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Abstract

Smart robots play a crucial role in assisting human workers within manufac-
turing units (like Industry 4.0) by perceiving and analyzing their surroundings
using Deep Learning (DL) models for Computer Vision (CV) applications. On
the one hand, training DL models requires extensive annotated data. On the
other hand, the scarcity and specificity of publicly available industrial datasets as
well as the ethical, privacy, technical, and security challenges for capturing and
annotating real images in industrial setups raise the problem of finding an alter-
native to train DL models for CV applications. In previous work, we proposed
a simulation-based synthetic data generation (SDG) pipeline to render 200,000
images of eight industrial assets using NVIDIA Omniverse. In this study, we
leverage the SDG pipeline to build and maintain dynamic and modular scenes,
resulting in large-scale complex industrial simulation scenes. Furthermore, they
feature Domain Randomization (DR) to increase content variability, and hence
to bridge the reality gap. Inspired by real assembly lines, production areas, stor-
age rooms, warehouses, offices set up, etc., we extensively render photorealistic
images, rich in variations, capable of generalizing DL models to new unseen
environments. Consequently, we introduce SORDI.ai, a comprehensive synthetic
industrial image dataset for object detection applications. It comprises over a
million images covering more than one hundred object classes belonging to logis-
tics, transportation, signage, tools, and office assets.

For evaluation purposes, we trained object detection DL models with our syn-
thetic dataset, and inferred over a target dataset containing real/synthetic



images. We gradually tested different levels of DR to demonstrated how does the
reality gap bridge. Afterward, we showed the importance of mixing multi-domain
training dataset to achieve better generalization, and the efficiency of our SDG
pipeline to increase prediction accuracies in low real data regimes.
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1 Introduction

Manufacturing units around the world employ smart robots to carry out clearly
defined tasks and assist human workers in their daily warehouse, production, assem-
bly, and logistic tasks resulting in industrial process time, cost optimization, and
quality enhancement [1-4]. Computer Vision (CV) tasks (e.g., image classification,
object detection, etc. [3-6]) play a crucial role in enabling smart robots to perceive
and understand their surroundings, allowing them to accurately locate and identify
specific objects within a given scene [2]. As demonstrated throughout the years, Deep
Learning (DL) outperformed traditional learning-based approaches in a wide range of
CV applications [7—9]. Nevertheless, training DL models requires capturing, storing,
and annotating large image datasets [10]. Furthermore, these training datasets should
contain high quality images that are diverse, balanced, informative [11], and adheres
to ethical guidelines, including principles of privacy, consent, ete. [12]. In an industrial
context (e.g. manufacturing units, assembly lines), acquiring and annotating images
is challenging because it is time-consuming, prone to human error [13, 14], and lim-
ited by ethical [12], privacy and security regulations [15, 16]. On the one hand, several
studies throughout the years proposed real images datasets for industrial CV appli-
cations [3]. On the other hand, the majority are either not publicly accessible or, if
available, are limited in number of assets/objects! due to their task-specific design [3].
As stated in [13, 17, 18], synthetic image data generation (SDG) [19-21] can address
the above challenges, arising in an industrial setting, while generating a large image
dataset with the desirable properties. Several SDG approaches were proposed in the
literature [22-24]. In this study we consider simulation-based approaches which con-
sist of an automated process to render and accurately annotate numerous synthetic
images out of virtual scenes that include the main object of interest surrounded by
randomized assets and distractors [18-21, 25-28]. Synthetic images, used mainly to
train DL models, are considered the source domain. Whereas, real images captured
in real industrial environments, used mainly for inference, are considered the tar-
get domain, equivalent to an evaluation or deployment domain [18]. The difference
between both domains is known as the reality gap, sim2real gap, or in broader terms,
domain gap [13, 29-31]. Many studies mention that the SDG depends on two funda-
mental approaches: Image Realism (IR) and Domain Randomization (DR) [18, 24, 32].
IR bridges the reality gab by enhancing the photorealism aspect of the synthetic image
[18, 33, 34]. Whereas, DR randomizes the simulation components and assets while
considering the real world as just a random instance of that simulation [19].

1For the rest of this paper, we will use the terms object and asset interchangeably
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To bridge the reality gap, IR and DR must be combined together, especially that rely-
ing solely on image photorealism by increasing the rendering quality is costly [35, 36],
and contrary to human perception, realism is not always beneficial in CV [3]. How-
ever, DR must be cautiously implemented in a way it does not decrease the visual
fidelity components such as the asset’s possible realistic textures and surfaces, which
results in a higher reality gap [18, 37-39]. In accord, researchers argue that includ-
ing domain knowledge leads to structured DR (SDR), generates better data, and as
a result, it increases the models’ performance and accuracy by learning relationships
between assets [17, 18, 37, 40-48], especially in large scale scenes where applying
random DR could turn the simulation scene into a chaotic and unrealistic environ-
ment. To the best of our knowledge, most available SDG tools [18, 2528, 49-52] are
not suited for large-scale scene creation such as constructing real-alike and equipped
industrial areas, rooms, and buildings. Nevertheless, rendering images from large-scale
scenes increases image diversity and background realism resulting in a larger dataset
with rich multi-class annotations. Furthermore, it allows object detection in complex
and crowded environment for object transportation, smart navigation, warehouse and
inventory management, supply-chain and planning optimization, etc. However, exist-
ing industrial datasets [3, 18, 24, 49, 53—-62] are designed for specific tasks, hence they
do not cover a wide range of industrial assets. In a previous study [13], we proposed
an SDG pipeline and rendered 200,000 images covering 8 annotated industrial assets.
In this paper, we enhance and extend the proposed SDG pipeline for large-scale
generation by (1) implementing the Universal Scene Description (USD) pipeline’s
interoperability and modularity features [63, 64] to maintain realism starting from the
smallest 3D models into the larger scene compositions that were inspired by real-world
environments, and (2) employing domain knowledge in the industrial field with DR to
create an extensive library of SDR-based modular components that are used in all our
simulations. Thus, we introduce SORDI.ai, a dataset for industrial object detection
use cases with more than a million photorealistic path-trace rendered images of 111
industrial assets annotated with bounding boxes (bbox). SORDILai covers 20 scenes
with various industrial environments like warehouses, storage rooms, offices, produc-
tion/assembly lines, etec., and real-world industrial plant replicas. Furthermore, in a
first experiment, we examine how DR bridges the domain gap, and the efficiency of
background randomization for object detection tasks in crowded and real world envi-
ronments such as industrial areas. Moreover, in a second experiment, we analyze the
effect of camera viewport randomization, and the importance of mixing multi-domain
datasets to increase a DL model’s generalization ability. Additionally, we emphasize
the boosting effect of synthetic data to increase the detection accuracy in low data
regimes.

