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Abstract—Generative Adversarial Networks (GANs) have
shown potential for generating images, but have limitations when
applied to complex datasets. To address these limitations, class-
conditional training is employed, as it performs better and
maintains a high level of semantic diversity. In this work, we
propose a new method for training generative models on complex
images by extracting rules defining the relationships between
objects in the image, cropping significant sub-regions based on
these rules, and training the models in a conditional setting using
the extracted rules as labels. The proposed approach is evaluated,
and the results demonstrate its effectiveness by increasing the
training dataset size, and then feeding it to conditional training.
As a result, synthesized samples maintain asset fine-grained
details and the visibility of small instances.

Index Terms—Conditional Image Generation, Data Partition-
ing, Generative Models, Image Analysis, Image Synthesis

I. INTRODUCTION

Generative models, particularly Generative Adversarial Net-
works (GANs) [15], have made significant progress recently.
However, training complex datasets with unconditional train-
ing can result in missing details and a gap in quality and
diversity between the training and generated datasets [6], [36].
State-of-the-art (SOTA) approaches attempted to address the
complex dataset generation issue, particularly for single or
few assets image datasets such as MNIST, MS-COCO, and
ImageNet [14], [30]. Nevertheless, class-conditional training
has been shown to be less prone to issues such as mode
collapse and connecting, and therefore they perform better, and
maintain a high level of semantic diversity since each image
class group contains semantically similar image distributions
[2], [28]. As a result, some authors partitioned datasets into
clusters, with each cluster being linked to a class, and then
they used class-conditional architecture to address the complex
generation and to consider more training dataset modalities
and classes [5], [22], [27], [28].
On the one hand, there is an inverse relationship between the
quantity of data and the complexity of the scene, which poses
a challenge for current SOTA generative models, as noted
in [3]. On another hand, the level of complexity in a scene
depends on the objective of the generative model being used.
For example, some researchers consider ImageNet to be a
complex dataset for fine-grained images [22], whereas others
use COCO-Stuff, Cityscape, or ADE20K for generating multi-
object scenarios, as discussed in recent studies [9], [10]. As
a result, fine-grained features may be omitted or distorted in

the generation of complex scenes [6], [14], [20]. To address
this, some authors used scene graphs, layouts, semantics, and
segmentations as conditioning information in the training for
complex scene generation, in order to preserve physical and
logical rules [4], [11], [13], [18], [21], [30], [36], [38].
Moreover, many complex image backgrounds (such as the sky,
wall, ground, or roads) occupy a significant portion of the
image compared to the main labeled objects [12], [13], [18],
[30] which significantly affects the context and style of the
image [37]. In parallel, domain randomization includes style
variations of the surrounding environment to reduce the reality
gap and optimize main-object detection training giving it a
higher priority over a background context [17], [24].
All of the approaches that we studied, focused on treating the
whole image as a single instance, resulting in the generative
model attempting to imitate the distribution of the dataset
by generating similar images with the same probability of
class occurrence as in the real dataset. However, real images
often have a multi-modal distribution, with different modes
within the same class subset that could potentially be treated
as distinct classes [22], [25], [31], [32]. This suggests that
there may be value in considering these sub-modes separately
when training a generative model.
In this paper, we focus on the single image complexity. We
take into consideration the spatial factor of depicted objects,
as we observe that often closely situated objects tend to
be highly correlated, connected, or associated with specific
behaviors, tasks, or relationships. A complex image can thus
be thought of as including multiple sub-images with distinct
similarities and belonging to different domains. To tackle
this challenge, we propose a new approach that involves (1)
extracting rules that capture the behavior of all objects in
an image, (2) cropping significant sub-regions from complex
images based on these rules, and (3) conditional training
using these extracted rules. This approach is tested on in-
house rendered complex industrial images, Cityscapes [12]
and DOTA [35]. By dissecting single complex images, the
single complex dataset domain is divided into smaller specific
domains. Hence, it provides better diversity, mitigates dataset-
based bias [23], and improves the quality of the generation.
The paper is structured as follows: In Section II, we review the
main existing data partitioning approaches. In Section III, we
propose a new taxonomy for distinguishing between different
levels of image complexity and demonstrate how GANs can



imitate the distribution of the number of objects rather than
just the class distribution of the dataset. In Section IV, we
present our contribution, then we evaluate it and analyze the
results in Sections V and VI respectively. Finally, we provide
our conclusions in Section VII.

