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Abstract—This paper presents a heterogenous federated en-
semble model for intrusion detection system, employing a semi-
supervised novelty detection technique - the baseline Kmeans.
The technique learns normal traffic from baseline data and
utilizes the Mahalanobis distance to detect anomalous packets. To
mitigate the false-positive rate inherent in anomaly-based intru-
sion detection system, we propose an ensemble approach that in-
tegrates local novelty detection models dedicated to each worker
in both weighed and voting-based strategies. The federated design
augments each worker’s detection capability without increasing
the false positive rate. Our extensive experiments showcase the
system’s robustness and adaptability over traditional standalone
IDS, with marked improvements in precision, recall, and F1-
score under varying sampling rates. We made this project’s code
publicly available on Github for reproducibility.

Index Terms—Federated learning, Lightweight Internet of
Things, Intrusion Detection, Lightweight Sampling, Anomaly
Detection, Ensemble Learning

I. INTRODUCTION

Distributed and federated Intrusion Detection Systems (IDS)
have emerged as subjects of significant interest within the
realm of Internet of Things (IoT) security, highlighting
the need for more intricate and robust protection mecha-
nisms [1]. However, extending distributed and federated IDS
to lightweight IoT remains a gap.

In our previous research [2], we proposed a novel cross-
layer Intrusion Detection System (IDS) that employs a cluster-
based sampling technique. This approach ensures compre-
hensive data representation, including the accommodation of
rare subgroups, effectively minimizing the sampling error due
to data variance. Implementing IDS on such sampled data
significantly reduces memory usage and energy consumption
due to computation and data transmission. Building on this
foundation, we further extended the proposed sampling al-
gorithm to incorporate a federated intrusion detection system
using a semi-supervised machine learning model [3]. Despite
demonstrating a promising ability to detect malicious packets,
this distributed approach encountered a notable increase in the
false positive rate following each aggregation and parameters
redistribution step by the centralized node.

The high false positive rate represents a persistent chal-
lenge within the domain of anomaly detection, particularly in
anomaly-based intrusion detection [4]. As the model learns to
represent normal traffic patterns,it faces an inherent challenge
to cover all possible benign behaviors in the learning dataset.
Consequently, benign data that deviates from the learnt distri-
bution, or were not present during the training phase, may be
misclassified as an attack.

Recent research works suggest ensemble learning as a
promising strategy to mitigate false positives in anomaly
detection systems [5], [6]. A notable example is the two-stage
architecture proposed in [4], where the IDS initially applies an
unsupervised methodology for attack detection, followed by
supervised learning for classifying the attacks and reducing
false positives. However, it is critical to consider, as noted
in [7], that not all problem types are conducive to unsuper-
vised learning, particularly when data lack distinct clusters.
Furthermore, supervised techniques might be infeasible if ap-
propriately labeled data is unavailable. Given these limitations,
our research presupposes the unavailability of a fully labeled
dataset, instead allowing for a minimal quantity of benign data
at the outset. Consequently, we frame the problem as a semi-
supervised novelty detection task. This paper’s objective is to
present a lightweight, semi-supervised, federated IDS for IoT,
designed to operate following a sampling layer and employing
a heterogeneous ensemble learning strategy. This approach not
only efficiently detects malicious packets but also ensures that
the false positive rate does not increase over time, thereby
providing a more reliable and sustainable solution for IoT
security.

This paper is structured as follows: Section II reviews
relevant literature, focusing on cross-layer federated learn-
ing and ensemble learning in lightweight IoT IDS. Section
III offers a comprehensive overview of the proposed work,
starting with an introduction to the semi-supervised novelty
detection algorithm, derived from the K-means algorithm, and
referred to as baseline-Kmeans. This section also delves into
the proposed ensemble approach. Section IV illustrates the



experimental setups and details the construction of the utilized
ensemble. Section V delineates the experiments conducted,
interprets the outcomes, and emphasizes how the proposed
methodology fulfills the study’s objectives. Finally, Section
VI concludes the paper.

II. RELATED WORK

A. Cross-layer Federated Learning in Lightweight IoT IDS

Internet of Things (IoT) nodes with their ad-hoc heteroge-
neous distributed connections are more vulnerable to network
attacks than conventional nodes operating within the trust
boundaries of secured perimeter networks. This makes Intru-
sion Detection Systems (IDS) essential for maintaining the
security of IoT nodes. IDS in the context of IoT has received
considerable literature attention [8], [9]. More specifically,
federated learning in IoT IDS has been extensively studied
and benchmarked in literature such as in [1], [10], [11], [12],
[13], [14]. However, those IDSs are rarely customized to cater
for lightweight IoT nodes, which are constrained on memory,
computational resources and energy. One approach is adapting
existing IoT IDS to lightweight IoT nodes to minimize the
number of screened packets and thus reducing the needed
computations. This is done through the introduction of a
sampling layer (as figure 1 shows), which aims at creating,
from the population of received packets, a smaller but equally
representative sample. In previous studies, we benchmarked
all sampling algorithms under the constraints of lightweight
IoT [15] and proposed a new sampling algorithm, especially
designed for lightweight IoT called cluster-based sampling
algorithm [2]. Another approach is specifically designing
lightweight IDS which is rarely investigated in literature.