The remainder of this paper is organized as follows: First, we present in Section 2
major SDG concepts in the state of the art, related to IR and DR. Then, in Section 3,
we present our 4-steps SDG pipeline. Furthermore, we present our dataset SORDI.ai
in Section 4. In Section 5, we demonstrate how the DR, approaches that we employed
in SORDLI.ai affect the performance of the DL object detection models and how they
gradually bridge the gap between the source and the target domains. Finally, we dis-
cuss some limitations/future work in Section 7 and conclude in Section 8.



2 Related Work

In this section, we review the latest work related to SDG, DR, and the available
industrial CV datasets.

2.1 Domain Randomization & SDG Toolkits

Morrical et al. classified 3 major DR types [50]: DOME [19, 20, 65], MESH [62, 66],
and FAT [21]: These methods include full DR for the assets within its surrounding
by either placing or falling the object of interest on randomized texture surfaces or in
front of a dense background full of realistic assets. As a result, DR improved the neural
network (NN) to learn important features of the object of interest. However, previous
DR approaches randomize the assets in an unrealistic way which is unsuitable for an
organized and structured industrial environment [2]. The industrial environment is
known a priori [18], and it is less versatile compared to real-world environments used in
large-scale datasets, e.g., MS COCO [67], and therefore it is easier and better defined
to reproduce in a simulation [18]. For instance, Rutinowski et al. illustrated in [17]
their real dataset creation framework, different possible scenarios for placing different
types of pallets and small load carrier (KLT) boxes, stillages (mesh boxes), barrels,
and forklifts within a warehouse. Additionally, they described distinct behaviors for
the pallets (empty & fully loaded) and did not manifest any color or hue light varia-
tions in the scenes. Similarly, we twisted our SDG’s DR with the domain knowledge
of the industrial field to impose structure and context to our scene composition and
to bridge the reality gap. In that way, NN takes into consideration the surroundings
for each asset and learns asset relationships resulting in better accuracies, as shown
in [18, 43, 45-47, 49].

In addition, DR approaches improved over time [65], thus many researchers built on
top of them and extended several automated SDG tools such as CAD2Render [49],
Kubric [25], BlenderProc [26], NDDS [27], NViSII [50], Unity Perception [28], Omni-
verse Replicator [51, 52], BlenderGen [18], etc. However, existing tools and approaches
cannot provide large-scale scene constructions and randomizations in opposite to our
SORDI.ai scalable and modular approach in which we ensure expert collaboration to
contribute to the same “calibrated” simulation scene taking into consideration all tiny
details of every 3D asset and all realism aspects that are previously mentioned [40].
Afterward, the calibrated sim is expanded with extensive SDR so it is ready to render
high-quality and photorealistic industrial images.

2.2 CV for Industry

In a recent review [3], Naumann et al. listed logistic and warehouse-related applica-
tions based on CV. However, we notice that each industrial application focuses on
specific assets such as pallets, small load carrier box, container, or forklift. Addition-
ally, less than 10% of the datasets are publicly available. Hence, we conclude that the
industrial field is scarce in data, and existing datasets cover single or small category
of assets, contrary to CV benchmark and rich datasets MS COCO [67], Cityscapes
[68], ImageNet [69], etc., or our proposed SORDIL.ai dataset.



Specifically, researchers rendered a single industrial part or asset per image by ran-
domizing it in front of a random background or in full DR environment. For instance,
Zhu et al. published SIP-17, a dataset of 33,000 single asset images covering 17 indus-
trial objects such as airgun, hammer, hook, wheel, etc. for 6 industrial use cases
[63, 54]. The Synthetic Corrosion Dataset contains 270 training images to detect
corrosion in industrial units and on products [55]. The dataset of Industrial Metal
Objects (DIMO) includes 553,800 images of 6 metallic objects, e.g., cylinders, blocks,
shafts, etc. with different shapes and materials and applied 71 combinations of tex-
ture and light randomizations to 600 diverse scenes with random set up of object
shapes, materials, carriers, compositions, and lighting [56, 57]. Moonen et al. intro-
duced their CAD2Render photorealistic SDG toolkit [49]: They import CAD models
and polish them with random textures, then apply rust or scratches to the surface,
before placing them in a random environment and path-trace rendering images. The
authors rendered 20,000 images of small metal pieces to pick, and 80,000 images for 4
industrial tools (screwdriver, hammer, wrench, and combination wrench). Petsiuk et
al. extended their SDG pipeline with CycleGAN [58] and translated real (test) images
of 3D printed parts like turbine, cogwheel, chassis, and holder, into the synthetic
domain to improve the performance of segmentation models solely trained on syn-
thetic data. However, the proposed approach still requires the collection of real data
to compose the real domain for training [59]. Dirr et al. proposed a pipeline to ren-
der physically-accurate electric wires images for segmentation. The authors produced
96,000 segmentation images for up to 6 cables with versatile deformations inside a
container for a provisioning use case, and other 5,000 images for a electric cable bench-
mark [24]. PalLoc6D provides 200,000 images of a photorealistic DIN EN 13698-1
EPAL Euro pallet (EPAL 1) model with Physically Based Rendering (PBR) realistic
textures using 3 levels of DR [60, 61]. Mayershofer et al. rendered 8,200 images of 5
types of KLT boxes with object-alike distractors [62]. Eversberg et al. studied in [18]
the effect of DR over realism by rendering 5,000 images of turbine blades on which
they applied different texture variations from MS COCO, random, realistic, and real
material images, in front of background images that are chosen randomly from MS
COCO dataset or the application domain. Then, they distracted the turbines with
YCB tools [70].

In short, existing industrial datasets do not cover images for industrial environments
inside manufacturing units for scene analysis use cases. They are focused on capturing
a single or small group of assets placed on different surfaces and under varying light
conditions that are, for instance, beneficial for a single asset or specific asset object
recognition and 6D pose estimation. In contrast, our proposed dataset includes anno-
tated industrial environment images, rendered from 20 scenes that contain logistics,
transportation, tools, office, and signs assets placed in way similar to real-world sce-
narios.