II. RELATED WORK

Training GAN models on a single mixed multi-modal data
is not straightforward and leads to failure modes as mode
collapse [28]. Hence, data partitioning has been a familiar
concept to improve the generation quality and avoid training
failure. However, the SOTA considers different techniques to
implement clustering algorithms within a generative model
training process.
Direct clustering: Authors focused on switching from uncon-
ditional GAN training to conditional training by producing
synthetic labels. For instance, Noroozi incorporated a clus-
tering network into a conditional GAN (cGAN). It automati-
cally associates pseudo-labels with real and fake images [27].
Plus, Sage et al. proposed clustering in the latent space of
AutoEncoder or CNN features space of ResNet Classifier to
generate “synthetic” data labels1. The approach stabilized the
disentangled conditional training of DCGAN and iWGAN
networks and, therefore, generated a better variety of images.
Additionally, they noticed that Gaussian blurring images pre-
sented to the discriminator help the GAN network remain
stable as well [28]. In contrast, Liu et al. trained in [22] a
cGAN where class labels are automatically retrieved by the
discriminator while clustering its feature space. Therefore, the
generator is forced to cover the exploited classes. Although,
they show that the cGAN performs better when the number of
classes is higher than the number of modes of the dataset.
Hence, more generation diversity is manifested per class
compared to unconditional training. However, due to the high
variance and the complexity of real images, it is hard to define
the perfect modes’ cardinality, and thus the number of clusters.
Multi-stage training: Authors considered that it is more
relevant to cluster samples of generated synthetic data to
produce the labels. Afterward, the real dataset is accordingly
partitioned and fed to a cGAN training: Considering a pre-
trained (unconditional) generator, Liu et al. inverted all train-
ing set images into the generator’s latent space, calculated
their latent distances [26] which serve as descriptive features,
and therefore, as data labels [23]. Afterward, the generator
and discriminator are converted to conditional variants and
fine-tuned with the new self-labeled samples. In this case, the
generator is forced to reconsider rare semantic attributes and
produce more realistic images. However, the first training is
still unconditional and may suffer from collapse, which we
are trying to avoid as previously mentioned. On the contrary,
Watanabe et al. trained a classifier using generated images
and their corresponding labels to generate new artificial labels
and refined them using self-attention. These labels reflect

1Synthetic data labels refer to automatically generated labels instead of
manually being defined.

semantic similarities, which is easier for the GAN to map with
latent vectors instead of separate class labels [33]. Despite
the efficiency of rare feature exploration, a complete GAN
training - consuming and vulnerable to failure modes - must
precede the labels’ extraction of another cGAN training. In
addition to specifying the cluster numbers, another connecting
data problem remains, especially when a single instance could
belong to more than a single cluster.
Multi-model training: Other authors preferred not only to
split the training data but to split the generative model as well.
Armandpour et al. solved the complex high-dimensionality
distribution learning problem - usually leading to mode col-
lapse and connecting - by breaking/partitioning the data space
into smaller regions with simpler distribution (including “con-
nected” manifold). Then, they trained a separate generator for
each “disconnected” data manifold to avoid missing modes
[2]. Still, some of the smaller regions could have little data, so
training their corresponding separate generators may collapse.
Nearest neighbor guidance: Casanova et al. introduced
instance-conditioned GAN (IC-GAN) to present the neighbors
of an instance image as real samples for the discriminator
instead of partitioning data into clusters. Hence, the generator
produces images similar to the instance’s neighborhood [9].
Similarly to the previously mentioned approaches, all authors
consider the whole image at once for clustering, which is
highly efficient for a single asset or simple images. Conversely,
complex scene images contain many combinations and regions
(sub-images) where each one belongs to a distinct cluster. In
addition, image details may not occur equally in all the images.
Consequently, fine-grained features are omitted or presented
with high artifacts. As a solution, we propose a single GAN
conditional training, where first, we self-extract image regions
based on the provided labels and object distances and then the
conditional training labels.

