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Abstract: This paper presents a modeling methodology to enhance the dynamic performance of
the mechanical component of finite-dimensional curling HASEL (Hydraulically Amplified Self-
Healing Electrostatic) actuators within the port-Hamiltonian systems framework. The proposed
approach entails replacing the sheet dynamics that limit deformation in a low-scale model
with those derived from a large-scale discretized beam model. By making a few additional
assumptions compared to the original low-scale HASEL model, the resulting interconnected
system is established by aligning the states of the mechanical component in the low-scale
model with those of the large-scale beam model in a straightforward manner. To validate the
effectiveness of the methodology, simulated examples are provided along with a comparison to
experimental results.
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1. INTRODUCTION

Hydraulically Amplified Self-Healing Electrostatic (HASEL)
actuators represent a breakthrough in soft robotics, com-
bining elements of dielectric elastomer actuators (DEA)
and fluid-driven actuators. Operating as artificial mus-
cles powered by electric fields, HASEL exhibits remark-
able resilience to electrical failure, enabling operation at
higher voltages compared to DEA. Various applications,
including soft grippers and artificial muscle-driven arms,
have been explored, as detailed in (Acome et al., 2018).
Curling HASEL actuators enable complex bending mo-
tions, as demonstrated in (Kellaris et al., 2021) with a
spider-inspired robot’s legs. Another notable application
involves a gripper inspired by an eagle’s foot, powered
by HASEL actuators mounted on a drone, as presented
in (Kim and Cha, 2021). Addressing modeling challenges,
(Hainsworth et al., 2022) develops a nonlinear reduced-
order model, while (Volchko et al., 2022) presents a linear
model for control design in HASEL-powered arms. These
advancements highlight the diverse capabilities and poten-
tial applications of HASEL technology in the field of soft
robotics.

Integrating HASEL actuators with beams offers distinct
advantages in continuous and soft robot applications.
When coupled with HASEL actuators, the inherent flex-
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ibility of beams results in a system capable of executing
complex motions with precise control. This enables en-
hanced adaptability and dynamic response in continuous
robotic structures. The port-Hamiltonian systems (PHS)
offer a geometric framework for describing interconnected
systems. Notable features include power flow between sub-
systems, separating interconnecting structure from con-
stitutive relationships, and leveraging this structure for
analysis and control (Duindam et al., 2009). In (Cisneros
et al., 2024), the modeling and control of a curling HASEL
actuator is addressed using the port-Hamiltonian (PH)
approach. Employing a modular strategy, the HASEL
actuator is conceptualized as an interconnection of ele-
mentary subsystems. Each subsystem is depicted as an
electrical component comprising a parallel capacitor and
inductor connected to a mechanical structure consisting
of linear and torsional springs. The zipping of electrodes
induced by applying high voltage and volume conservation
within the fluid chambers enables the coupling between
the mechanical and electrical components. Currently, the
state of the art regarding modeling and discretization
of beams within the PHS framework covers linear and
nonlinear models such as Timoshenko beam (Macchelli
and Melchiorri, 2004) and Euler-Bernoulli beam (Brugnoli
et al., 2021), the cases where is considered piezo-actuation
(Voss et al., 2008; Voß and Scherpen, 2014), among others.

The contribution of this paper is a methodology to build
PHS of large-scale curling HASEL models suitable for
control design and soft-robotic applications. In the pro-
posed approach, the dynamics of the sheet that restricts
the deformation is replaced by a discretized beam model.



Then, by aligning the states related to volume conservation
in the fluid chambers, the coupled system mirrors that of
the original low-scale model. The paper is structured as
follows: Section 2 presents background on PHS, the low-
scale curling HASEL model, and discretized beam models.
Section 3 presents the methodology for coupling. Section 4
presents the identification of parameters and experimental
validation. Finally, Section 5 gives some conclusions and
discusses future work.

2. PH MODELING OF ELEMENTARY
COMPONENTS

This section aims to establish the groundwork for the
forthcoming discussion by elucidating fundamental con-
cepts and previous research relevant to PHS, a particular
model of the curling HASEL actuator, and discretized
beam models.