3 Synthetic Data Generation Pipeline

In this section, we present our synthetic image data generation SDG pipeline. As
illustrated in Fig. 1, our proposed pipeline is composed of four main steps: (1) asset



Table 1 Summary of the synthetic industrial datasets mentioned in Section 2.2

Dataset Classes Annotations Use Cases

SIP-17 [53] 17 isolated & assem-  Classification Cabin assembly, logistic picking,
bled parts wheel assembly, engine assembly

Corrosion [55] Corrosion Classification  corrosion detection

DIMO [56] 6 metallic shapes 6D Pose Reflective object pose estimation

Moonen et al. [49] Small metal piece 6D Pose Bin picking

Moonen et al. [49] 4 hand tools 2D Keypoint 2D keypoint detection

Petsiuk et al. [59] 3D printing CAD  Segmentation  Visual analysis & error detection
objects in additive manufacturing

Electric Wires [24] Wire Segmentation  Provision of deformable linear

objects

PalLoc6D [60] Specific pallet 6D Pose Material handling and tracking

Mayershofer et al. [62] 5 types of RL-KLT Bbox, Depth, KLT box detection
boxes Segmentation

Eversberg et al. [18] Turbine blades Bbox Object detection

(Ours) 111 objects of logis- 2D BBox Industrial use cases based on

tic, transportation,
office, tools, signage

object detection in complex envi-
ronments

preparation to build the 3D asset library that is used in (2) scene construction.
These scenes are inspired by real world setup for (3) data capture to render realistic
and annotated images. Afterward, the (4) quality assessment step enhances the
quality of our rendered dataset. Each step is detailed in further subsections.
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Fig. 1 Our SORDI.ai 4-step proposed SDG pipeline

3.1 Asset Preparation

In this section, we present the creation of a library of industrial simulation resources.
It contains 3D models, textures, materials, and layouts that were imported into the
USD pipeline to build our 3D scenes including:



1. Hand-model industrial specific assets: the USD pipeline allows the decen-
tralization of team members allowing experts to collaborate on the same reference
model while staying real-time updated with all changes - independently from the
digital content creation (DCC) tools [63]. We used Blender, Unreal Engine, and
Adobe Substances to produce industrial 3D PBR models with fine details and real-
istic surfaces. As mentioned in Appendix A.1, the high-definition and realistic PBR
surfaces of the asset’s 3D models reduce the reality gap. These assets are compli-
ant with international industrial standards, e.g., the German Association of the
Automotive Industry (VDA).

2. Converted assets: we converted existing 3D mesh models into USD formats and
included them in the same project since the USD’s interoperability allows the
integration of the most recent DCC software into the workflow.

3. Publicly available open-source assets: we used certain free assets from open-
source communities.
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Fig. 2 Subpart of SORDI.ai’s logistic containers branch

Asset classes: We defined a 5-layer taxonomy for our assets as seen in Fig. 2. In the
first layer (asset cluster), we group the assets into 5 clusters: logistics, transportation,
tools, signage, and office assets. In the second layer (asset family), we identify the
assets’ general function or type, such as storage, containers, mechanical tools, electrical
tools, etc. The third layer (asset abstract) represents a class or category of objects
without specifying any particular attributes, or details. It encapsulates a group of
objects sharing common traits or belonging to the same category/asset family. In
the fourth layer (asset), we define a more comprehensive and specific representation,
version, and variation of the objects compared to the generic asset in layer 3, for e.g.,



the different shape standards of a KLT box: L-KLT 4147, L-KLT 6147, L-KLT 3147,
etc. Last but not least, the fifth layer (asset state) represents the object’s behavior
or state, such as whether it is full, empty, open, or closed. The full tree taxonomy is
available online: https://www.sordi.ai/tree.

3.2 Scene Construction

A large-scale and versatile dataset requires a large variety of virtual scenes. To easily
maintain and upgrade the scenes in SORDI.ai, we present in this section our USD
adaptation for scene modularity and composition - It enables the creation of a 3D
scene by combining many “modular” smaller scenes into larger and more complex
aggregated scenes. [63, 64] (check Fig. 4).

Scene randomization: In order to scale our image generation pipeline to meet the
need of various industrial use cases, we must generate a huge number of synthetic
images with a variety of scenarios and parameters. As mentioned in Appendix A,
DR leverages a static scene into a dynamic scene with various combinations. In our
dataset, we consider three levels of randomization: DR-1, DR-2, and DR-3.

Table 2 SORDI.ai randomization levels

Asset Room
Shape  Surface Translation Rotation Behavior Components Light
No-DR X X X X X X X
DR-1 X, ¥ yaw X X
DR-2 X,y yaw Textures & Materials X
DR-3 X,y yaw Textures & Materials

For DR-1, we created a library of randomized assets, and asset groups (multiple assets
related semantically to one another [48], e.g., KLT box, pallet, and dolly as in Fig. 1)
based on visibility randomization components in an attempt to generate all possi-
ble logical combinations such as stacked KLT boxes as in Fig. A1, and possible asset
behaviors and appearances. However, a single asset variation is limited/constrained
and aligned by the official VDA standards for the assets’ dimensions and shapes to
maintain our scenes’ realism. Then, we placed all composed groups in the scene and
then applied for x and y positions in addition to yaw rotation randomizations. The
randomization range is set to predefined regions to avoid asset collisions. In addition,
we ignored the z-axis randomization to consider the physical gravity effect and avoid
floating assets. However, some randomized asset groups can be spawned with non-
zero values of z, roll, or pitch, e.g., leaning or stacked objects, etc. We elaborated on
these cases in the next paragraphs. Thereupon, and in short, we maintained the scene
content realism.

As for DR-2, we additionally randomized the walls, the ground, and the ceiling’s
materials and parametric textures to simulate the background variability. We used
320 Material Definition Language (MDL) materials selected from NVIDIA’s vMateri-
als collection [71]. The collection features paint, stone, plaster, fabric, metal, concrete,
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wood, textile, and so many other materials with various effects of reflectivity, emis-
sive, opacity, etc. [72] as shown in Fig. 3. Last but not least, we include in DR-3
the light source’s color, intensity, and rotation randomizations as shown in Fig. 3. In
Table 2, we compared between different DR levels.

Fig. 3 Mix of DR components from the same camera viewpoint

Scene composition: Based on the USD’s feature for scene modularity [64], we built a
9-layer architecture to ensure the composition of large complex scenes without starting
from scratch every time (check Fig. 4), featuring the advantage of assets reusability.
Moreover, using the same components from other scenes guarantees our scene’s indus-
trial environment consistency:

stillage_close
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1. Components 2. Component groups 3. Assets 4. Randomized assets 5. Tagged assets

stillage stillage x dolly

Status Variations

6. Abstract class randomization 7. Asset groups 8. Digital stages 9. Action-ready scene

Fig. 4 SORDI.ai’s 9-layer large-scale scene composition



. Component: It is the smallest 3D objects defined as “children” assets used to
construct parent assets, such as screws, axis, wheels, washers, pipes, etc. Each
component surface is “polished” with its appropriate PBR material and texture.

. Component groups: Combined/Collection of components used to create re-
occurring components in larger “SORDI asset”.

. SORDI asset: A refined PBR asset assembled using component groups and com-
ponents - This results in fine-detailed and complex industrial assets with multiple
surfaces which were previously challenging to compose and to model [49]. Addi-
tionally, this asset is also textured with ambient occlusion and appropriate textile
density maps to ensure texture details are rendered realistically. At this stage, the
asset gains its behavioral status and functional role.