III. IMAGE CONTENT UNDERSTANDING

In this section, we argue a new image taxonomy based on
image complexity and asset behaviors, and the ability of GANs
to imitate these connections.

A. Image Content & Taxonomy

An image is a visual representation of one or many items
(objects) that may occur more than once (instance). Therefore,
we propose the following taxonomy dividing images into
4 clusters based on objects’ occurrences: (1) Single-object
single-instance image: as in classification datasets, (2) Single-
object multi-instance image, (3) Multi-object single-instance
image, and (4) Multi-object multi-instance image.
However, it is important to differentiate between a single
object image and a single object dataset. In a single object
dataset, all images highlight the same single object class, while
in opposition, the dataset may contain multiple single object
images for different objects.
Moreover, instances I1, I2, ..., Ii are related by a behavior
B(I1, I2, ..., Ii) defined by a rule R(c1, c2, ..., cn) of n object
classes (c), where n ≤ i. This behavior is executed to fulfill the



requirement or need of a predefined task. E.g., in an industrial
plant, small load carrier (KLT) boxes are perfectly stacked
and arranged on a pallet placed on a wheeled dolly for ease
of movement. For this reason, it is important to detect assets in
their dynamic active functional behavior as much as detecting
them in a standalone or idle state. Therefore, it could be
beneficial to generate additional images of such scenarios for
training deep learning models.

B. Image Distribution

As previously mentioned, most GAN research applications
directly focused on a single object image data augmentation.
Nevertheless, an industrial image visualizes one or many
behaviors of multiple assets. In this section, we will check
if a GAN can learn a behavioral content distribution:

1) We rendered using NVIDIA Omniverse 19,039 images
for a random number of KLT box stacks.

2) We used the same KLT dataset to train a StyleGAN3
model. Afterward, we generated 10,000 images as well.

3) Using the same KLT detection model - trained on a
Faster-RCNN (FRCNN) Resnet-101 architecture - we
counted the instance occurrences per image in the two
previous datasets, and visualized the results in Fig. 1.

Fig. 1. KLT boxes occurrence in Omniverse and GAN-based datasets of
19039 images

In Fig. 1, we notice that instance occurrence distributions in
Omniverse-rendered and GAN-synthesized images are highly
similar, which shows that a GAN is capable of reproducing
behavioral relationships based on asset occurrences and bound-
ings. However, a complex image encounters multiple behav-
iors simultaneously, which is challenging to traditional GAN
approaches. In further sections, we propose a complex data
processing pipeline enhancing the output quality of generative
models entitled conditional rule-based GAN (CRGAN).

IV. CONDITIONAL RULE-BASED GAN

In this section, we propose in detail our conditional rule-
based GAN (CRGAN) as illustrated in Fig. 2.

A. Rule Extraction

The first phase of our proposed framework is to understand
the provided datasets and extract all significant rules applied
based on the instances’ distance from each other.