According to (van der Schaft, 2000), the finite-dimensional
PHS model of a physical system can be written as:

ẋ = [J(x)−R(x)]∇xH(x) + g(x)u (1)

y = g(x)⊤∇xH(x)

with x ∈ Rn the state vector, H(x) > 0 ∈ R the total
energy function called Hamiltonian, J(x) = −J(x)⊤ ∈
Rn×n the interconnection matrix, R(x) = R(x)⊤ ≥ 0 ∈
Rn×n the dissipation matrix, g(x) ∈ Rn×m the input map
matrix, and u, y ∈ Rm the power-conjugated input and
output vectors, respectively. The energy balance equation
of PHS can be calculated as

Ḣ = − (∇xH)⊤R∇xH + y⊤u ≤ y⊤u

indicating that PHS is passive with respect to the storage
function H(x).

2.1 Low-scale curling HASEL model

The PH model of the curling HASEL actuator presented
here is the one introduced in (Cisneros et al., 2024). This
model is structured as an interconnected arrangement of
ℓ fundamental subsystems, each consisting of mechanical
and electrical components and a hydraulic component
through the conservation of volume in the chamber. As
shown in Figure 1, the mechanical part is characterized
by a lumped mass mi, the integration of linear springs
representing the stiffness Ki

l of the upper layer, and tor-
sional springs representing the stiffness Ki

f of the strain-
limiting layer and the resistance of the fluid. The electrical
part incorporates a resistance Ri and a variable capacitor
Ci representing the electrodes. Additionally, an electrical
resistance ri and an inductance Li are included in parallel
with the capacitor to account for the drift effect, gradually
discharging the capacitor over time.
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Fig. 1. Scheme of the i-th chamber, with i = {1, . . . , ℓ}.
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Fig. 2. With the application of high voltage, the electrodes
undergo partial zipping, causing the deformation.

To mathematically describe the actuator, we consider the
width, denoted by w, to be constant. Thus, geometric
analysis for volume conservation is conducted in the plane.
Each i-th chamber is conceived as two compartments fa-
cilitating fluid exchange. In the equilibrium configuration
(when applied voltage uH set to zero), the active compart-
ment relative to the electrodes is regarded as a rectangle
with an initial base length Le and constant height Xh.
Conversely, the passive compartment is modeled as an
isosceles triangle with a constant base length Lv, sides of
initial length Lp, and an internal angle δi. Upon applying a
non-zero voltage uH, the electrodes contract to a length lie,
leading to fluid displacement from the active to the passive
compartment. This action induces an angular deformation
θi alongside variations in the triangle’s side lengths lip
and internal angle. To ensure volume conservation, it is
assumed that the linear springs elongate uniformly the
same magnitude εi = (lip − Lp)/2 at any given instant.
Moreover, the total volume VT = w ·AT remains constant,
where AT denotes the total area in the plane, expressed as

AT = Ais +Xh(Le − lie), (2)

Ais(θi, l
i
p) =

1

4
Lvl

i
p sin(δi(θi, l

i
p)), (3)

δi(θi, l
i
p) =

π + θi

2
− sin−1

(
Lv

lip
sin

(
π − θi

2

))
, (4)

from which it follows that the contracted length lie of the
electrodes is given by

lie(θi, l
i
p) =

(
Le −

AT

Xh

)
+

Lv

4Xh
lip sin

(
δi(θi, l

i
p)
)
. (5)

The low-scale PHS model of the curling HASEL actuator
proposed in (Cisneros et al., 2024) is given by
ṗθ
θ̇

l̇p

ϕ̇

Q̇


︸ ︷︷ ︸
ẋH

=


−b −Iℓ −d 0 0
Iℓ 0 0 0 0

d 0 0 0 0
0 0 0 −r Iℓ
0 0 0 −Iℓ −R−1

e


︸ ︷︷ ︸

JH(xH)−RH(xH)


∇pθHH

∇θHH

∇lpHH

∇ϕHH

∇QHH


︸ ︷︷ ︸

∇xH
HH

+


0
0

0
0
ΓH


︸ ︷︷ ︸
GH(xH)

uH

(6)

yH = GH(xH)
⊤∇xH

HH

where θ = [θ1 . . . θℓ]
⊤ is the vector that gathers all

the angles of each chamber, analogously the same for
lp = [l1p . . . l

ℓ
p]

⊤, ϕ = [ϕ1 . . . ϕℓ]
⊤ and Q = [Q1 . . . Qℓ]