. Randomized asset: The SORDI asset demonstrates appearance randomization
by pulling in pre-rendered texture and shape variations.

. Tagged asset: At this stage, the asset is labeled with its proper asset (object class)
ID and name as object detection annotations. As an output, all the appearance
variations of the same randomized SORDI asset (check Layer 4) are named and
associated with the same tag.

. Abstract asset randomization: It consists of multiple layers for content random-
ization, equivalent to layers 4 and 5 of the asset taxonomy. Therefore, we randomize
different versions and behaviors of the same generic abstract asset. However, each
behavior or status has its own tag from the previous layer, e.g., stillage_open, stil-
lage_close, stillage_full, etc. Then, we randomize between these types of stillages.
As a result, and when spawning it into the virtual scene, the asset will alternate
between different behaviors, versions, and surfaces of the stillages.

. Asset groups: A combination of different context-specific assets that are linked by
physical, semantic, and functional relationships. e.g., KLT boxes on rack shelving,
or a stack of KLT boxes, etc. For instance, spawning an asset group of “KLT
stack on a pallet” would result in distinct variations of KLT stack compositions
as illustrated in Figure A1l. Sequentially, transform randomization is additionally
applied on an upper/parent layer/object.

. Digital stages: Building on top of the USD modularity, asset groups are spawned
alongside other groups to form a realistic environment, and so on. This features
scalable and growing scene groups for large-scale scene composition. Moreover, it
is worth mentioning that all assets are spawned by reference, hence any change in
the lower layers is propagated to all upper layers updating in real-time all asset
groups and digital stage scenes.

. Action-ready scene: It is the final camera-ready scene composed of multiple sub-
scenes, and which is used to render our synthetic images.

Additional note: We mentioned previously that the transform randomization affects
the z, y, and yaw axis only to maintain the scene’s SDR, physics, and realism. For
instance, it is possible to spawn leaning asset groups against the wall, so by running
the asset groups’ translation randomization, it will lean against many positions of the
wall. Therefore, when checking its world coordinates, the roll and pitch values may
not be equal to zero. Or in another scenario, we could spawn the asset group on a shelf
or rack, so its world’s z-axis value could be higher than 0.
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Additionally, it is worth mentioning that the randomization effect of spawned assets
is asynchronous. In other terms, if a randomized asset has m wvariations, spawning
the randomized asset twice or m times would result in 2 X n or m X n variations
respectively, resulting in a larger variety of combinations. In contrast, a synchronous
randomization would maintain the same variation of all the same spawned assets at
the same time, resulting in n variations only for m spawned assets.

3.3 Camera Randomization, Data Capture & Annotation

The camera is also an essential asset within the scene to display the virtual environ-
ment and render photorealistic images. In our dataset, we used a path-trace rendering
algorithm with NVIDIA RTX GPUs. However, as a normal 3D object, the camera has
also 3D characteristics, e.g. visibility, position, and rotation. Therefore, the camera
movement and behavior in the scene affect the data capture. As shown in Fig. 5, we
define four main types of data capture:

A Full Randomization Constrained Rando- .
Static Capture (SC) Capture (FRC) mization Capture (CRC) Sequential Capture (SqC)
A A A A
Ax A A AGEA A VASRAN A

BA

X

AL ATA D

4 LR )
ey

P\

l:‘ Free Area [:I Restricted Area Camera /\ Randomized Assets

Fig. 5 Samples of the four main types of data capture SC, FRC, CRC, and SqC
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1. Static capture (SC): It consists of fixing the camera at a static position and
rotation. In this case, DR is a must, otherwise, the same image is rendered at every
frame.

2. Full randomization capture (FRC): It consists of randomizing both camera’s
source and target points at any point in the scene’s room. This diversifies the
camera viewpoints, e.g. high and low angles, tilted and point of view, long and
close shots, aerial shots, etc. Otherwise, randomizing the camera target only will
be like a person standing in the same position looking around, and randomizing
the camera source, only, results in blind areas. In short, the camera is placed all
over the 3D scene, and it is pointing toward random positions.

3. Constrained randomization capture (CRC): It is similar to the FRC, but
the camera’s source or target points are randomized within specific regions, for
instance, we omit captures inside highly dense areas or inside closed assets that
are not accessible by humans or robots. Images at these viewpoints are irrelevant
for training. Moreover, we configure the camera’s target point to ignore capturing
empty regions of a virtual scene such as the ceiling.

4. Sequential capture (SqC): Images are rendered with the same distance and
angle (viewpoint) at which a camera - fixed on a robot - observes and captures in
real scenarios. For instance, in the case of Autonomous Mobile Robots (AMRs),
the virtual camera is placed at a fixed distance from the ground, and is moving
through a well-defined path as it was fixed on a transport AMR navigating the
scene. (check Section 5).

Alongside rendering images, Isaac Sim generates accurate annotations as bbox 2D
Tight [73].

3.4 Quality Assessment

As a final step, quality assurance affects both images and their annotations. Therefore,
we implemented multiple algorithms to remove:

1. Duplicate or highly similar images: we measure image similarity using Man-
hattan distance for image hashes as implemented in [13]. The smaller the distance
is between two images, the more similar/identical the two images are.

2. Close shot images of solid assets: a solid asset does not have any gaps or
perforations, and hence, it does not allow visibility through its mesh as shown in
Fig. 6 a. Therefore, we discard the image where a solid asset’s bbox occupies more
than a predefined threshold of that image:

Occupancy = Sbbox _ Whbox X Hbbox (1>
Simage Wimage X Himage

where S is the surface area of a bbox or a rendered image, W and H are the
corresponding width and height. In addition, the maximum Occupancy is equal to
1 and it corresponds to a solid asset which totally covers the image.

3. Non-informative images: we consider a region without any annotated asset
(without any bbox) as a non-informative area like room’s components (wall, ceiling,
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floor), high occlusion by an unlabeled object, etc. Hence, we discard an image if
the non-informative area surpasses a predefined threshold as shown in Fig. 6 b.
Bboxes with an area of zero: a zero-area bbox results when the top and bottom
coordinates or the right and left coordinates of a bbox are equal. In such a case,
we omitted the corresponding bbox from the annotation files.

e~

w/o perforations

v

ONNINININGY <

Fig. 6 Samples of (a) close shot images (b) non-informative images

4 SORDI.ai Dataset

In this section, we describe our proposed SORDI.ai dataset.

Material setup: In this release of SORDI.ai, we used a path-trace rendering algo-
rithm with NVIDIA RTX A6000 48 GB, and RTX 3090 48 GB GPUs. We rendered
images using NVIDIA Omniverse’s Isaac Sim v2021.2.1 and converted the bbox
annotations into BMW JSON format [74]. In addition to the annotated folders, we
provide a general config.json file details of the dataset folders like: description, image
dimension and type, dataset application, annotation types, supported objects and
their instance numbers, scene environment, generation settings, etc.