We extended the first approach in cross-layer federated
learning in the context of lightweight IoT IDS [3] as figure
1 shows. This extension is based on the federated Base-
line KMeans algorithm, which is a distributed and privacy-
preserving version of the KMeans algorithm designed for
intrusion detection in IoT applications [3]. The federated
version of the algorithm can train a clustering model without
transmitting sensitive data, thereby preserving data privacy. In
the federated version, multiple IoT devices participate in the
training process and compute their own local statistics, includ-
ing means and distances. The statistics are then transmitted to
a central coordinator for aggregation. The coordinator updates
the baseline and anomalous centroids based on the merged
statistics from the IoT devices and computes a new threshold.

Cross-layer federated learning [3] involves four key steps:
• Initialization: the coordinator initializes the k-means

clustering model with a fixed number of clusters and
shares cluster statistics between workers. Each node uses
the global representation of the benign cluster and the
distance threshold to detect anomalies in its local data
subset. Data points with distances above the threshold are
classified as anomalies, while data points with distances
below the threshold are classified as benign.

• Local clustering: each node uses its own local k-means
clustering model on its own sampled data. Each node

computes the Mahalanobis distance to the benign centroid
for each of its local data points.

• Share cluster statistics: each node shares the cluster
statistics, such as the cluster centroids and the distances
to the benign centroid, with the other nodes through the
coordinator, but not the data.

• Merge statistics: the coordinator merges the cluster
statistics from each node to create a global representation
of the benign and anomalous clusters. This can be done
by averaging the cluster centroids and defining a clas-
sification threshold for the Mahalanobis distances based
on the global representation of the benign cluster. The
updated global model can then be shared with the worker
nodes for further local training.

B. Ensemble Learning and Data Streams

Machine learning methods try to label a data point by
finding one best hypothesis to explain it, but ensemble learning
builds a set of hypotheses to be voted on [16]. Since each of the
hypotheses included in the voting set is found using a machine
learning method, ensemble learning is usually more accurate
than any individual machine learning method [17]. Ensemble
is found, by Dong et al. [18], to be extremely suitable for
complex, imbalanced, high-dimensional and noisy data.

In the context of data streams, machine learning algorithms
struggle to learn from a constrained sliding window leading to
a sub-optimal model [19]. Ensemble learning is described, by
Polikar [20], to be primarily used to reduce the likelihood
of an unfortunate selection of a poor one. Sun et al. [21]
proposed a class-based ensemble approach to detect gradu-
ally emerging or disappearing data classes. Van Rijn et al.
[22] proposed a heterogeneous ensemble learning framework
that performed competitively in comparison to state-of-the-art
ensemble techniques but over a wide range of data streams. It
is considered heterogeneous since, contrary to most dynamic
data stream ensembles that rely on only one type of base-
level classifier, the proposed ensemble relies on multiple
different classifiers. Zhang and Jin [23] proposed a strategy
to automatically configure the ensemble learning algorithm
by adaptively distinguishing sensible classifiers and showed
that this strategy outperform static configurations. Individual
ensemble learning techninques have been proposed to deal
with specific data stream problems such as concept drift [24],
[25], [21], [26], imbalance [27], [28] and noise [29], [26].

Ensemble learning in the context of data streams has been
extensively surveyed in the literature [30]. Zang et al. [31]
compared incremental and ensemble learning with respect to
accuracy and time efficiency. They found that ensemble learn-
ing is more stable than incremental learning and outperformed
for smaller data chunks. Li et al. [32] surveyed ensemble
learning in the context of data streams as ”Extreme Learning
Machine” variant. Others have introduced ensemble learning
in their surveys on machine learning for data steams [33], [34].

C. Ensemble Learning in IoT IDS

Lama and Tim [35] systematically surveyed the use of
ensemble learning in IDS. They showed that random forest



Fig. 1: Evolution in lightweigh IoT IDS research. The first step is adapting existing IoT IDS into lightweight IoT through the
introduction of a sampling layer with small sampling ratio. The second step is introducing federated learning allowing for even
lower sampling ratios. The last evolution, proposed in this work, is benefiting from ensemble learning and pushing sampling
ratios to record lows.

is specially used under ensemble learning for IDS. A more
detailed listing was provided where homogeneous ensemble
used random forest, bagging, and boosting while majority
voting and stacking architecture were used for heterogeneous
ensembles. Illy et al. [36] proposed an ensemble learning
mechanism for fog-to-things environment resulting in reduced
classification latency and elevated accuracy. In the same direc-
tion, Verma and Ranga [37] proposed ELNIDS, an ensemble
learning IDS for “Low-Power and Lossy” IoT networks. The
authors used a four-model ensemble of bagged trees, boosted
trees, subspace discriminant and RUSBoosted trees. This work
is aligned with Abu Al-Haija and Al Badawi [38] and Mohy-
Eddine et al. [39].