⊤,
with ϕi the magnetic flux and Qi the electrical charge.
The angular momentum variable is defined as pθ = MHθ̇



where MH ∈ Rℓ×ℓ is the mass matrix of the actuator. The
matrix b ∈ Rℓ×ℓ represents the mechanical damping of
the actuator, Iℓ ∈ Rℓ×ℓ is the identity matrix, d(lp, θ) =

diag{ 2A1
s

l1p
, . . . ,

2Aℓ
s

lℓp
} ∈ Rℓ×ℓ is the coupling matrix related

to the conservation of volume, r = diag{r1, . . . , rℓ} ∈ Rℓ×ℓ
and Re = diag{Ri, . . . , Rℓ} ∈ Rℓ×ℓ are resistance matrices
associated with the drift effect and the equivalent electric
circuit, respectively. Defining z = [l⊤p ϕ⊤ Q⊤]⊤ as the
state vector related to the electromechanical coupling, the
Hamiltonian HH(xH) of the actuator can be expressed as

HH(xH) = Hm
H
(pθ, θ) +Hem

H
(z, θ), (7)

where Hm
H

is the mechanical part related to the strain-
limiting layer and the fluid’s resistance, and Hem

H
is the

electromechanical part. Both are given by

Hm
H
(pθ, θ) =

1

2
p⊤θ M

−1
H
pθ +

1

2
θ⊤Kfθ (8)

Hem
H

(z, θ) =
1

4
(lp − Lp)

⊤Kl(lp − Lp) +
1

2
ϕ⊤L−1

indϕ ...

· · ·+ 1

2
Q⊤C(θ, lp)

−1Q (9)

where Kf = diag{K1
f , . . . ,K

ℓ
f} ∈ Rℓ×ℓ is the stiffness

matrix of the strain-limiting layer and the resistance of the
fluid, Kl = diag{K1

l , . . . ,K
ℓ
l } ∈ Rℓ×ℓ is the stiffness ma-

trix of the upper layer, Lind = diag{L1, . . . , Lℓ} ∈ Rℓ×ℓ is
the inductance matrix, and C(θ, lp) = diag{C1, . . . , Cℓ} ∈
Rℓ×ℓ is the capacitance matrix, with Ci defined as

Ci(θi, l
i
p) =

ϵ0ϵrwlie(θi, l
i
p)

2hf
+

ϵ0ϵrw(Le − lie(θi, l
i
p))

2hf +Xh
, (10)

with hf the thickness of the film, ϵ0 and ϵr the vacuum
and relative permittivity, respectively. Finally, the input
matrix ΓH ∈ Rℓ×1 is defined as

ΓH =

1/R1 · · · 0
...

. . .
...

0 · · · 1/Rℓ


α cos(βθ1)

...
α cos(βθℓ)

 = R−1
e γ(θ) (11)

where α ∈ R and β ∈ R are constant parameters to be
identified experimentally.

2.2 Discretized beam models

In classical infinite-dimensional beam models as the one
illustrated in Figure 3, the typical unknowns include the
transverse deflection v0(ζ1, t), describing the vertical posi-
tion of the beam at a point along the neutral axis, as well
as the horizontal displacement u0(ζ1, t), and the rotation
ψ(ζ1, t), representing the inclination of the cross-section.
These variables are commonly known as generalized dis-
placements and are the primary unknowns of the system.

The dynamic equations of the system, stem from the
equilibrium of linear and angular momentum. Various rep-
resentations of these models are available in the literature,
with PHS formulations being particularly relevant for this
study. To obtain large-scale discretized models of beams,
various methods have been developed, including the Finite
Element Method (FEM) in both its standard and mixed
formulations. For a comprehensive review of these methods
see (Zienkiewicz et al., 2005). The key steps in obtaining
these approximations involve first defining and dividing

the beam’s geometry into finite elements. Subsequently,

degrees of freedom (ûk0 , v̂
k
0 , ψ̂

k) are assigned to each node
of the finite element mesh, enabling the representation
of generalized displacements at these points (see Figure
4 for the illustration). Then, an interpolation function is
selected to approximate the unknowns, and the approxi-
mated model is obtained through spatial integration over
each finite element and an assembly process.