4.1 Datasets Detail

Our proposed SORDI.ai dataset includes photorealistic renders from scenes that were
inspired or replicated from real-world industrial areas, such as: BMW’s Regensburg
and Spartanburg plants, in addition to offices, warehouses, storage rooms, and tool
shops. All images are in 720p and are associated with bbox 2D Tight annotations
[73]. This release of SORDILai includes 36 datasets with a total of 1,191,893 anno-
tated images for 111 annotated object classes. Additional information are found in
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Appendix B.

Object distractors: We did not include any distractors, considering that our scenes
are rich and dense in assets since they are inspired by real-world compositions and
structures. Thus, by randomly moving the capture camera within the scene (FRC,
CRC, and SqC), a natural occlusion behavior manifests by the closest industrial 3D
models.

4.2 SORDI.ai Assets

We classified our annotated assets into five main clusters: logistic, transportation,
tools, signage, and office:

1. Logistic assets are used within industrial operations to, for e.g., carry, hold, and
store items, such as containers, boxes, storage equipment, robots. In addition, this
cluster includes safety and environment setup objects like barriers, safety cones,
etc.

2. Transportation assets consists of wheeled objects, mainly used for object
transportation like: jack, smart transport robot, dolly, forklift, etc. or person trans-
portation like bicycle, scooter, etc.

3. Tools are commonly found in a tool shop like hammer, pliers, wrench, etc. They
also include safety tools like gloves, goggles, fire extinguisher, etc.

4. Signage assets include floor markings, signs, and logos.

5. Office assets include office stationary equipment, electronic devices and office fur-
niture including kitchen items.

Furthermore, we assigned different annotations for the same object with different
shapes or states, for e.g., different KLT box types (dimensions) or stillage states (open,
and closed) as previously explained in Sect. 3.1.

4.3 Asset-Scene Correlation

In Figure 7, we visualized the asset distribution over the 5 asset clusters (logistic,
transportation, tools, signage, and office) for each SORDIai dataset. Such distribu-
tion reflects the content/focus of the scene that we used to render images. For e.g.,
Office, Industrial Scene_7, and Industrial Scene 9 show significant usage of office
assets (17, 22, and 13 resp.), showing that the scene contains office-inspired areas.
Moreover, Rengensburg and Spartanburg scenes majorly contain logistic and trans-
portation assets associated with assembly lines and production areas. In addition,
the toolshop dataset presents clearly the usage of tool assets (15) compared to other
datasets. For more details, we presented some dataset samples in Appendix D.
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Fig. 7 SORDI.ai datasets asset distribution

5 Dataset Performance & Ablation Experiments

In this section, we conducted two sets of experiments to demonstrate how the DR
techniques applied to SORDI.ai gradually bridge the reality gap. For evaluation pur-
poses, we used the mean Average Precision (mAP) at an Intersection over Union (IoU)
threshold equal to 0.5 (mAP@O0.5). We conducted our experiments on an NVIDIA
DGX server with 8 A100 40GB GPUs using the following training and evaluation
tools [75, 76].

(@) (b1) (b2) (b3)

Fig. 8 Samples of the datasets used in (a) testing Experiment 1 with bbox: green: pallet, yellow:
dolly, pink: jack, red: KLT box, blue: stillage, and aqua: fire extinguisher - and (b) training/testing
Experiment 2: bl. CRC synthetic - b2. SqC synthetic - b3. SqC Real
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5.1 Experiment 1: Bridging domain gaps

In this experiment, we gradually showcase how DR bridges the gap between domains,
and we indicate the efficient DR base level for industrial object detection use cases.
DL architectures: We selected the MS COCO pre-trained Faster-RCNN (FRCNN)
Resnet-101 [77], and EfficientDet D1 [78] models from TensorFlow-2 Model Zoo [79],
fine-tuned it with SORDILai, and inferred over real/synthetic images captured in
industrial setups. We used an 80-20% training-validation split ratio, 0.001 learning
rate, and a batch size of 4 for 20 epochs. Furthermore, we employed YOLOvT7 [80]
with a training-validation split ratio of 80-20%, a learning rate equal to 0.01, a batch
size of 8, and 10 epochs.

Data setup: We assess the performance of 4 SORDI.ai datasets characterized respec-
tively with 4 levels of randomizations: Trainne.pr [13], Trainpgr.1, Trainpg.2, and
Trainpr.3 (check Table 2). Furthermore, we rendered DR-1, DR-2, and DR-3 datasets
using the same calibrated simulation scenes for the sake of comparison. However, the
scenes used in the training set are not the same in the evaluation set: Each training
dataset consists of 30,000 images. As for the evaluation datasets, we used 7 different
datasets with 200 images each: Evalyo.pr, Evalpr.1, Evalpr-2, Evalpr-3, Evalregens.
Evalgpartan., Evalreal. We presented the dataset details in Table 3 below. Last but not
least, we consider 6 industrial assets: KLT box (abstract class), dolly, pallet, stillage,
fire extinguisher, and jack.

Table 3 Dataset details for Experiment 1

Dataset Size  Source Description
%9 TrainNo.pr 30K [13] Static scenes without randomization
= Trainpr.1 30K Scenes: 5, 6, and 7 DR-1 randomization (asset, and position)
w Trainpr.o 30K Scenes: 5, 6, and 7 DR-2 randomization (background)
= Trainpr-z 30K Scenes: 5, 6, and 7 DR-3 randomization (light)
Evalno.pr 200 [13] Static scenes without randomization
g Evalpr-1 200 Scenes: 1, 3, and 4 DR-1 randomizationn (asset, and position)
Lg Evalpr-2 200 Scenes: 8, and 9 DR-2 randomization (background)
5 Evalpr.s 200 Scene: 10 DR-3 randomization (light)
§ EvalRegens. 200 Regens. Dense scene
€2 Evalspartan. 200 Spartan. Dense scene
Evalgeal 200 Captured (Fig. 8 a)  Real hand annotated images from industrial areas

Additional notes: The calibrated simulation represents a first, single instance of the
replicated environment. It is on a calibrated simulation where we apply DR to expand
our scene variations and reduce the reality gap [81].

A dense scene is a crowded environment with extensive assets manifesting high level of
occlusions. Since, labels are automatically and accurately generated to the pixel-level,
far assets and areas up to Ipx are annotated. Such annotations are unrecognizable by
the model. Hence, for evaluation purposes only, we discarded them.