Alhowaide, Alsmadi and Tang [40] are aligned with [23]
in using automatic Model Selection Method (MSM) for auto-
matically configuring a heterogeneous set of classifiers. Abu
Alghanam et al. [41] used ensemble learning for proposing an
improved PIO feature selection algorithm, called LS-PIO, for
IoT IDS. It used K-Means at the pre-processing stage to reduce
the running time and making it fit for lightweight IoT. This
work is aligned with Gopalakrishnan and Purusothaman[42].
Abu Al-Haija and Al-Dala’ien [43] proposed ELBA-IoT, an
ensemble learning model for botnet attack detection in IoT
networks using AdaBoosted, RUSBoosted, and bagged trees.
Hazman et al. [44] proposed lIDS-SIoEL, an intrusion detec-
tion framework for IoT-based smart environments based on
Ensemble Learning using AdaBoost, Boruta, mutual informa-

tion and correlation. The methods surveyed in this section are
summarized in table I.

Reference Ensemble learning set

Illy et al. [36] Random Forest, Bagging Classifier, Ad-
aBoost and Voting

Verma and Ranga [37] bagged trees, boosted trees, subspace dis-
criminant and RUSBoosted trees

Abu Al-Haija and Al
Badawi [38]

bagged trees, ensemble subspace kNN
(ESK), RUSBoosted trees, shallow neural
network (SNN), bilayered neural network
(BNN and logistic regression kernel (LRK)

Mohy-Eddine et al. [39] isolation forest (IF) and pearson’s correlation
coefficient (PCC)

Alhowaide, Alsmadi and
Tang [40]

logistic regression, random forest, decision
tree, gradient boosting, bagged tree, gaus-
sian naive bayes, adaboosted, knn, bernoulli
naive bayes, multi-layer perceptron, stochas-
tic gradient descent and support vector ma-
chines

Abu Alghanam et al.
[41]

support vector machines, isolation forest,
local outlier factore and K-means

Gopalakrishnan and
Purusothaman[42]

deep neural network (DNN), random forest,
and AdaBoost

Abu Al-Haija and Al-
Dala’ien [43] AdaBoosted, RUSBoosted, and bagged trees

Hazman et al. [44] AdaBoost, Boruta, mutual information and
correlation

TABLE I: List of IoT IDS using ensemble learning and the
set of used machine learning algorithms

More thorough detailing of ensemble learning in IoT IDS



can be seen in [45], [46], [47].

III. PROPOSED FEDERATED ENSEMBLE IDS

In this paper, we present a novel federated semi-supervised
ensemble novelty detection technique designed for intrusion
detection systems (IDS) in IoT networks. Our approach ad-
dresses the challenge commonly faced in real-world applica-
tions where only a limited amount of labeled regular or benign
traffic data is available.

While entirely unsupervised IDS methods are beyond the
scope of this work, we propose a modification to the un-
supervised KMeans technique, transforming it into a semi-
supervised method called Baseline KMeans [3], [48]. This
technique learns a boundary approximating the baseline ob-
servations distribution. Let X = x1, x2, . . . , xn be the initial
baseline observations, and xi ∈ Rd represent each data point
in the d-dimensional feature space. We apply the Baseline
KMeans algorithm to obtain a centroid C ∈ Rd for the
baseline data.

The Mahalanobis distance DM (xi, C) between a data point
xi and the centroid C is defined as:

DM (xi, C) =
√
(xi − C)TS−1(xi − C)

where S is the sample covariance matrix of the baseline
data.

Let p be the chosen percentile (e.g., p = 90%). The
threshold τ is computed as:

τ = percentile(DM (x1, C), . . . , DM (xn, C), p)

For any new observation x′, the Baseline KMeans classifies
it as benign or anomalous based on the following decision
rule: {

benign, if DM (x′, C) ≤ τ

anomalous, if DM (x′, C) > τ

If further observations lie within this subspace, they are
classified as benign traffic. The threshold is determined by
the percentile of Mahalanobis distances between each baseline
data point and the centroid. Observations outside the boundary
are considered abnormal, possibly indicating an attack.

