1Q+ α4K̃Q(Q−Q∗));

(25)

We obtain the control law considering the next design
parameters α1 = I, α2 = 0, α3 = I and α4 = 0 .

β(x) = (R̄gaT R̄ga)−1R̄gaT (−K̃b(θ − θ∗)−M−1p

−r55K̃Q(Q−Q∗) + L−1ϕ+ (R̄C−1Q)),
(26)

Fixing l∗p and θ∗ we can find Q∗ from the model in steady
state. To ensure the stability of the closed loop system,
the desired damping r33 should be greater than or equal
to zero r33 ≥ 0, thus the desired charge must be smaller
or equal to:

Q∗ ≤ Q− (diag(∇θHd + I)−1diag(K̄Q)
−1(∇θHd−

∇θH − d∇lpH − b∇pH − J23∇lpHd − J43∇ϕHd)
(27)

IDA-PBC
Controller

β(x) x
h(θ)

hx∗

x∗ (h∗)
h∗

(J−R)∇xH+β(x)
θ

Curling HASEL

Fig. 6. Closed-loop scheme with the controller β(x) inputs
are the state variables x and the desired values x∗.
The system input is the necessary voltage computed
by the controller. h(x) is the function that allows to
find the final position as a function of each link angle.

5.1 Disturbance rejection using Integral Action

In this subsection, we want to improve the robustness of
the controller (26) with the unknown mass load on the
actuator using a structure-preserving integral action. The
unknown mass load can be regarded as the unactuated
external force disturbance (du), also the integral action

controller can reject actuated disturbances (da). The dis-
turbed closed loop system with (26) can be written as:

Q̇

θ̇

l̇p
ṗ

ϕ̇

 = [Jd −Rd]


∇QHd

∇θHd

∇lpHd

∇pHd

∇ϕHd

+


da
0
0
du
0

 , (28)

where the desired interconnection and the damping matrix
are defined as:

Jd(x) :=

[
Jaa(x) Jau(x)

−J
T
au(x) Juu(x)

]
=


0 −α1 −α2 −α3 −α4

α1 0 0 −J13 0

α2 0 0 −J23 0

α3 J13 J23 0 −J43

α4 J13 0 J43 0

 ; (29)

Rd(x) :=

[
Raa(x) Rau(x)

R
T
au(x) Ruu(x)

]
=


r55 0 0 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0 r33 0

0 0 0 0 0

 . (30)

Using the method described in (Ferguson et al., 2017). We
can choose the new closed loop Hamiltonian as:

Hcl = Hd +
Ki

2
∥Q− xc∥2 (31)

and the new closed loop system can be derived as:

ẋa

ẋu

ẋc

 = (Jcl −Rcl)

∇xaHcl

∇xu
Hcl

∇xc
Hcl

+


da
0
0
du
0
0

 . (32)

One can thus get a structure preserving Integral action
(IA) controller:

ui = [−Jaa +Raa + Jc1(x)−Rc1(x)−Rc2(x)]∇xa
H+

[Jc1(x)−Rc1(x)]Ki(xa − xc) + 2Rau∇xu
H;

ẋc = −Rc2(x)∇xa
H + (Jau +Rau)∇xu

H,
(33)

where ui is the output of the IA controller. xc is the
IA controller state. The actuated state is the charge Qm

whilst the unactuated states are the angle θ, the length lp,
the angular momentum p and the magnetic flux ϕ.

Being Jau = −[α1 0 α3 0] and Jc1 = Rc2 = Rau = 0 and
Rc1= r55 we obtain the next control law.

ui = −r55Ki(Q− xc);

ẋc = −(α1K̃b(θ − θ∗) + α3M
−1p).

(34)

Where the Ki parameter design is chosen as a vector
of dimensions 1 × n. The β(x) controller dimension is
1×1. The control scheme is shown in Fig. 7 and the

IDA-PBC
Controller (J−R)∇xH+β(x)+d

β(x)x∗
x

Integral
action

h(θ)

h

d

θx∗ (h∗)
h∗

+

+

Curling HASEL

Fig. 7. Closed-loop scheme with IA.



interconnection and damping matrix are given as:

Jcl :=

 0 Jau 0
−JT

au Juu 0
0 0 0

 ; Rcl :=

[
r55 0 r55
0 r33 0
r55 0 r55

]
. (35)

6. NUMERICAL SIMULATION

In this section, we show the numerical simulation results
using the proposed control method. The open loop param-
eters are given in Table. 1. We implement the IDA-PBC
controller (26) with the Integral action controller (34) to
achieve the desired end point position of the curling actua-
tor. To show the different closed loop dynamics behaviour,
we vary the tuning parameter K̃b while keep the rest of
the tuning parameters constant. The controller parameters
values are r55 = diag([0.1 0.1 0.1 0.1]) andKi = [0 150 0 0]
. One can observe the end point regulation to the desired
position in Fig. 8 and the external disturbance rejection
Fig. 9.

Fig. 8 presents actuator displacement when we vary the
tuning value K̃b, maintaining fixed the K̃Q value. The
desired position of the end point is h∗(θ) = 2 cm. From
the simulation results in Fig. 8, one can observe that the
response time of the closed-loop system becomes faster as
the value of K̃b increases, because K̃b is the closed loop
stiffness.

Fig. 8. Position control keeping constant the parameters
K̃Q = 1000, the set-point equal to 2[cm] and varying
the tuning parameter related with the desired angle
K̃b.

Fig. 9 shows the actuator displacement to the desired set
point. The external unactuated disturbance disturbance
is added at 3[s] and the actuated disturbance is added
at 7[s]. The proposed controller with integral action can
compensate the disturbances.

7. CONCLUSION

We model and control a curling HASEL actuator in this
work using the port-Hamiltonian approach. The dynamics
of the actuator is divided into two parts. One part is the
mechanical part described by linear and torsional springs,
and the deformable capacitor and the inductor represent
the other part of the electronic system. An IDA-PBC
controller has been proposed with the integral action to
control the position of the actuator. It was shown that
the controller follows the set point, and we can adjust
the dynamics performance by varying the controller tuning
parameter. The robustness of the controller regarding the
external disturbance has been improved using the integral
action controller.
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Fig. 9. (9a) Position control K̃Q = 10, K̃b = 10 and Ki =
[0 150 0 0]. The simulation presents a disturbances du
and da at 3s and 7s respectively. (9b) IDA-PBC and
IDA-PBC+IA control signals.

The perspectives of this work are to implement the pro-
posed IDA-PBC controller with IA, testing the system in
closed loop. Furthermore, it could be interesting to model
and control more complex structures based on HASEL ac-
tuators (e.g., scorpion, fish, human hands-inspired designs)
with the interconnection of basic subsystems.
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