The real evaluation images were captured at random camera angles and in different
locations - similarly to CRC' (check Fig. 8 a).
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Results: We presented this experiment’s results in Table 4. Consequently, we
conclude the following: (1) In Evalyo.pr, Evalpr.1, Evalpr.e, and Evalpr.s of our
3 used DL architectures, we notice that the maximum mAP is near the matrix’s
diagonal (where the training and evaluation datasets have the same DR level). This
observation demonstrates that decreasing the domain gab yields better accuracies:
In the upper triangular matrix (above the diagonal), we notice in each column the
mAP’s boost and gradual increase while adding additional DR levels until we reach a
similar synthetic domain. (2) We notice that training on minimum DR-2 achieves the
highest accuracies when inferring over Evalgegens.; Evalgpartan., and Evalrear. That is
because factories are dense environments due to machinery, storage, and assembly
line complex equipment, so the model has to be familiar with extreme background
variations endorsing the efficiency of DR-2’s wall texture randomization.

We presented in Table 7, and 6 additional details per object class and other eval-
uation metrics like Accuracy, Precision, F1-Score, and Recall results.

5.2 Experiment 2: Mixing domains

In this experiment, we study the effect of camera viewport randomization on bridging
the reality gap, and the boosting effect of synthetic data to increase detection accu-
racies in low real data regimes.

DL architectures: We selected the MS COCO pre-trained Faster-RCNN (FRCNN)
Resnet-101[77] model from TensorFlow-2 Model Zoo [79], fine-tuned it with SORDI.ai
using an 80-20% training-validation split ratio, 0.001 learning rate, and a batch size
of 4 for 20 epochs. Then, we inferred over 200 real hand-annotated images captured
in industrial setups.

Data setup: We consider 2 SORDI.ai datasets for the same Regensburg dense scene,
captured in CRC and SqC (check Fig. 8 bl, b2, and Table B1). Each dataset contains
8,800 synthetic images and consists of 2 industrial assets: dolly, and stillage. However,
we gradually mixed both datasets with a step of 10%. For instance, a dataset with a
mix ratio of 10% represents a dataset composed of 10% SqC (880 images) and 90%
CRC (7,920 images), and so on. In total, we trained on 11 datasets with 8,800 images
each. The models are evaluated on 200 hand-labeled real images captured from the
viewpoint of an AMR inside industrial areas as shown in Fig. 8 b3. Moreover, we
conducted a comparative study by gradually assessing detection models trained using
mixtures of synthetic datasets (SqCgynth, and the best CRC+SqCsyntn combination)
with real image dataset SqQCRea) versus the real images dataset SqQCRea) itself to exam-
ine the capability of our synthetic dataset in boosting the detection model accuracies
in low (real) data regimes.

CRC vs SqCgsynth: In Table 5’s first part (CRC+Synthgynn), we gradually eval-
uated the dataset mixture, and we noticed that the mAP has significantly boosted
from 24.63% (r = 0%) to 32.59% after integrating 30% of the SqC dataset. However,
training on the SqC dataset, by itself (mAP = 29.90%, r = 100%), does not lead to
the maximum accuracy (mAP . = 36.98%, rmax = 90%). In other terms, including
approx. 30% of a new domain dataset to our training is capable of boosting the model
performance and generalizes better.
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Sim2Real visual inspection: In Fig. 8.b2 and b3, we notice common features in
terms of image content, as both sim and real environments have corridors with dol-
lies, stillages, industrial racks, etc. on both sides. Additionally, the ceiling is similarly
structured. Despite the consistency of camera motion, we notice that the real cam-
era in b3 is more tilted up compared to the virtual camera in b2. Moreover, the real
images are less saturated and present some motion blur and depth of field effects com-
pared to the rendered images which are stabilized, sharper, and cleaner (without any
real grain).

Synthetic vs Real: In the second part of Table 5, we gradually evaluated the mix-
ture of synthetic data with real data (8,800 images) versus real data with the same
size only (max. 4,400 images), e.g., at r = 10%, we compared models trained on 7,920
synthetic and 880 real images versus a model trained on 880 real images only. We
conducted this experiment up to r = 50% due to the limitation of acquiring real data.
We noticed that (1) our synthetic data significantly boosted the mAP for ratios up to
10% which is equivalent to 880 real images, and (2) adding real images to the training
set yielded higher accuracies than training on synthetic data solely (r = 0%). Sim-
ilarly to the previous analysis, we remarked that considering CRC data resulted in
higher accuracies than using SqCgsynen data only with real images. Last but not least,
in all columns, we observed an mAP convergence [82] after r = 30%.
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Table 7 Experiment 1: AP@Q.5 of FRCNN Resnet-101 based models tested on Evalgea) per object

class

Evalpaies  Evalpony  Evalkir Box  Evalssilage  Evaljack  Evalpire Ext.
7 s TrainNo-DR 25.57 39.78 11.01 58.79 13.64 49.89
z n Trainpgr-1 31.99 50.18 27.22 58.21 71.87 17.68
&) T Trainpr-2 33.94 54.28 24.84 62.98 86.27 21.72
E % Trainpgr-3 36.42 50.18 25.91 56.98 82.07 12.21
[a

'; TrainNo-DR 5.55 30.22 26.88 22.76 19.44 22.22

@] Trainpr-1 10.66 44.03 44.65 32.47 0.00 13.51

8 Trainpr-2 12.87 48.92 41.83 49.80 9.30 35.48

> Trainpgr-3 22.34 46.9 49.05 55.66 42.11 28.13
kot TrainNo-DR 10.65 23.88 29.76 47.83 21.33 37.50

ralinpr-1 . . . . . .

e Trai 16.48 46.01 32.92 50.87 45.97 18.30
g 5 Trainpgr-2 7.76 53.43 32.07 55.67 67.65 15.58
é"} Trainpgr-3 14.77 54.85 32.27 56.91 82.16 11.05
s

6 Additional Details: Object Representation

In this section, we will provide more details related to Experiment 1 in Section 5.1.
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Fig. 9 Class count of the training datasets
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Fig. 10 Instance count of the training datasets

Asset distribution: In Figure 6 (b), we notice that the asset instance occurrence
in the 4 training datasets, is not balanced, this is mostly due to the reason that
not all assets are equally available in an industrial area based on their functional
role [13]. For instance, in a single industrial room, one or two jacks could cover the
area to transport pallets. However, KLT boxes are significantly and extensively used
since they carry various smaller manufacturing parts that are needed in multiple
production steps. Thus, KLT boxes can be flexibly and easily placed in many places:
on industrial shelves or racks, stacked, next to the assembly lines, etc. Moreover, we
remark that the pallet and dolly distributions are quasi-similar due to the pallet-dolly
relationship defined by a dolly transporting a pallet.

Stackable assets: We found that the pallets and KLT boxes have the lowest AP
compared to other assets, because the pallet and KLT box are horizontally and ver-
tically stackable assets. Therefore, it is possible that multiple stacked instances are
detected as a single object instance. Especially in our KLT box detection case, we
considered the superclass KLT box, which includes different size KLT box children
assets, so 2 or more smaller KL'T boxes can be confused with a larger one as visual-
ized in Figure A1’s KLT box randomization. However, we noticed that applying DR
increases the average precision (AP) of stackable assets.