A. Motivation

Since our approach is built upon KMeans, we employ a
distance metric to the benign/baseline centroid to determine
whether an observation originates from the baseline population
or is an outlier. This method effectively achieves a high true
positive rate by minimizing the boundary to the baseline cen-
troid, which is essential in security contexts where attacks may
be intolerable. However, the approach is also characterized
by a high false-positive rate. The main motivation for the
proposed method is the observation that, during the merging
operation in which the worker transmits its statistics to the
coordinator and subsequently receives aggregated statistics,
the worker’s recall increases over time while its precision
decreases. This trend can be attributed to the IDS rejecting a

greater number of packets or data points than before. Consider
the following equations summarizing the merge operation and
threshold recalculation:

Mbaseline =
1

2
(Mcoordinator,baseline +Mworker,baseline)

Manomalous =
1

2
(Mcoordinator,anomalous +Mworker,anomalous)

S−1 = pinv(Scoordinator,baseline + 0.001 · I)

D(xi,Mbaseline) =

√√√√ n∑
i=1

(xi −Mbaseline)TS−1(xi −Mbaseline)

Dmin = min(D(xi,Mworker,anomalous))

D′ = {D(xi,Mbaseline) | whereD(xi) < Dmin}
τ ′ = percentile(D′, p)

Here, Mbaseline and Manomalous represent the updated base-
line and anomalous means, respectively, after the merge
operation. S−1 is the pseudoinverse of the sum of the
baseline covariance matrix and a small regularization term.
D(xi,Mcoordinator,baseline) denotes the Mahalanobis distance of
point xi from the coordinator’s baseline mean, while Dmin
represents the minimum distance of the worker’s anomalous
data points to the baseline mean. D′ is the set of distances that
are less than Dmin, and τ ′ is the updated threshold calculated
based on the specified percentile of distances in D′.

As the merging operation progresses, the coordinator’s
calculated threshold typically becomes more conservative,
resulting in a greater number of data points being rejected.
This occurs because the recalculated threshold considers both
the specified percentile and the minimum distance between
a worker’s anomalous data points and the baseline mean.
Therefore, all distances exceeding this minimum distance are
considered abnormal.

To address this issue, we propose an ensemble-based ap-
proach that aids in reducing the false-positive rate. Figure 2
illustrates the proposed cross-layer federated ensemble learn-
ing in the context of lightweight IoT IDS.

B. Ensemble IDS

In this paper, we propose an ensemble learning approach
to enhance the precision of the Baseline K-means model,
especially when it predicts that a packet is anomalous. This
approach leverages two other local models, both of which
are semi-supervised novelty detection models, private to each
worker, and trained on a small batch of benign data. The
rationale behind this approach is to exploit the conservative
nature of the Baseline K-means model, which is already good
at detecting benign packets.

Let ybkmeans, ypred1, and ypred2 denote the predictions of the
Baseline K-means model, local model 1, and local model 2,
respectively. Then, the ensemble learning output, denoted as
yel, is computed as in algorithm1:

Here, the function majority vote returns 0 (benign) if
both local models predict that the packet is benign, and 1
(anomalous) otherwise. Thus, when the Baseline K-means
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Fig. 2: The figure illustrates a federated intrusion detection
approach for IoT networks. A BaselineKMeans coordinator
initializes with baseline data and shares statistics with worker
nodes. Each worker uses a cluster-based sampling algorithm
to minimize data processing and labels data points with
the coordinator’s statistics. Local, independent models assist
WorkerKmeans IDS in classification. Workers periodically
send their statistics to the coordinator, which updates the
global model and shares updated statistics.

model predicts that a packet is anomalous, we take the opinion
of the two local models. If at least one of them predicts that
a packet is anomalous, then the ensemble learning output also
considers it anomalous. On the other hand, if both local models
predict that a packet is benign, we overturn the Baseline K-
means decision, considering the packet benign. In the proposed
ensemble learning strategy for improving the Baseline KMeans
method’s accuracy, we incorporate voting-based and weight-
based ensemble learning techniques. When classifying a data
point as benign (0), the ensemble model prioritizes the Base-
line KMeans prediction in its decision-making process. In this
scenario, the ensemble learning technique exhibits weighted
characteristics, as the Baseline KMeans model carries a greater
weight in the decision-making procedure.

Nonetheless, the method retains voting-based characteristics
when the Baseline KMeans prediction is anomalous (1). In
this instance, the final label is determined by the majority
vote of the Baseline KMeans and two other local models
(Algotithm 1). As a result, ensemble learning effectively
integrates the advantages of voting-based and weight-based
techniques, resulting in a more precise and robust classification

Algorithm 1 Ensemble Learning IDS

1: function MAJORITY VOTE(vote1, vote2, vote3)
2: if (vote1 + vote2 + vote3) ≥ 2 then
3: return 1
4: else
5: return 0
6: end if
7: end function
8: for i← 1 to n do
9: if ybkmeans(i) = 0 then

10: yel(i)← 0
11: else
12: yel(i)← majority vote(ybkmeans(i), ypred1(i), ypred2(i))
13: end if
14: end for

of normal and abnormal data points.
This hybrid ensemble learning method is anticipated to

improve the overall performance of the intrusion detection
system, as it combines the benefits of both voting-based and
weight-based ensemble learning techniques to improve the
Baseline KMeans model’s precision.

