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Abstract: This paper is concerned with the port-Hamiltonian modeling of a Timoshenko beam
subject geometric nonlinearities through von Kármán strains, material nonlinearity considering
hyperelasticity with the assumption of neo-Hookean or Mooney-Rivlin material, in addition to
the incompressible deformation constraint that corresponds to the preservation of volume. The
model is suitable for representing the behavior of rubber like beams within the range of moderate
deformations and rotations. Numerical simulations are carried out to illustrate the accuracy of
the proposed model.
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1. INTRODUCTION

Beam models find extensive applications in various fields
of interest such as structural engineering and/or robotics.
Nonlinear models are essential to represent the complex
dynamic behavior of such systems subject to large de-
formations, or/and based on material with nonlinear be-
havior. The use of port-Hamiltonian formulations offers a
powerful mathematical framework to model these complex
physical systems in an efficient way, facilitating their anal-
ysis, control and design within a unified and structured
approach.

The interconnection structure of port-Hamiltonian sys-
tems (PHS) serves as a framework for the effective mod-
eling and control of complex nonlinear multi-physical sys-
tems (Duindam et al., 2009). The modeling and control
of mechanical systems have been addressed in this frame-
work in both linear and nonlinear cases. For example,
in (Macchelli and Melchiorri, 2004) the PHS formulation
of the Timoshenko beam is presented, which considers
small deformations and linear elastic material by means
of Hooke’s law. Furthermore, in (Brugnoli, 2020) models
for general linear elasticity, linear thermoelasticity, and
classical plate models such as Kirchhoff-Love and Mindlin
plates are presented within the PHS framework. Recently,
in (Ponce et al., 2023) a methodology is presented for the
port-Hamiltonian modeling of a wide range of linear me-
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chanical systems that include bars in tension, circular bars
in torsion, vibrating string, beams, plates, among others.
All of these models are based on the infinitesimal strain
theory and Hooke’s law, which place these models in the
category of geometrically and materially linear systems,
respectively. On the other hand, several researchers have
made notable contributions in the domain of geometrically
nonlinear modeling, employing formulations based on von
Kármán strains. (Brugnoli et al., 2021) presented an Euler-
Bernoulli beam model, while (Voss et al., 2008) explored
a piezo-actuated Euler-Bernoulli beam. In a similar vein,
(Voss and Scherpen, 2014) introduced a piezo-actuated
Timoshenko beam. (Trivedi et al., 2015) proposed a cart-
mounted Timoshenko beam model, incorporating the ad-
ditional constraint of inextensibility. Notably, (Brugnoli
and Matignon, 2022) extended this idea by introducing a
two-dimensional von Kármán plate model. In a broader
context, (Thoma and Kotyczka, 2022) formulated elas-
ticity incorporating geometric nonlinearity through the
finite strain tensor (Green-Lagrange strain tensor), while
maintaining material linearity through the assumption of
hyperelasticity via a Saint Venant-Kirchhoff material. To
the best of our knowledge, the only known work incor-
porating both sources of nonlinearities within an infinite-
dimensional PHS model is the study by (Kinon et al.,
2023), where the focus is made on modeling a geometri-
cally exact string, considering hyperelasticity with a neo-
Hookean material (in this context, geometrically exact
implying no neglect of terms in the Green-Lagrange strain
tensor).

In this paper we derive a port-Hamiltonian model for a
geometrically nonlinear Timoshenko beam based on von
Kármán strains, considering material nonlinearity due to
hyperelasticity with neo-Hookean or Mooney-Rivlin mod-



els for the solid, in addition to incompressible deformation
constraint associated with conservation of volume during
the deformation. These considerations make the model
suitable for representing the dynamic behavior of rubber
like beams in the range of moderate deformations and
rotations, finding applications for example in the field of
continuous robots. The paper is structured as follows: Sec-
tion 2 presents the background regarding the modeling of
nonlinear mechanical systems and some definitions about
PHS. Section 3 presents the different stages in obtaining
the model until reaching the port-Hamiltonian represen-
tation, and also are shown numerical simulations. Finally,
section 4 gives some conclusions and discusses future work.