Large assets: We noticed that large assets, like dolly, stillage, and jack, achieved

higher AP since they are easier to detect and recognize, and there are no complex
combinations or placements for them, mainly due to the fact that they are big in size
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and heavy so they are not classified as flexible assets that can be easily manipulated.
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Fig. 11 False positive (FP), false negative (FN), true positive (TP), and true negative (TN) metrics
of the FRCNN Resnet-101 models tested on Evalgea) per class with an IoU threshold = 0.5

Natural occlusions and data imbalance: Due to the real-world inspiration to
build our dense scenes, a multi-layer of assets exists. For this reason, annotated high-
occluded, far (small) and background objects occur in the rendered images leading
to false predictions as shown in Figure 11. For example, fire extinguishers are not
randomly distributed, and they are mostly placed in specific places, such as hanging
on the walls which forms a background of our rendered viewports. As a result, highly
occluded fire extinguisher objects are present in the training set of DR-1, DR-2, and
DR-3 as shown in Figure 12, in comparison to the No-DR scene which is less complex
as shown in Figure D6. In addition, since we normally randomized the capture camera
source and “look at” positions, the fire extinguisher instance does not equally appear
as other frequent logistic assets that can be flexibly placed within the virtual scenes.

7 Limitations and Future Work

In this section, we discuss limitations of our proposed contribution, and therefore,
possible future tasks to address them.

Scene updates: The first limitation is related to the manual work that is still
necessary at the beginning of each simulation-based SDG to collect the 3D mod-
els, construct the calibrated simulation scenes, and define SDR setting. Furthermore,
industrial and technological updates (new or modified) should be also integrated in
the SDG pipeline, which is easier thanks to the USD interoperability and modular-
ity. Nevertheless, it is worth looking into 3D scanning and digital twin methods to
automatically build large-scale, structured, industrial calibrated simulations and to
maintain their continuous relevance.
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Fig. 12 Occluded background asset: fire extinguisher (zoomed in)

Domain randomization: As previously mentioned, an industrial area is a well-
defined and structured area which is limited in variability. Hence, many areas share
common patterns [48]. On the other hand, it is significant to configure adequate ran-
domization parameters depending on the industrial use case. While some cases are
characterized with minimum variability, some other cases may contain higher vari-
ations. Therefore, as future task we propose defining DR strength (low, moderate,
high) for each of the DR levels and to automate the process of defining structured
randomizations featuring physics simulation powered by NVIDIA PhysX SDK [83].
Scene variability: Furthermore, to increase our dataset intra and inter variabilities,
future implementations may cover (1) new DR configurations like optical DR related
to the camera settings, realistic images as textures in DR-2 and DR-3, and (2) new
components like interactive human workers, new industrial objects and updated tex-
tures.

Larger-scale scenes: Subsequently, our USD-based scalable and modular (layered)
SDG pipeline provides an easy upgrade and update of the calibrated simulation scenes
by re-using/spawning pre-configured randomized assets and digital stages (check
Fig. 4). Thus, it is possible to consider new environments, scenarios and content,
resulting in even larger industrial and complex scenes. Nevertheless, rendering photo-
realistic images with NVIDIA Omniverse requires expensive hardware and GPUs like
RTX 3090 and RTX A6000. Hence, the necessity of looking into optimization meth-
ods to load large scale scenes, and to render complex images. Additionally, it is worth
checking Generative AT methods to enhancing synthetic data realism and quality [84—
89].

Synthetic annotations: A 2D Tight bbox covers the visible part of a labeled object
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only. However, in case of occlusions, one or more pixels can still possibly exist near
the edges (visually, hard to perceive), or through a perforated front object. These
“leaking” pixels result in an “expanded” bbox. Additionally, we did not filter any
small bounding boxes associated with far background assets (except zero-area bboxes),
because the cleaning thresholds of a depth-based or area-based methods may be cus-
tomized per object class. On another hand, calculating an occlusion ratio based on the
percentage of bounding box overlap may be inefficient when the object’s actual seg-
mentation area is significantly less than the bbox area. For instance, if the front object
is highly perforated (e.g., stillage, jack, or dolly), the back object remains clearly vis-
ible. Therefore, future experiments may address (1) refining “expanded” bboxes, and
(2) bbox filtering strategies.

Multi-modal data: We are working on considering multi-modal annotations as
shown in Figure 13: E.g., semantic/instance segmentation for image segmentation,
or depth images for obstacle avoidance and depth estimation tasks [73]. Providing
multi-modal data extends the industrial coverage of SORDIL.ai to solve more complex
industrial use cases.

(@) - )

Fig. 13 (a) Plain color path-trace rendered, (b) depth, (c) instance segmentation, and (d) semantic
segmentation image

Model sensitivity and evaluation: Last but not least, we noticed that YOLOv7
and EfficientDet-D1 models achieved their best accuracies on Evalge, with Trainpg-s
in comparison to FRCNN’s models that got the maximum accuracies with Trainpg_o
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which does not include any light randomization. Hence, further experimentations
related to model sensitivity on domain randomization are worth to investigate, in
addition to exploring new evaluation metrics and methods to assess the domain gap.

8 Conclusion

In this paper, we leveraged our previous work in industrial SDG [13] by implementing
USD'’s features of flexibility, interoperability and modularity: We built an extensive
PBR 3D models library of industrial assets that are compliant with the VDA stan-
dards. Additionally, twisted with SDR, we bridged the reality gap. Moreover, we
proposed a 5-layer asset taxonomy, a modular 9-layer scene composition, and a 4-step
SDG pipeline for large-scale scene construction. As a result, we presented SORDI.ai,
a synthetic industrial dataset with over a million photorealistic images, path-trace
rendered from 20 various manufacturing scenes, covering more than 100 annotated
assets. Last but not least, we investigated how DR gradually bridges the reality gap
and the efficiency of mixing DR levels in the training dataset to increase the detec-
tion mAP. We hope that this dataset will enable researchers in industrial AI/CV and
robotics to reach their goals in training more generalized models that adapt to new
industrial areas.
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Appendix A Preliminaries

In this section, we review briefly the reality gap concept and how to reduce it via IR
and DR.

A.1 Reality gap

The real world is a complex domain including enormous and various combinations of
environmental and behavioral factors where some of them are considered rare events
that are hard to reproduce. As mentioned earlier, the reality gap in CV is the difference
in performance between DL models trained on synthesized images versus real captured
images [19, 29-31, 45, 90]. Furthermore, the reality gap can be classified as [36, 51]:

1. Visual gap, or appearance/perceptual gap, refers to the differences between a
synthetic image and a realistic image in terms of image quality, colors, realism
(especially with respect to the quality of the rendering system compared to a real
camera sensor), as well as assets’ shapes, materials, and details.