IV. EXPERIMENTAL SETUP

The techniques discussed are implemented in Python, made
publicly available on Github [48], and evaluated on the NSL-
KDD dataset [49]. The NSL-KDD dataset is a widely-used and
enhanced version of the original KDD Cup 1999 dataset [50]
developed specifically for evaluating intrusion detection sys-
tems (IDS). It includes both regular (benign) and malicious
(intrusion) instances of network traffic data. The NSL-KDD
dataset tackles some of the issues common to the original
KDD dataset, such as duplicated records and data imbalance,
making it an improved choice for evaluating the effectiveness
of intrusion detection techniques.

In our experiments, we compared the Baseline KMeans to
several semi-supervised novelty detection techniques to deter-
mine their performance. Local Outlier Factor (LOF), Gaussian
Mixture Model (GMM), One-Class Support Vector Machine
(SVM), Isolation Forests, Minimum Covariance Determinant
(MCD), KNN Detector, Kernel Density Estimation (KDE), and
Shallow Autoencoder are among the methods considered. We
aimed to develop an ensemble learning technique by assigning
each worker two semi-supervised novelty detection models as
local models. These models would aid the Baseline KMeans
in determining whether a data point predicted as an attack
is, in fact, an attack, thereby reducing the likelihood of false
positives. In order to accomplish this, we tested numerous
combinations of the methods above, as shown in Table II. The
ensemble of Baseline KMeans, K Nearest Neighbor (KNN)
detector, and Kernel Density Estimation (KDE) produced the
highest F1-score (0.90 ± 0.01) and F2-score (0.93 ± 0.01)
compared to the other ensembles. With an F1-score of 0.90,
the ensemble composed of Baseline KMeans, a shallow au-
toencoder, and KDE also demonstrated efficacy. These results



TABLE II: Comparison of Baseline KMeans and various
Ensemble combinations: Average performance metrics and
standard deviations.

Precision Recall F1-score F2-score
Baseline Kmeans 0.76 ± 0.02 0.96 ± 0.01 0.85 ± 0.01 0.92 ± 0.01

Ensemble

Bkmeans-AE-IF 0.85 ± 0.02 0.89 ± 0.01 0.87 ± 0.01 0.89 ± 0.01
Bkmeans-AE-KDE 0.86 ± 0.02 0.94 ± 0.01 0.90 ± 0.01 0.92 ± 0.01
Bkmeans-AE-KNN 0.85 ± 0.02 0.90 ± 0.01 0.87 ± 0.01 0.89 ± 0.01
Bkmeans-AE-SVM 0.86 ± 0.02 0.89 ± 0.01 0.88 ± 0.01 0.88 ± 0.01
Bkmeans-IF-KDE 0.83 ± 0.02 0.95 ± 0.01 0.89 ± 0.01 0.92 ± 0.01
Bkmeans-IF-KNN 0.83 ± 0.02 0.90 ± 0.01 0.87 ± 0.01 0.89 ± 0.01
Bkmeans-IF-LOF 0.82 ± 0.02 0.94 ± 0.01 0.88 ± 0.01 0.91 ± 0.01
Bkmeans-KNN-KDE 0.85 ± 0.02 0.96 ± 0.01 0.90 ± 0.01 0.93 ± 0.01
Bkmeans-LOF-SVM 0.85 ± 0.02 0.94 ± 0.01 0.89 ± 0.01 0.92 ± 0.01

indicate that combining Baseline KMeans with KNN and KDE
or a shallow autoencoder can improve the model’s overall
performance in detecting anomalous data points. We can also
observe that adding a one-class SVM to an ensemble improves
performance.

It can also be noted from Table II that we excluded Gaus-
sian Mixture Models and Minimum Covariance Determinant
(MCD). This was done due to their computational complexity,
which renders them unsuitable for deployment on resource-
constrained devices such as microcontrollers or IoT devices.
GMM requires calculating and storing covariance matrices for
each Gaussian component, which necessitates a considerable
amount of memory. Based on a subset of data points with the
smallest determinant, MCD computes the covariance matrix,
which requires a computationally intensive search for every
possible subset of a given size.

The following section considers the ensemble consisting
of the federated baseline KMeans and local KNN and KDE
models.