Remark 1 Note that to preserve the PH structure in the
discrete model, structure-preserving methods must be ap-
plied. It is worth mentioning that for infinite-dimensional
beam models written as PHS, the states associated with
the kinetic energy are generalized momentum p(ζ1, t), and
those associated with the elastic potential energy are gen-
eralized strains ϵ(ζ1, t). By applying structure-preserving
methods, the states of the resulting large-scale finite-
dimensional PHS has the same physical interpretation. See
e.g. (Wang et al., 2017; Warsewa et al., 2021).

For the purposes of this work, the discretized models used
in upcoming sections are based on the standard FEM,
since this method allows to preserve the structure of the
second-order classical Lagrangian representation and the
generalized displacements as states. Then, the PHS can be
built by means of a change of variables. For completeness,
we denote the PHS representation of the large-scale beam
model as

˙̂xb = [Ĵb(x̂b)− R̂b(x̂b)]∇x̂b
Ĥb + Ĝb(x̂b)ûb (12)

ŷb = Ĝb(x̂b)
⊤∇x̂b

Ĥb

where the hat notation signifies that the variable originates
from a discretization process.

3. COUPLING METHODOLOGY

This section outlines a methodology for constructing a
large-scale model of a curling HASEL actuator formulated
as a PHS. The approach involves substituting the dynam-
ics of the sheet that constrains deformation in a low-scale
model with the dynamics of a large-scale discretized beam
model. This method enhances the representation of the
deformation profile by increasing the number of degrees
of freedom describing the system. Additionally, employing
the constitutive law within the beam model enables a more
accurate representation of the sheet’s material properties.

The assumptions used in the proposed methodology are
the following:

a) Similar to (6), the discretized PH beam model (12)
must include angular momentum and angular defor-
mation as state variables.

ψ(ζ1, t)

v0(ζ1, t)

u0(ζ1, t)

ζ1

ζ1

ζ2

Fig. 3. Beam scheme.
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b) The volume conservation in the chambers is evaluated
with respect to a subset of the angular deformation
state, and the correction factor η = diag{η1, . . . , ηℓ} ∈
Rℓ×ℓ is introduced, which is premultiplied to the
coupling term d(lp, θ) ∈ Rℓ×ℓ in (6).

c) In the resulting large-scale model, the stiffness matrix
Kf ∈ Rℓ×ℓ exclusively represents the fluid resistance,
and its energy is considered as quadratic with respect
to the same subset of the angular deformation state
used in the evaluation of volume conservation.
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Fig. 5. a) Low-scale actuator b) Large-scale actuator (uH =
0). c) Large-scale actuator (uH ̸= 0).

Following the assumption a), suppose that the state of the
beam model (12) is organized as follows:

x̂b =
[
· · · p̂⊤ψ · · · ψ̂⊤ · · ·

]⊤
(13)

where p̂ψ and ψ̂ represent the discrete angular momentum
and discrete angular deformation state vectors, respec-

tively. Following assumption b), suppose that p̂ψ and ψ̂
are partitioned as

p̂ψ =

[
p̂ψf

p̂ψc

]
, ψ̂ =

[
ψ̂f
ψ̂c

]
(14)

where ψ̂c ∈ Rℓ is the vector that collects all the angles
associated with the nodes at the center positions of the
chambers and is used to assess volume conservation. The
vector ψ̂f gathers all other free angles (not connected to

volume conservation), and p̂ψc ∈ Rℓ and p̂ψf
represent

their respective angular momenta (see Figure 5.b for an
illustrative scheme). To link the coupling terms due to
volume conservation in the chambers with the rest of the
beam dynamics, the following coupling matrix Σ is defined:

...
p̂ψc

...

 → Σ =

 0

[η d(lp, θ) 0 0]

0


θ=ψ̂c

(15)

where the nonzero rows of Σ are related to the p̂ψc

coordinates.

Definition 1 The large-scale PH model of the curling
HASEL actuator is given by[

˙̂xb
ż

]
︸︷︷︸
ẋ

=

[
Ĵb − R̂b −Σ

Σ⊤ ΛH

]
︸ ︷︷ ︸

J(x)−R(x)

[
∇x̂b

H

∇zH

]
︸ ︷︷ ︸

∇xH

+

[
Ĝb 0

0 Γ

]
︸ ︷︷ ︸
G(x)

[
ûb
uH

]
︸︷︷︸
u

(16)

y = G(x)⊤∇xH

with Hamiltonian H(x) given by

H(x) = Ĥ(x̂b) +Hem
H

(z, θ = ψ̂c) +
1

2
ψ̂⊤
c Kf ψ̂c (17)

and the matrices ΛH and Γ defined as

ΛH =

0 0 0
0 −r Iℓ
0 −Iℓ −R−1

e

 , Γ = R−1
e γ(θ = ψ̂c) (18)

where the matching θ = ψ̂c is executed component by
component and in relation to the corresponding chamber.