2. BACKGROUND

In this section we present a short overview of the physical
laws that will be applied in the subsequent sections, and
some usual definitions about infinite-dimensional PHS. For
the mathematical description of the system we denote the
reference domain by Ω, and its boundary is assumed to
be divided in two subdomains as ∂Ω = ∂ΩD ∪ ∂ΩN with
∂ΩD∩∂ΩN = {∅}, where ∂ΩD, ∂ΩN are the Dirichlet and
Neumann boundary portions, and {∅} is the empty set.
The material coordinates are denoted as x = {ζ1, ζ2, ζ3}
and specify a point on Ω, and similarly s on ∂Ω. To
enhance the readability of the paper, reference to spatial
and temporal dependencies will be often omitted.

2.1 Elasticity

The branch of physics that studies the relationship be-
tween external forces, internal stresses, and deformation
is known as elasticity. A key variable in elasticity is the
displacement field u(x, t) ∈ R3, which assigns to each
point x in a body of volume ∀ ⊂ R3 a displacement
vector that specifies its current position in the deformed
configuration regarding a reference configuration. For large
deformations, is often used the Green-Lagrange strain ten-
sor (ε ∈ R3×3) where its components are given by

εij =
1

2

(
∂ui

∂ζj
+

∂uj

∂ζi
+

3∑
k=1

∂uk

∂ζi

∂uk

∂ζj

)
(1)

with i, j = (1, 2, 3). Since the Green-Lagrange strain tensor
is symmetric, it can be represented as a six-components
vector using the Voigt-Kelvin notation, then

ε = [ε11 ε22 ε33 2ε12 2ε13 2ε23]
⊤. (2)

When the body is deformed, it develops internal stresses,
so there is a relationship between the strain and stress
tensors. Denoting the strain energy density function (per
unit volume) as W (ε) ∈ R, this relationship is given by

σ =
∂W (ε)

∂ε
(3)

where σ ∈ R3×3 is the second Piola-Kirchhoff stress tensor.
Similarly to the strain tensor, using the Voigt-Kelvin
notation the stress tensor can be expressed as a vector
σ = [σ11 σ22 σ33 σ12 σ13 σ23]

⊤. Usually the strain
energy density function is expressed as W (C), where C is
the right Green-Cauchy tensor and is related to ε by

C = 2ε+ I (4)

with I ∈ R3×3 the identity matrix. It is important to
mention that the eigenvalues of C represent the square

of the principal stretches, so the conservation of volume
during the deformation can be expressed by the following
condition

det(C) = 1. (5)

One way to obtain the equations of motion is by using
Hamilton’s principle. This principle states that the true
evolution of u(x, t), between two specific states u(x, t1)
and u(x, t2) at two specific times t1 and t2, is a stationary
point of the action functional, that is

δ

∫ t2

t1

(T − U +WE) dt = 0 (6)

subject to δu(x, t1) = δu(x, t2) = 0 for all x, and δu(s, t) =
0 for s ∈ ∂ΩD. In (6), T , U , and WE denote the kinetic
energy, the elastic potential energy, and the external work,
respectively which are defined by

T =
1

2

∫
∀
ρu̇ · u̇ d∀ (7)

U =

∫
∀
W (ε) d∀ (8)

WE =

∫
∀
f∀ · u d∀+

∫
S

fS · u dS (9)

where ρ is the constant density, f∀, fS ∈ R3 represent
body and surface forces, respectively, and S denotes the
boundary surface of the volume ∀ where fS is applied.
For a more comprehensive review on these topics, refer to
(Reddy, 2013, 2017).

2.2 Infinite-dimensional port-Hamiltonian systems

In simple terms, a conservative and autonomous infinite-
dimensional PHS is defined by (van der Schaft and
Maschke, 2002; Brugnoli, 2020)

∂tx = J δxH

u∂ = B∂δxH
y∂ = C∂δxH

(10)

where ∂t = ∂/∂t, x is the state and contains the energy
variables, J = −J ∗ is a formally skew-adjoint differ-
ential operator, δxH is the variational derivative of the
Hamiltonian functional H with respect to x that defines
the co-energy variables. B∂ , C∂ are boundary operators
that provide the boundary input and output u∂ and y∂ ,
respectively (Le Gorrec et al., 2004, 2005). To define a
PHS in the Stokes-Dirac structure, the operators J ,B∂ , C∂
must satisfy an integration by parts formula, see (Brug-
noli, 2020, Assumption 1). The subsequent definition and
lemma define a class of first-order differential operators
and their formal adjoints, accompanied by an integration-
by-parts formula allowing to define power conjugated
boundary port variables. These formulations naturally ex-
tend certain findings outlined in (Voss and Scherpen, 2014;
Brugnoli et al., 2021; Ponce et al., 2023).