Point calculation: An image visualizes i instances. Each
instance Ij of an image is determined by its bounding box
coordinates Bj (Left, Top, Right, Bottom), its bbox 2D mid-
point pj (xpj

, ypj
) and its object class cj .

k-d tree creation: Behavioral bindings are defined by assets
that are frequently found close to each other. To get the
instance’s neighbors, we created a “K-dimensional (K-d)” tree
structure containing all calculated midpoints. Theoretically,
a K-d tree is a data structure organizing points in a k-
dimensional space - in our case a 2D space - and applies binary
search in a quadratic time complexity O(n2) with imposed
constraints for nearest neighbor searches [8]. As a result, we
have i lists { pj : sort(p1, p2, p3, ..., pi, pj) }, where the jth
list contains all midpoints sorted by ascending distance to pj .
Combination framing: A combination-frame is a set of k
instances which their larger bounding box Bj+k covers the
main instance Ij and the next k nearest instances. Bj+k

is limited to a maximum width and height less than the
image’s minimum width or height. We considered all possible
combinations for every instance Ij with its 0 to (maximum)
i− 1 neighbor-instances.
Combination-frame cleaning: To preserve only significant
combination-frames highlighting only the bound assets with-
out any intruders, we ignore each combination-frame con-
taining an additional foreigner-instance not belonging to the
combination’s instances e.g. a background instance, or a
partially appearing instance at the frame edge, etc.
Empirical rule extraction: We formulate empirical rules “o1
c1, o2 c2, ..., and on cn ” by exactly counting the occurrence
om of every object class cm, so-called condition, within the
same combination-frames.
Rule fuzzification: Occurrences are fuzzified for generaliza-
tion purposes, and especially when it comes to small portable
assets. In such cases, the asset occurrence reflects the asset’s
current functional state. For instance, a single KLT box could
indicate that it is used for picking up or storing parts. In the
case of two boxes, we can sort, split, or assemble parts. How-
ever, for a large number, boxes are stacked for transportation.
Yet, for a significantly larger number, the boxes are stored in
a warehouse.
Frequent rule selection: The above-mentioned process is
applied to all the datasets’ images. Afterward, we merge and
count all rules. Then, we select every rule with a normalized
coefficient higher than a predefined threshold, i.e. support σ.
As a result, the possible conditions are limited to “equal”,
“greater than or equal”, and “inclusive between” constraints.
Each rule R is composed of one or many conditions.

B. Region Exploration and Image Cropping
Condition exploitation: A single condition can be devel-

oped into multiple “=” meta-conditions. For instance:

“|cm| ≥ om” =


“|cm| = om”
“|cm| = (om + 1)”
...
“|cm| = max(|cm|)”

(1)



Fig. 2. Conditional rule-based GAN (CRGAN) overview

Fig. 3. Image generation models based on (a) region exploration only (b)
frame selection training datasets at 5000 steps

where max(|cm|) is the maximal possible occurence of the
object class cm in the image. Or,

“om ≤ |cm| ≤ o
′

m” =


“|cm| = om”
“|cm| = (om + 1)”
...
“|cm| = o

′

m”

(2)

where om and o
′

m are the minimum and maximum occurrences
of the object class cm in a “inclusive between” constraint.
For each meta-condition, we extract all bounding boxes related

to the condition asset cm. Then, we calculate their midpoints
and apply K-d tree as previously mentioned in Section IV-A.
We apply KNN to search for the closest om + k instances of
the asset cm.
This step is repeated for every condition in R. As a result,
multiple frames2 F are provided per condition.
Condition combination: We apply Cartesian product between
different R’s conditions frames F to create all possible com-
binations.
Region exploitation: For each combination, we examine its
bounding box dimension as explained previously in IV-A com-
bination framing, and combination-frame cleaning, to exploit
regions that exactly satisfy the rule.
Region maximum expansion: We expand the frame bounding
box in the four directions while keeping into consideration
the alignment of the asset to the center and without including
any foreign assets in the frame. The expansion stops when
it collides with the initial image edges or any foreign asset
bounding boxes.
Square region fine-tuning: We equally crop from all dimen-
sions to find the inscribed square of the bounding box area
while preserving the alignment condition as in the above step.
Frame selection: We ensure a set of these instances to
guarantee frame distinction: For the same image, we con-
sider the superset of instances satisfying the maximum valid
occurrence. Thus, only one frame containing this superset is
considered to avoid semantic duplicates, image translation, or
image scaling. Otherwise, the new cropped dataset will mainly
include similar frames that are only different by insignificant
translations and incomplete assets. For e.g., and for the same
dataset, we extracted two cropped datasets: one preserving
frame distinction while the other does not. As seen in Fig. 3 for
the second dataset, the model is having a hard time asserting
the shape and color of the assets. Thus, distinct frames have
a significant impact on the generation quality.
Image cropping: Finally, we crop these regions and resize
them accordingly to satisfy the GAN training dataset condi-