V. RESULTS AND ANALYSIS

A. Semi-supervised novelty detection for intrusion detection

This section compares our proposed ensemble IDS with a
number of well-known novelty detection techniques. These
novelty detection techniques and our proposed method have
one thing in common: they all utilize a portion of benign
data to discover the underlying patterns of normal traffic.
We initially presented each method with approximately 4,000
benign data points to enable it to learn the normal traffic
patterns. In order to categorize and classify the data, novelty
detection techniques were applied to each sliding window of
1,000 data points.

Figure 3 demonstrates conclusively the superior perfor-
mance of the ensemble learning approach, specifically the
combination of Federated Baseline Kmeans, K-Nearest Neigh-
bors (KNN), and Kernel Density Estimation (KDE) when
compared to Federated Baseline Kmeans and other novelty
detection techniques when applied independently.

Observations indicate that the ensemble model enhanced the
precision score from 0.76 for the Baseline Kmeans model to
0.85, thereby effectively reducing the rate of false positives.
This improvement in accuracy demonstrates the ensemble
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Fig. 3: Performance comparison of semi-supervised novelty
detection algorithms for intrusion detection The bar plot
depicts the precision, recall, and Fβ-score (beta = 2) for each
algorithm, highlighting the ability of the proposed Ensemble
to prioritize the rate of true positives (highest recall) while
maintaining competitive precision in comparison to Baseline
Kmeans alone.

model’s superior ability to correctly identify authentic in-
stances of attacks, thereby reducing the risk of misclassifying
benign data points as malicious. This enhancement is crucial
in practical applications where a high rate of false positives
can result in unnecessary costs and resource waste.

The ensemble learning method maintained a high recall
value of 0.96, virtually on par with the Baseline Kmeans
model, indicating its capacity to identify the most positive
cases accurately. In the context of anomaly detection, a high
recall score is essential, as it is essential to identify as many
actual attacks as feasible to ensure system security.

Compared to other novelty detection techniques, the en-
semble approach demonstrated superior or comparable perfor-
mance. While Gaussian Mixture Models (GMM) and Mini-
mum Covariance Determinant (MCD) exhibited greater pre-
cision, their recall scores were lower, indicating a higher
rate of false negatives. Other techniques, including Isolation
Forest, KNN, Local Outlier Factor (LOF), One Class SVM,
and Shallow AE, had lower F2 scores than the ensemble
model. Note that the F2 score is particularly suitable in
intrusion detection as it gives more weight to Recall (the
ability to identify actual attacks correctly), which is critical
in minimizing potential harm and ensuring system security.

B. Federated ensemble IDS

In this section, we simulate a federated intrusion detection
system (IDS) composed of a coordinator and three workers.
Initially, the coordinator learns a baseline model using 100
benign data points and shares its statistics with the workers.
The coordinator actively participates with the workers in
processing network traffic data. We use the NSL-KDD dataset
(approximately 120,000 rows), resulting in roughly 30 epochs
for our simulation. Each epoch involves processing 1,000 data
points per entity, totaling 4,000. This allows us to assess the
baseline K-means algorithm’s effectiveness in a distributed
environment where all parties process and learn from the
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(b) Federated baseline Kmeans with local ensemble.

Fig. 4: Evolution of performance metrics for the coordinator and three workers over 30 epochs, each comprising a window of
1,000 data points. The vertical dashed red lines denote points where merge operations were conducted.

dynamic network traffic data. The simulation runs until fewer
than 1,000 elements remain in both the normalized data and
the ground-truth labels. Performance metrics are calculated
and recorded in a Python dataframe after each epoch.

Our simulation study explored two distinct scenarios. In
the first scenario, we employed the federated baseline K-
means algorithm without the integration of an ensemble. This
scenario included three merging operations. The coordinator
underwent its primary training phase, following which it
shared its initial statistical outcomes with the workers. The
second scenario also involved three merging operations but

differed by incorporating our proposed federated ensemble
method.

The results from the first scenario (Figure 4-a) demonstrate
a performance improvement in both the coordinator and the
workers through the federated baseline Kmeans approach. The
Federated baseline Kmeans approach, with its distributed data
processing, has positively influenced the performance metrics
over the various windows. Starting with the baseline data
points, the coordinator and the workers’ initial performance
shows a reasonably high precision and recall, indicating a
good ability to correctly classify true positives and effectively



identify actual positives from the total predicted positives.
This was reflected in the initial F1 and F2 scores, which are
measures of the test’s accuracy considering both precision
and recall. As the experiment progresses, the coordinator
and workers’ performances generally improve. The F2 score,
which gives more weight to recall than precision, shows a
significant increase in most of the iterations. This suggests the
system’s ability to correctly identify true positives from the
total actual positives (recall) has improved over time. Nev-
ertheless, each merge operation has performance fluctuations
across the precision and F1 score metrics. Notably, a negative
trend is observed in precision throughout the windows/epochs,
suggesting an increasing false-positive rate with each merge.
This can be attributed to baseline Kmeans’ prioritization of
the true-positive rate over the false-positive rate. After each
merging operation, the workers become more strict regard-
ing rejecting distances greater than the dynamically evolving
threshold. Overall, these results underscore the potential of
federated learning in intrusion detection, with the system
demonstrating a generally improving trend in performance
over time. However, the drawback of increasing false positives
with time in the federated baseline Kmeans approach should
be noted.