Definition 1 Let x={ζ1, . . . , ζℓ} be a set of orthogonal
coordinate axes, Ω ⊂ Rℓ an open set, v(x) ∈ Rm and
w(x) ∈ Rn two vector functions. The first order differential
operator Fx and its formal adjoint F∗

x are given by

Fx w(x) =P0(x)w(x) +
∑ℓ

k=1 Pk(x) ∂kw(x) (11)

F∗
x v(x) =P0(x)

⊤v(x)−
∑ℓ

k=1 ∂k(Pk(x)
⊤v(x)) (12)

with ∂k = ∂/∂ζk and P0(x), Pk(x) ∈ Rm×n.



Lemma 1 Consider that Definition 1 holds. Let be Ω ⊂ Rℓ

an ℓ-dimensional domain, its boundary ∂Ω and Ω̄ = Ω∪∂Ω
the closure, such that x ∈ Ω and s ∈ ∂Ω. Then for any
v(x) ∈ Rm and w(x) ∈ Rn defined in Ω̄ we have that∫

Ω

v(x)⊤Fxw(x)−w(x)⊤F∗
x v(x)dx=

∫
∂Ω

w(s)⊤P∂(s)v(s)ds

(13)
with P∂(s) ∈ Rn×m a boundary valued matrix given by

P∂(s) =
∑ℓ

k=1 Pk(s)
⊤n̂k(s) (14)

where n̂k(s) is the component of the outward unit normal
vector to the boundary projected on the axis ζk.

3. MODELING

This section presents the modeling of the Timoshenko
beam represented in Figure 1, where u0(ζ1, t) is the axial
displacement, w(ζ1, t) is the vertical displacement, and
ψ(ζ1, t) is the angle of rotation of the cross section. For
this case, ζ1 ∈ Ω = (0, L) ⊂ R with L the length of the
beam in the reference configuration, s = {0, L} and is
assumed that s = 0 ∈ ∂ΩD and s = L ∈ ∂ΩN . This
means that Dirichlet boundary conditions will be applied
in ζ1 = 0, and Neumann boundary conditions in ζ1 = L.
In addition, we denote the cross section area of the beam
in the reference configuration as A, and we assume that it
is symmetric with respect to their centroidal coordinates.

ψ

p

p

u0

w

ζ3

ζ1

ζ1

Fig. 1. Timoshenko beam scheme.

3.1 Kinematics

The kinematic assumption of the Timoshenko beam is that
plane sections perpendicular to the neutral axis before de-
formation remain plane but not necessarily perpendicular
to the neutral axis after deformation. The displacement
field u(x, t) of the Timoshenko beam, that mathematically
represents its kinematic assumption, is given by

u(x, t) =

[
1 −ζ3 0
0 0 0
0 0 1

][
u0
ψ
w

]
= M̄ r (15)

where r = [u0 ψ w]
⊤ ∈ R3 is the generalized displacement

field and gathers the primary unknowns of the problem,
and M̄ is a mapping matrix. From (1), the nonzero
components of the Voigt-strain vector are given by

ε11 = ∂1u0 +
1

2
(∂1w)

2− ζ3∂1ψ +
1

2
(∂1u0 − ζ3∂1ψ)

2

2ε13 =(∂1w − ∂1ψ) + ψ(∂1u0 − ζ3∂1ψ)

ε33 =
1

2
ψ2

but using the hypothesis of von-Kármán strains, the non-
linear stretching terms are neglected and we obtain

ε11 = ∂1u0 +
1

2
(∂1w)

2 − ζ3∂1ψ (16)

2ε13 = ∂1w − ∂1ψ (17)

ε33 =
1

2
ψ2. (18)

Considering the above von-Kármán strains, from (4) the
right Green-Cauchy tensor C is given by

C =

[
2ε11+1 0 2ε13

0 1 0
2ε13 0 2ε33+1

]
. (19)

Then, the constraint of incompressible deformation in (5)
is equivalent to

det(C) = (2ε11 + 1)(2ε33 + 1)− 4ε213 = 1

from where it is obtained ε33 =
2ε213−ε11
2ε11+1 , but similar

to the methodology discussed in (Azarniya et al., 2023),
we approximate it by considering the initial terms of the
Taylor series expansion around ε11 = 0, resulting in