2A frame F is a sub-image of the initial image that we are exploiting.



tions and the image resolution ρ. However, since the dataset
is exploited and images are cropped according to well-defined
rules, these subsets belong to well-defined classes as well.
Hence, they are subject to cGAN training.

V. EXPERIMENTAL SETUP

In this section, we present our experimentation setup, in-
cluding our dataset acquisition, training materials, and the
evaluation metrics that we propose to assess our approach.

A. Dataset Acquisition

We conducted our supervised training using an in-house
dataset consisting of 20,728 rendered images in 1080p using
NVIDIA Omniverse [1], as sampled in Fig. 4. Moreover, we
utilized the following public datasets: Cityscapes [12], and
DOTA [35].

Fig. 4. Initial Omniverse-rendered complex dataset sample

We used NVIDIA Omniverse to build an industrial area filled
with various single and group of assets and we rendered it
using NVIDIA A6000 GPUs with 48 GB. Then, we used Isaac
Sim to generate all bounding box annotations for the following
industrial assets: small load carrier (KLT) box, stillage, jack,
rack, smart transport robot (STR), dolly, and pallet. However,
the 3D scene is inspired by a real factory setup and presents
different realistic asset combinations. Additionally, we applied
texture, position, and appearance domain randomizations to
leverage all scenarios. Finally, we removed the annotations of
occluded assets by a rack or a stillage, since they are hollow
which negatively affects their appearance in extracted rules.
The rendered dataset used in this study is available on request
from the corresponding author.

B. Rule Extraction & Image Cropping

In Tables I, II, and III, we list the extracted rules related to
our dataset, Cityscapes, and DOTA respectively.

C. Training Backbones

For our approach, we tested it with StyleGAN3 [19] as a
backbone. For each dataset, we trained 2 models: the first is
unconditional, trained on a single random, yet largest square
crop per image. The second one is conditionally trained with

TABLE I
OUR DATASET’S EXTRACTED RULES: σ = 0.005 AND ρ = 256× 256 PX

Rules Image #

1. 1 ≤ |dolly| ≤ 8 1,226
2. 1 ≤ |dolly| ≤ 8 AND 1 ≤ |pallet| ≤ 2 14,741
3. |dolly| = 1 AND |STR| = 1 8,041
4. |pallet| = 1 2,780
5. 1 ≤ |dolly| ≤ 4 AND 1 ≤ |jack| ≤ 2 AND 1 ≤ |pallet| ≤ 4 16,857
6. 1 ≤ |dolly| ≤ 8 AND 1 ≤ |stillage| ≤ 4 8,276
7. |stillage| = 1 349
8. 1 ≤ |dolly| ≤ 4 AND 1 ≤ |pallet| ≤ 2 AND |STR| = 1 19,374
9. 1 ≤ |rack| ≤ 2 5,453
10. 3 ≤ |dolly| ≤ 9 AND 1 ≤ |pallet| ≤ 8 AND 1 ≤ |stillage| ≤ 4 3,832
11. 2 ≤ |dolly| ≤ 8 AND 1 ≤ |jack| ≤ 2 AND 1 ≤ |pallet| ≤ 4 AND 1 ≤ |STR| ≤ 2 37,187