Implementing an ensemble approach, which combines fed-
erated baseline k-means, KNN, and KDE, mitigates the short-
comings inherent in the standalone baseline k-means tech-
nique. As illustrated in the second scenario (Figure 4-b), this
ensemble strategy often results in a noticeable enhancement
in precision for all participating workers and the coordinator,
as opposed to the outcomes achieved with a non-ensemble
strategy. Importantly, it is evident that each worker attains a
precision score surpassing 0.8, a clear contrast to the precision
decline observed below 0.8 in the non-ensemble approach.
While some temporal fluctuations in precision persist, the
trend remains predominantly stable, a clear divergence from
a deteriorating trend. Moreover, there is a noticeable increase
in recall for the ensemble approach, especially regarding the
coordinator’s results. The F1 score has improved slightly in
the ensemble approach, and the F2 score, which emphasizes
recall, is also consistently higher in the ensemble approach
compared to the non-ensemble method, further demonstrating
the efficacy of the ensemble strategy. The differences in
the average performance metrics for the ensemble and non-
ensemble approaches are illustrated in Figure 5.

C. Cross-layer federated learning

In this section, we explore the concept of cross-layer feder-
ated IDS, where a cluster-based sampling technique proposed
in our previous work [2] is applied before intrusion detection.
We consider a scenario involving a coordinator and a worker
with two sampling rates: 0.60 and 0.20. The coordinator trains
on a baseline data, exports its statistics to the worker, and then
the worker utilizes the same statistics for 10 epochs, processing
5,000 data points per epoch. Two merging operations are added
at epochs 2 and 6.
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(a) Average performance metrics for the federated baseline Kmeans
without local ensemble after 30 epochs.
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Fig. 5: Average performance metrics for the coordinator and
three workers with three merging operations.

In Intrusion Detection Systems (IDS) context, the sampling
rate signifies the volume of data retained in memory for
analysis. A high sampling rate, such as 0.60, equates to a
larger data retention, while a lower rate, exemplified by 0.20,
results in fewer data being preserved. Retaining historical
data in memory can aid in detecting and preventing cyber
threats, such as replay attacks, where an attacker intercepts,
artificially delays, or retransmits valid data to deceive the
recipient system into performing unauthorized operations. Our
analysis of the IDS performance metrics (Precision, Recall,
and F1-score) across varying sampling rates (Figure 6) reveals
a slight degradation in performance at a lower sampling rate
(0.20) as compared to a higher rate (0.60). This outcome is
predictable, considering that a reduced volume of data equates
to less information available to the IDS for making accurate
decisions. For instance, at the third window, following the
initial merge operation, there is a decrease of approximately
0.05 in precision without ensemble when the sampling rate is
reduced from 0.60 to 0.20. Interestingly, the diminished sam-
pling rate does not adversely impact the recall metric. The IDS
retains its ability to identify attack packets with comparable
efficiency as it exhibited at the higher sampling rate of 0.60. In
contrast, the ensemble methodology consistently demonstrates
superior performance metrics across all sampling rates and
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Fig. 6: Performance evaluation of Intrusion Detection Systems (IDS) under various sampling rates and Ensemble Learning
conditions. This figure illustrates the comparative performance of IDS with and without ensemble learning for two distinct
sampling rates, 0.60 and 0.20, across ten successive windows. The three performance metrics considered are Precision, Recall,
and F1-score, represented by distinct color-coded lines. Solid lines indicate the performance without ensemble learning, while
dashed lines represent the ensemble learning scenario. The vertical dashed red lines denote points where merge operations
were conducted. It can be observed that the ensemble approach consistently outperforms the non-ensemble condition across
all metrics and both sampling rates. The performance slightly degrades with the reduction in sampling rate, especially for the
non-ensemble condition, further highlighting the robustness of the ensemble approach.

windows compared to non-ensemble methods. This superior
performance can be attributed to the inherent characteristics of
ensemble learning, which combines multiple models to make
a decision, typically resulting in more robust and accurate
outcomes. For example, at the first window with a sampling
rate of 0.60, the precision utilizing the ensemble approach is
0.869, notably higher than the precision of 0.803 achieved
without ensemble. This trend of enhanced performance with
the ensemble approach is consistently observed across all
windows and both the sampled rates.