2. Content gap refers to the differences in terms of diversity, distribution, placement,
composition, and behavior of objects between the virtual environment and the real
world.

On the one hand, to bridge the visual gap, other studies enhanced IR by utiliz-
ing 3D components with advanced rendering capabilities such as physically-based
rendered (PBR) materials besides realistic textures applied on 3D models
featuring high levels of detail and physically-based light controls [18]. After-
ward, virtual scenes are rendered using advanced algorithms like path tracing or
iRay and powerful GPU hardware within multi-GPU architecture along with
accurate camera models. Moreover, these visual components can be randomized
to generalize the model and adapt to new light conditions, and object status, e.g.,
high or low usability signs such as scratches, dust, etc., or new object versions with
new paint color or materials, etc.

On the other hand, the content gap is related to scene composition: how the virtual
scene is similar to the real world in terms of the asset’s physical positions, function-
alities, and behaviors. More details in the following Section A.3.

Fig. A1 SDR of three types of small load carrier stacked
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A.2 IR Aspects

Several studies investigated and enhanced aspects of IR to bridge the visual gap.
Tsirikoglou et al. identified five realism aspects: overall scene composition, geometric
structure, illumination, material properties, and optical effects [91]. Many researchers
focused on the importance of highly realistic 3D models that look very similar to
real objects [13, 18, 60, 61] to reduce the visual gap. In addition, they endorse the
physically-based rendered (PBR) approach to define the visual properties of these
3D models’ surfaces such as color, roughness, metalness, etc. to define how any light
interacts with the surfaces so it results in a feeling of various realistic surfaces such as
wood, metal, glass, etc. [18, 32]. Therefore, rendering images with PBR yields better
results especially when the light and scene conditions are more complex [92, 93]. As
for the scene composition, we highlighted in a previous publication the importance of
scene content creation based on real industrial scenarios and asset composition [13],
and presented realistic models for eight industrial assets to reduce the reality gap.

A.3 DR Components

Rendering images from a single scene with static assets overfits the DL model to spe-
cific simulation instances. In turn, the DL model does not generalize well to real-world
instances which is extensive in randomizations [37]. As a solution, DR is capable of
leveraging all virtual scenes from a static into a dynamic environment where assets
are spawn or hidden in respect to physical, logical and semantic constraints
and at different positions of the 3D scene. Furthermore, knowing the functionality
and behavior of each object, it is possible to avoid unrealistic scenarios if the random-
ization is set up via a knowledge-based approach. This lead to “Structured DR (SDR)”
[45] as shown in Figure A1. In the rest of this paper and in our pipeline description, we
refer to SDR as DR, since all assets in SORDI.ai are spawned in a structured way. In
this section, we list the four DR components [94] that we applied in our SDG pipeline:

1. Textures & materials: The texture defines a 3D model’s (mesh) appearance and
details, e.g., scratches, patterns, colors, bumps, etc., whereas, a material deter-
mines the physical property of the surface, e.g., reflectivity, roughness, metallic,
transmission, transparency, etc. Both textures & materials affect the visual (real-
istic) appearance of the 3D model. Hence, all mentioned parameters are subject
to randomization in order to generalize the DL model’s performance in detecting
a larger variety of the same asset using different sensors/cameras and in different
environmental conditions, especially when it comes to high-reflection surfaces.

2. Light: It consists of randomizing the physically-based light control parameters such
as the light color, temperature, intensity, and directions. Additionally, the light
and material components are interdependent and they can impact one another.
The properties of the material can cause a surface to reflect or absorb certain
wavelengths of light, while the lighting conditions can alter the asset’s surface
appearance of the material, resulting in various realistic and complex combinations.

3. Visibility: It is a randomization following a symmetric Bernoulli distribution for
simply visualizing the asset or obscuring it in the 3D space of the virtual scene.
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4. Transform: An asset’s transform settings consist of position, rotation, and scale
properties. It manipulates an object’s position along the x, y, and z-axis, 3D rotates
it around its pivot point, and changes its size in all dimensions respectively. Hence,
randomizing the position and rotation properties leads to placing the object in
a defined area at different orientations. However, it is essential to consider the
physical properties when spawning or replacing assets to avoid asset collisions or
floating assets.

In Figure 3, we combined all four randomization components in a single scene, and
from a single camera viewpoint we rendered distinct and various images.

Appendix B SORDI.ai Dataset Details

SORDI.ai dataset is split into multiple folders to distinguish between the following
major differences: Scene, DR level, annotated assets, data capture type, rendering
algorithm and data cleaning. In Table B1, we present 35 new datasets in addition to
our previous dataset in [13].
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Appendix C List of Abbreviations

In Table C2, we list the most commonly used abbreviations in our paper.

Table C2 List of abbreviations

Al Artificial Intelligence

AMR Autonomous Mobile Robots

AP Average Precision

CRC Constrained Randomization Capture
CV Computer Vision

DCC Digital Content Creation

DL Deep Learning

DR Domain Randomization

DR-1 First layer of Domain Randomization
DR-2 Second layer of Domain Randomization
DR-3 Third layer of Domain Randomization
Eval Evaluation Dataset

FRC Full Randomization Capture

IR Image Realism

KLT Kleinladungstriger (Small Load Carrier)
MDL Material Definition Language

NN Neural Network

No-DR No usage for any Domain Randomization
PBR Physically Based Rendering

r ratio

Regen. Regensburg

SC Static Capture

SDG Synthetic Data Generation

SDK Software Development Kit

sim Simulation

SORDI Synthetic Object Recognition Dataset for Industries
Spartan. Spartanburg

SqC Sequential Capture

Synth Synthetic

USD Universal Scene Description

VDA German Association of the Automotive Industry

Appendix D SORDI.ai Samples

In the following images, we present rendered samples from different SORDI.ai dataset
folders paired with their bounding box images.
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Fig. D2 Samples from Spartanburg dataset

40



sagew|

s|jaqe

sagew|

s|age

-

sagew|

sjaqe

sagew|

s|age

CRC) dataset

(

Fig. D3 Samples from Regensburg
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Fig. D4 Samples from Regensburg’s (SqC) datasets
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Fig. D5 Samples from the office and toolshop datasets
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Fig. D6 Samples from the [13], Industrial Room Default, Warehouse, and single asset datasets
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Scene 1 (DR 1)
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Fig. D7 Samples from Industrial Scenes 1 and 3 in DR1 and DR2
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Fig. D8 Samples from Industrial Scenes 4 and 8 in DR1 and DR2
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Fig. D9 Samples from Industrial Scenes 9 and 10 in DR1 and DR2, and DR1 and DRS3 resp.
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Scene 5

Scene 7

Fig. D10 DRI1, DR2, and DR3 levels from Industrial Scenes 5, 6, and 7
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