Remark 2 Note that the model proposed in Definition
1 is formulated with respect to a generic beam model of
arbitrary dimension, which depends solely on the number
of nodes employed in discretization. Additionally, it may
incorporate nonlinearities and allow mechanical inputs ûb,
representing an improvement over the original low-scale
model.

To validate and illustrate the methodology, we choose the
Euler-Bernoulli beam model without distributed inputs as
an example. Its infinite-dimensional PH representation is
given by [

ṗ
ϵ̇

]
︸︷︷︸
ẋb

=

[
0 −∂21
∂21 0

]
︸ ︷︷ ︸

Jb

[
ep
eϵ

]
︸︷︷︸
δxb

Hb

(19)

u∂ =[ep(0) − ∂1ep(0) eq(L) ∂1eϵ(L)]
⊤

y∂ =[∂1eϵ(0) eq(0) ∂1ep(L) − ep(L)]
⊤

associated with a Hamiltonian function Hb(xb) as

Hb(xb) =
1

2

∫ L

0

(
p2

ρA
+ EIϵ2

)
dζ1 (20)

where ∂j1 = ∂j/∂ζj1 , p(ζ1, t) = ρA∂v0/∂t is the linear
momentum with ρ the density of the material and A the
cross section area, ϵ(ζ1, t) = ∂21v0 is the the generalized
bending strain. The beam length is L, the mass per unit
length is ρA, and the beam’s bending stiffness is EI,
with E Young’s modulus and I the second moment of



inertia of the cross-section. The notation δxb
Hb represents

the variational derivative of Hb respect to xb(ζ1, t). The
boundary inputs u∂ = 0 give the boundary conditions
corresponding to an end fixed at ζ1 = 0 and the free one
at ζ1 = L.

Using the standard FEM, the discretized Euler-Bernoulli
beam model written as PHS is given by[

˙̂p
˙̂q

]
︸︷︷︸
˙̂xb

=

[
−D̂ −Î
Î 0

]
︸ ︷︷ ︸
Ĵb−R̂b

[
M̂bp̂

K̂bq̂

]
︸ ︷︷ ︸
∇x̂bĤb

+

[
B̂
0

]
︸︷︷︸
Ĝb

ûb (21)

with Hamiltonian Ĥb(x̂b) given by

Ĥb(x̂b) =
1

2
p̂⊤M̂−1

b p̂+
1

2
q̂⊤K̂bq̂ (22)

being M̂b the discrete mass matrix, K̂b the discrete stiff-
ness matrix, Î an identity matrix of appropriate dimension,
and D̂ the damping matrix, which is considered as a
Rayleigh damping matrix defined as D̂ = aMM̂b + aKK̂b,
with aM and aK two real constants to be determined
experimentally.

Remark 3 In the Euler-Bernoulli beam model, it is
important to note that the variable u0 is not included,
and ψ is defined as ∂1v0. Consequently, the state vector

q̂ = [v̂⊤0 ψ̂⊤]⊤ encompasses all degrees of freedom related
to vertical and angular deformation, while p̂ = [p̂⊤v0 p̂

⊤
ψ ]

⊤

represents their corresponding momenta.

4. MODEL IDENTIFICATION AND VALIDATION

In this section, the proposed methodology is validated
through a two-step process. Firstly, the model’s unknown
parameters are identified using data from a real system.
Subsequently, the model’s validity is assessed by compar-
ing simulations with experimental results. The experimen-
tal setup features a HASEL C-Series actuator (C-5015-
06-01-B-ACAC-50-096) from Artimus Robotics coupled
with a strain constrain layer. The Keyence LJ-V7080 laser
sensor monitors the position of the tip actuator, and the
data is acquired using the dSPACE card CLP1104. The
Trek model 610E amplifier supplies power for the actuator
(see Fig. 6).

Fig. 6. Experimental setup of curling HASEL actuator.

Table 1. Parameters of the large-scale model.