ε33 ≈ −ε11 + 2ε211 + 2ε213 − 4ε311 − 4ε11ε
2
13. (20)

Now, analogously to (Voss and Scherpen, 2014), from (16)
and (17) the generalized strain ϵ(ζ1, t) ∈ R3 is defined as

ϵ =

[
ϵ1
ϵ2
ϵ3

]
=

∂1u0 + 1

2
(∂1w)

2

∂1ψ
∂1w − ψ

 (21)

and its time derivative can be written as

ϵ̇ =

[
ϵ̇1
ϵ̇2
ϵ̇3

]
=

[
∂1 0 ∂1w∂1
0 ∂1 0
0 −1 ∂1

]
︸ ︷︷ ︸

Fx

u̇0ψ̇
ẇ


︸ ︷︷ ︸

ṙ

(22)

where Fx is a differential operator as in Definition 1 with
associated matrices

P0 =

[
0 0 0
0 0 0
0 −1 0

]
, P1 =

[
1 0 ∂1w
0 1 0
0 0 1

]
(23)

and formal adjoint according to (12) given by

F∗
x = −

[
∂1 0 0
0 ∂1 1

∂1(· ∂1w) 0 ∂1

]
. (24)

3.2 Elastic potential energy

For the beam, hyperelastic behavior is first modeled using
the neo-Hookean solid, chosen for its capacity to precisely
and efficiently represent the nonlinear characteristics of
elastomeric materials under large deformations. Addition-
ally, its relative mathematical simplicity eases implementa-
tion and application in numerical and theoretical analyses.

In order to define the PHS, it is necessary to write
the elastic potential energy in terms of the generalized
strains (21). To start, the von-Kármán strains in (2) are
equivalently written as

ε11 = ϵ1 − ζ3ϵ2

ε13 = 1
2ϵ3

ε33 = Ψ0(ϵ) + ζ3Ψ1(ϵ) + ζ23Ψ2(ϵ) + ζ33Ψ3(ϵ)

where



Ψ0(ϵ) = 2ϵ21 − ϵ1 +
1
2ϵ

2
3 − ϵ21ϵ

2
3 − 4ϵ31 (25)

Ψ1(ϵ) = ϵ2 − 4ϵ1ϵ2 + 2ϵ1ϵ2ϵ
2
3 + 12ϵ2ϵ

2
1 (26)

Ψ2(ϵ) = 2ϵ22 − ϵ22ϵ
2
3 − 12ϵ1ϵ

2
2 (27)

Ψ3(ϵ) = 4ϵ32. (28)

The strain energy density function of the compressible neo-
Hookean solid is given by

W (C) = α1(IC − 3− 2 ln(J)) + α2(J − 1)2 (29)

where IC = tr(C) is the first invariant of C, J =√
det(C) is called the Jacobian, and the constants α1, α2

are properties of the material. Replacing (20) in (19) allows
us to simplify (29) as

W (C) = α1(IC − 3) = 2α1(2ε
2
11 + 2ε213 − 4ε311 − 4ε11ε

2
13)

which corresponds to the strain energy density function
of the incompressible neo-Hookean beam. Then, writing a
differential of volume as d∀ = dAdζ1, by definition (8) we
obtain

U =

∫
Ω

∫
A

2α1(2ε
2
11 + 2ε213 − 4ε311 − 4ε11ε

2
13) dAdζ1

=

∫
Ω

∫
A

2α1[(Ψ0(ϵ) + ϵ1) + ζ3(Ψ1(ϵ)− ϵ2) . . .

· · ·+ ζ23Ψ2(ϵ) + ζ33Ψ3(ϵ)] dAdζ1

=

∫
Ω

2α1A(Ψ0(ϵ) + ϵ1) + 2α1I2Ψ2(ϵ) dζ1

=

∫
Ω

ΨNH(ϵ) dζ1 (30)

where ΨNH(ϵ) is defined as the generalized strain energy
density function of the neo-Hookean beam, and I2 is the
second moment of inertia of the cross section. Note that to
go from line two to three in the previous expression it was
applied

∫
A
ζ3 dA =

∫
A
ζ33 dA = 0, which is a consequence

of the assumption of symmetry in the cross-section with
respect to the centroidal coordinates.