VI. CONCLUSION

This research presented a novel Intrusion Detection Sys-
tem (IDS) employing a heterogeneous federated ensemble
approach, combining weighed and voting-based strategies to
enhance anomaly detection. The baseline K-means algorithm,
supported by assisting local models, showcased superior ac-
curacy over standalone IDS under varying sampling rates
(0.60 and 0.20). Integrating local models into the decision-
making process has proven to be a significant advancement,
enhancing the system’s capability to identify anomalous pack-
ets accurately. When the baseline K-means predicts a benign
class, the system relies solely on this prediction, showcasing
its weighed aspect. However, when a potential anomaly is
detected, a voting process amongst local models is initiated,
thus implementing a voting-based strategy. This fusion of

strategies enhances the system’s reliability and precision in
identifying cyber threats. Moreover, the federated design of our
approach allows for the periodic statistics merging and sharing
of local models, effectively increasing the detection capacity
of each worker. Importantly, this does not lead to a higher
false positive rate due to the ensemble’s ability to validate and
consolidate predictions. In conclusion, our research underlines
the effectiveness of heterogeneous federated ensembles in IDS,
offering promising advancements for network security in IoT
applications.
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“Ensemble learning for data stream analysis: A survey,” Information
Fusion, vol. 37, pp. 132–156, 2017.

[20] R. Polikar, “Ensemble learning,” Ensemble machine learning: Methods
and applications, pp. 1–34, 2012.

[21] Y. Sun, K. Tang, L. L. Minku, S. Wang, and X. Yao, “Online ensemble
learning of data streams with gradually evolved classes,” IEEE Trans-
actions on Knowledge and Data Engineering, vol. 28, no. 6, pp. 1532–
1545, 2016.

[22] J. N. van Rijn, G. Holmes, B. Pfahringer, and J. Vanschoren, “The online
performance estimation framework: heterogeneous ensemble learning
for data streams,” Machine Learning, vol. 107, pp. 149–176, 2018.

[23] Y. Zhang and X. Jin, “An automatic construction and organization
strategy for ensemble learning on data streams,” ACM SIGMOD Record,
vol. 35, no. 3, pp. 28–33, 2006.

[24] Z. Ahmadi and H. Beigy, “Semi-supervised ensemble learning of data
streams in the presence of concept drift,” in Hybrid Artificial Intelligent
Systems: 7th International Conference, HAIS 2012, Salamanca, Spain,
March 28-30th, 2012. Proceedings, Part II 7. Springer, 2012, pp. 526–
537.

[25] A. Abbasi, A. R. Javed, C. Chakraborty, J. Nebhen, W. Zehra, and
Z. Jalil, “Elstream: An ensemble learning approach for concept drift
detection in dynamic social big data stream learning,” IEEE Access,
vol. 9, pp. 66 408–66 419, 2021.

[26] B. Krawczyk and A. Cano, “Online ensemble learning with abstaining
classifiers for drifting and noisy data streams,” Applied Soft Computing,
vol. 68, pp. 677–692, 2018.

[27] H. Du, Y. Zhang, K. Gang, L. Zhang, and Y.-C. Chen, “Online ensemble
learning algorithm for imbalanced data stream,” Applied Soft Computing,
vol. 107, p. 107378, 2021.

[28] H. Li, Y. Wang, H. Wang, and B. Zhou, “Multi-window based ensemble
learning for classification of imbalanced streaming data,” World Wide
Web, vol. 20, pp. 1507–1525, 2017.

[29] P. Zhang, X. Zhu, Y. Shi, L. Guo, and X. Wu, “Robust ensemble learning
for mining noisy data streams,” Decision Support Systems, vol. 50, no. 2,
pp. 469–479, 2011.

[30] H. M. Gomes, J. P. Barddal, F. Enembreck, and A. Bifet, “A survey
on ensemble learning for data stream classification,” ACM Computing
Surveys (CSUR), vol. 50, no. 2, pp. 1–36, 2017.

[31] W. Zang, P. Zhang, C. Zhou, and L. Guo, “Comparative study between
incremental and ensemble learning on data streams: Case study,” Journal
of Big Data, vol. 1, no. 1, pp. 1–16, 2014.

[32] L. Li, R. Sun, S. Cai, K. Zhao, and Q. Zhang, “A review of improved
extreme learning machine methods for data stream classification,” Mul-
timedia Tools and Applications, vol. 78, pp. 33 375–33 400, 2019.

[33] X. Fei, N. Shah, N. Verba, K.-M. Chao, V. Sanchez-Anguix,
J. Lewandowski, A. James, and Z. Usman, “Cps data streams analytics
based on machine learning for cloud and fog computing: A survey,”
Future generation computer systems, vol. 90, pp. 435–450, 2019.
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