Symbol Value Units Definition

Lp 0.015 m Length of top film
Lv 0.01 m Length of bottom film
Le 0.01 m Length of electrodes
Xh 0.002 m Chamber high
ϵr 2.2 F/m Relative permittivity
ϵ0 8.854× 10−12 F/m Vacuum permittivity
w 0.075 m Actuator width
hf 18× 10−6 m Film thickness
Ri 10 Ω Resistance
ri 20 Ω Resistance
Li 140 F Inductance
Ki

l 400 N/m Stiffness
Ki

f 3 Nm/rad Stiffness

α 30.5 - Gain parameter
β 2.4 - Gain parameter
η diag(0.1, 0.28, ... - Correction factors

0.46, 0.64, 0.82, 1)

h 0.2× 10−3 m Height
L 0.12 m Beam length
A 1.5× 10−5 m2 Area
I 5× 10−14 m4 Cross-section inertia
ρ 2000 Kg/m3 Density
E 2.66× 107 Pa Young’s modulus
aM 5× 10−6 - Damping coefficient
aK 2.28× 10−2 - Damping coefficient

To characterize the model, the parameters Li, aM , aK ,
Kf , α, and β are identified, as they have a great im-
pact on the system’s dynamics among the group of un-
measurable parameters. Table 1 lists the rest of the
parameters. Given that the length of each chamber is
Le + Lv, and the center of the triangular compart-
ment is at Le + Lv/2, the beam model is discretized
by placing a node at the following coordinates: nodes

= [0 0.015 0.021 0.035 0.041 0.055 0.061 0.075 0.081 0.095

0.101 0.115 0.12]. It is worth mentioning that the discretiza-
tion mesh is not arbitrary. For the presented example,
placing a node exactly at the intersection points between
chambers apparently results in a singularity somewhere.
To address this issue, nodes at the intersections between
chambers are shifted a small distance of 0.001 m. Detailed
analysis of the origin of this numerical error and sensitivity
of the results with different discretization meshes consti-
tute future work and are not covered in this study.

With all the aforementioned information and using the
Levenberg-Marquardt optimization algorithm, the un-
known parameters are identified using the data acquired
from the tip’s vertical displacement. The comparison be-
tween the measured and modeled tip positions with the
identified parameters is presented in Fig. 7, where the
input is positive, yielding a fitness percentage of 87.24%.
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Fig. 7. (7a) Model identification (7b) Positive input signal.

Validation using the identified parameters with a different
input voltage is illustrated in Fig. 8, achieving a fitness
percentage of 85.95%. Furthermore, Fig. 9 shows the



0 5 10 15

Time [sec]

0

2

4

d
is

p
. 
ti

p
 [

c
m

]

(a)

0 5 10 15

Time [sec]

-6

-4

-2

0

In
p

u
t 

V
o

lt
a
g

e
 [

K
V

]

(b)

Fig. 8. (8a) Model validation. (8b) Negative input signal.
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Fig. 9. Large-scale Curling HASEL model simulation.

evolution of the actuator profile for the input depicted in
Fig. 8.b, where it is seen that the deformation profile is
described properly and the model captures the drift effect
in all the coordinates.

Discussion: Note that the structure of the large-scale
model closely resembles that of the original low-scale
model, implying that control strategies similar to those
used in (Cisneros et al., 2024) could apply to this model.
Additionally, the methodology offers a framework for mod-
eling curling HASEL actuators, providing the flexibility
to choose a beam model that accurately represents the
behavior of the sheet that restricts deformation, including
nonlinear options. Furthermore, the methodology suggests
that chambers can be positioned at any point along the
beam and actuated with different voltages, facilitating the
modeling of continuous structures actuated with curling
HASEL, suitable for robotics applications.

5. CONCLUSIONS

This paper proposes a methodology to extend the dynam-
ics of a low-scale curling HASEL actuator by replacing the
dynamics of the sheet that restricts the deformation with
a discretized beam model. The resulting large-scale model
has been experimentally validated, demonstrating satisfac-
tory results and close alignment between simulations and
the real system. Future work on this topic involves ex-
tending this approach to beams with multiple actuators to
develop more complex deformation profiles. Additionally,
it entails the development of control laws to stabilize the
system around a desired deformed configuration, making it
suitable for applications based on continuous deformation.
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