Remark 1 The constitutive relation of the beam mate-
rial is not restricted to neo-Hookean. For example, it is
common for rubber like materials to be modeled using the
Mooney-Rivlin model.

To illustrate how to use other constitutive relations, the
case of the Mooney-Rivlin solid is then briefly presented
below. Considering that in our case J = 1, the strain
energy density function of the incompressible Mooney-
Rivlin solid is given by

W (C) = β1(IC − 3) + β2(IIC − 3) (31)

where IIC = 1
2

(
tr(C)2 − tr(C2)

)
is the second invariant

of C, and the constants β1, β2 are related to the properties
of the material. Similarly to what has been previously
presented, according to (31) and after some computation,
the elastic potential energy of the beam can be expressed
as

U =

∫
Ω

2β1A(Ψ0(ϵ) + ϵ1) + 2β1I2Ψ2(ϵ)− 4β2I4ϵ2Ψ3(ϵ) . . .

· · ·+ 4β2I2 ((ϵ1 + 1)Ψ2(ϵ)− ϵ2Ψ1(ϵ)) . . .

· · ·+ β2A (4(ϵ1 + 1)Ψ0(ϵ) + 4ϵ1 − ϵ3) dζ1

=

∫
Ω

ΨMR(ϵ) dζ1 (32)

where ΨMR(ϵ) is defined as the generalized strain energy
density function of the Mooney-Rivlin beam, and I4 is

the fourth moment of inertia of the cross section. In
what follows, Ψ(ϵ) will represent either ΨNH(ϵ) or ΨMR(ϵ),
depending on the hyperelastic model under consideration.

3.3 Kinetic energy and external work

From (7) and using the expression of the displacement field
u(x, t) in (15), the kinetic energy of the beam is given by

T =
1

2

∫
Ω

ṙ⊤
∫
A

ρM̄⊤M̄ dA ṙ dζ1 =
1

2

∫
Ω

ṙ⊤M ṙ dζ1 (33)

where M is defined as the distributed mass matrix, ans its
expression is derived from

M =

∫
A

ρ

 1 −ζ3 0
−ζ3 ζ23 0
0 0 1

dA =

[
ρA 0 0
0 ρI2 0
0 0 ρA

]
(34)

where again was applied
∫
A
ζ3 dA =

∫
A
ζ33 dA = 0. Then,

defining the generalized momentum variable as p = Mṙ,
the kinetic energy of the beam can be expressed as

T =
1

2

∫
Ω

p⊤M−1 p dζ1. (35)

Note that, as in the linear case, the kinetic energy is
quadratic in the generalized momentum variables.

On the other hand, the first term of the external work
in (9) involves the body forces f∀, which in the context
of the beam, this is specifically regarded as the effect of
its own weight, resulting in f∀ = [0 0 −ρg]⊤ with g the
acceleration of gravity. Consequently, the first term of (9)
can be expressed as follows∫

∀
f∀ · u d∀ =

∫
Ω

∫
A

f⊤∀ M̄ dA r dζ1 =

∫
Ω

b⊤r dζ1 (36)

where b = [0 0 −ρgA]⊤ ∈ R3 is defined as the generalized
body force. With respect to the second term of (9), S
denotes the surface where fS is applied (which in our case
corresponds to the cross section at ζ1 = L where Neumann
boundary conditions are applied). Considering the above,
the external work of the beam can be rewritten as

WE =

∫
Ω

b · r dζ1 +
∫
∂ΩN

τ∂ · r ds (37)

where τ∂ ∈ R3 is defined as the generalized boundary
traction.

3.4 Port-Hamiltonian model

From the previous subsections it is now possible to pro-
pose a port-Hamiltonian representation of the Timoshenko
beam featuring both geometric and material nonlinear-
ities, considering also the constraint associated to the
incompressible deformation.

Proposition 1 Let x(ζ1, t) = [p(ζ1, t)
⊤ ϵ(ζ1, t)

⊤ w(ζ1, t))]
⊤

be the state variable. Based on the displacement field (15),
the elastic potential energy (30) or (32), the kinetic energy
(35), and the external work (37), the beam dynamics
defines an infinite-dimensional PHS of the form





ṗ1
ṗ2
ṗ3
ϵ̇1
ϵ̇2
ϵ̇3
ẇ


︸ ︷︷ ︸

ẋ

=



0 0 0 ∂1 0 0 0
0 0 0 0 ∂1 1 0
0 0 0 ∂1(· ∂1w) 0 ∂1 −1
∂1 0 ∂1w∂1 0 0 0 0
0 ∂1 0 0 0 0 0
0 −1 ∂1 0 0 0 0
0 0 1 0 0 0 0


︸ ︷︷ ︸

J (x)=−J (x)∗



ep1

ep2

ep3

eϵ1
eϵ2
eϵ3
ew


︸ ︷︷ ︸
δxH

u∂(s, t) = [v∂(0, t)
⊤ τ∂(L, t)

⊤]⊤

y∂(s, t) = [yv(0, t)
⊤ yτ (L, t)

⊤]⊤

(38)

Where

H(p, ϵ, w) =

∫ L

0

1

2
p⊤M−1p+Ψ(ϵ) + ρgAw dζ1 (39)

is the Hamiltonian and represents the sum of the ki-
netic energy, elastic potential energy and gravitational
potential energy. The co-energy variables are defined as
ep = δpH = ṙ, eϵ = δϵH = ∂Ψ/∂ϵ and ew = δwH = ρgA.
The boundary input u∂ is composed of the generalized
boundary velocity v∂(0, t) = ṙ(0, t) and the generalized
boundary tractions τ∂(L, t) = P∂(L)eϵ(L, t). The bound-
ary output y∂ contains the power conjugated variables
yv(0, t) = P∂(0)eϵ(0, t) and yτ (L, t) = ṙ(L, t). Then, the

power exchange is given by Ḣ = u⊤∂ y∂ .

Proof. The equations of motion are obtained by applying
Hamilton’s principle. First of all we have

δT =

∫
Ω

δṙ⊤Mṙ dζ1

δWE =

∫
Ω

δr⊤b dζ1 +

∫
∂ΩN

δr⊤τ∂ ds

δU = δ

∫
Ω

Ψ(ϵ) dζ1 =

∫
Ω

δΨ

δϵ
· δϵ dζ1 =

∫
Ω

e⊤ϵ Fxδr dζ1

where in δU was used δΨ/δϵ = ∂Ψ/∂ϵ = eϵ and δϵ = Fxδr.
Then, applying Lemma 1 to δU and considering that
δr(s, t) = 0 in ∂ΩD since δu(s, t) = 0 in ∂ΩD we obtain

δU =

∫
Ω

δr⊤F∗
x eϵ dζ1 +

∫
∂ΩN

δr⊤P∂eϵ ds.

Before applying Hamilton’s principle we integrate by parts
δT with respect to time, then∫ t2

t1

δT dt = −
∫ t2

t1

∫
Ω

δr⊤Mr̈ dζ1 dt+

∫
Ω

δr⊤Mṙ
∣∣t2
t1
dζ1.

where the last term above is equal to zero because
δr(ζ1, t1) = δr(ζ1, t2) = 0 since δu(x, t1) = δu(x, t2) = 0.
Then, applying Hamilton’s principle we obtain∫ t2

t1

[∫
Ω

δr⊤(Mr̈ + F∗
x eϵ + b) dζ1 + . . .

. . .

∫
∂ΩN

δr⊤(τ∂ − P∂eϵ) ds

]
dt = 0.

So applying the lemmas in Appendix A to each term in
the above expression we obtain the following equation of
motion and boundary conditions

for all ζ1 ∈ Ω : Mr̈ + F∗
x eϵ + b = 0 (40)

for all s ∈ ∂ΩN : τ∂(s, t) = P∂(s)eϵ(s, t). (41)

Then, (40) together with (22) and ẇ = ep3 can be written
equivalently as in (38) with respect to the Hamiltonian de-
fined in (39). The power exchanged with the environment
is given by

Ḣ =

∫
Ω

δxH
⊤ẋ dζ1=

∫
Ω

e⊤ϵ Fxep−e⊤p F∗
x eϵ−ep3ew+ewep3dζ1

=

∫
∂Ω

e⊤p P∂eϵds =

∫
∂ΩD

v⊤∂ yv ds+

∫
∂ΩN

y⊤τ τ∂ ds = u⊤∂ y∂

where was applied Lemma 1, the boundary ∂Ω was par-
titioned into ∂ΩD and ∂ΩN , and the boundary integrals
were computed at their respective locations, specifically at
s = 0 in ∂ΩD and s = L in ∂ΩN .

The model introduced in Proposition 1 encompasses ge-
ometric nonlinearity within the interconnection opera-
tor J and material nonlinearity in the co-energy vari-
ables eϵ, similarly to the hyperelastic string model pro-
posed in (Kinon et al., 2023), where spatial and temporal
discretization schemes are also presented. Consequently,
finite-dimensional models suitable for controller design
and analysis could be derived using these approaches, or
using other conventional schemes for nonlinear mechanical
systems. Note that the presented methodology facilitates
a modular adjustment in the elastic potential energy, al-
lowing the consideration of various hyperelastic materi-
als without affecting the interconnection structure of the
port-Hamiltonian system. Furthermore, the methodology
is similar to the one presented in (Ponce et al., 2023)
for the linear case. Therefore, further work on this topic
could lead to a modeling methodology for a broader range
of multidimensional mechanical systems that incorporate
both geometric and material nonlinearities.

3.5 Numerical simulations

Adapting the spatial discretization scheme outlined in
(Kinon et al., 2023) to our specific scenario, we obtained
the following simulated results using the neo-Hookean
beam model. The used physical parameters are α1 = 45
[GPa], ρ = 7800 [kg/m3], L = 30 [cm], A = 30 [mm2],
I2 = 2.5 [mm4], g = 9.8 [m/s2]. The boundary inputs are
considered as v∂(s, t) = 0 and

τ∂(s, t) = [0 0 10 sin(40πt)]
⊤

(42)

for 0 ≤ t ≤ 0.2 [s]. With these considerations and the
introduction of artificial damping, Fig. 2 illustrates the
generalized displacements u0(ζ1, t) and w(ζ1, t) evaluated
at ζ1 = L, respectively. Fig. 3 presents the temporal
evolution of the configuration. Both figures demonstrate
the ability of the port-Hamiltonian model to capture the
coupled behavior of the generalized displacements u0(ζ1, t)
and w(ζ1, t). This coupling arises from the integration
of geometric and material nonlinearities, along with the
constraint of incompressible deformation.
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Fig. 2. Neo-Hookean beam: Tip dynamics.
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Fig. 3. Neo-Hookean beam: Configuration dynamics.

4. CONCLUSION

In this paper we derive a port-Hamiltonian model for an
hyperelastic beam considering both geometric and mate-
rial nonlinearities. The model is derived starting from its
kinematic assumptions and constitutive relationships. The
adopted methodology accounts for von-Kármán strains,
enforces the incompressible deformation constraint inter-
nally, and provides flexibility in the choice of hyperelas-
tic models without altering the interconnection structure
of the derived model. Two specific cases are presented,
the first case employing a neo-Hookean solid model and
the second featuring a Mooney-Rivlin model. Further-
more, given the modularity of the presented methodol-
ogy, we are currently working on a general method to
obtain port-Hamiltonian representations for multidimen-
sional mechanical systems that consider both types of ge-
ometric and material nonlinearities. Finally, the structure-
preserving discretization and use of the resulting models
for control purposes are also under consideration.

Appendix A. LEMMAS FROM VARIATIONAL
CALCULUS

Lemma 2 (Gurtin, 1973, p.224.) Let W be an inner
product space, and consider a C0 field h : Ω̄× [t1, t2] → W
with Ω̄ the closure Ω̄ = Ω ∪ ∂Ω. If the equation∫ t2

t1

∫
Ω

h(x, t) · η(x, t) dx dt = 0 (A.1)

holds for every C∞ field η : Ω̄× [t1, t2] → W that vanishes
at time t1, at time t2, and on ∂Ω, then h(x, t) = 0 on
Ω̄× [t1, t2].

Lemma 3 (Gurtin, 1973, p.224.) Suppose that ∂Ω consists
of complementary regular sub-surfaces ∂ΩD and ∂ΩN . Let
W be an inner product space, and consider a function
g : ∂ΩN × [t1, t2] → W that is piecewise regular and
continuous in time. If the equation∫ t2

t1

∫
∂ΩN

g(s, t) · η(s, t) ds dt = 0 (A.2)

holds for every C∞ field η : Ω̄× [t1, t2] → W that vanishes
at time t1, at time t2, and on ∂ΩD, then g(s, t) = 0 on
∂ΩN × [t1, t2].
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