Total 118,116

TABLE II
DOTA’S EXTRACTED RULES: σ = 0.001 AND ρ = 256× 256 PX

Rules Image #

1. 1 ≤ |small-vehicle| ≤ 9 1,329
2. |plane| ≥ 1 992
3. |harbor| ≥ 1 1,095
4. 1 ≤ |large-vehicle| ≤ 9 1,319
5. 1 ≤ |storage-tank| ≤ 9 655
6. |large-vehicle| ≥ 1 AND |small-vehicle| ≥ 1 809
7. |bridge| ≥ 1 615
8. |swimming-pool| ≥ 1 264
9. 1 ≤ |ship| ≤ 9 729
10. 1 ≤ |tennis-court| ≤ 8 727
11. 3 ≤ |large-vehicle| ≤ 4 AND |plane| ≥ 9 55
12. |bridge| ≥ 3 AND |ship| ≥ 1 112
13. 1 ≤ |harbor| ≤ 9 AND 1 ≤ |ship| ≤ 9 1,749
14. 2 ≤ |large-vehicle| ≤ 9 AND |storage-tank| ≥ 9 230
15. |harbor| ≥ 9 AND 1 ≤ |swimming-pool| ≤ 8 147
16. |helicopter| = 1 AND |plane| ≥ 9 101
17. |baseball-diamond| = 1 299
18. |bridge| ≥ 9 AND |ground-track-field| ≥ 9 AND |soccer-ball-field| ≥ 9 10
19. |roundabout| = 1 299
20. |bridge| ≥ 9 AND |roundabout| = 1 AND |ship| ≥ 9 15
21. |basketball-court| = 1 69

Total 11,620

TABLE III
CITYSCAPES’ EXTRACTED RULES: σ = 0.0025 AND ρ = 512× 512 PX

Rules Image #

1. 1 ≤ |pole| ≤ 9 5,363
2. 1 ≤ |traffic sign| ≤ 4 395
3. 1 ≤ |car| ≤ 2 4,195
4. 1 ≤ |pole| ≤ 4 AND 1 ≤ |traffic sign| ≤ 4 4,209
5. |traffic light| = 1 9
6. |car group| = 1 5,083
7. 1 ≤ |person| ≤ 2 734
8. |fence| = 1 1,301
9. |terrain| = 1 1,351
10. |car| = 1 AND 1 ≤ |pole| ≤ 2 3,579
11. |static| = 1 23
12. |pole| = 1 AND |traffic light| = 1 499
13. |cargroup| = 1 AND |pole| = 1 2,940
14. |wall| = 1 724
15. |bicycle| = 1 323
16. |person| = 1 AND |pole| = 1 683
17. |pole| = 1 AND |terrain| = 1 960
18. |fence| = 1 AND |pole| = 1 975
19. |traffic light| = 1 AND |traffic sign| = 1 18
20. |person group| = 1 244
21. |pole| = 1 AND |traffic light| = 1 AND |traffic sign| = 1 280
22. |car| = 1 AND |pole| = 1 AND |traffic sign| = 1 1,385
23. |car| = 1 AND |car group| = 1 1,941
24. |rider| = 1 18
25. |cargroup| = 1 AND |pole| = 1 AND |traffic sign| = 1 1,517

Total 38,749



our proposed approach in which we associated a class ID with
each of the extracted rules. All experiments were executed on
NVIDIA A100-SXM4-40GB GPUs.

VI. RESULTS ANALYSIS

A. Qualitative assessment

In our approach, we cropped sub-images from the initial
higher-resolution images, so fine-grained details are main-
tained in a better way than downsampling high-dimension
images into lower-resolution images as done in the SOTA.
Therefore, by visually assessing the image generation quality,
our proposed approach conserves details and the assets are
sharper and more visible, while in the traditional StyleGAN3
training, far and background objects are subject to incomplete
formation and artifacts.
Ours: Comparing our proposed approach to the traditional
results, the stillage cage, the pallet’s wood, and the KLT box
shapes are better conserved as shown in Fig. 5, and 6. Still, and
as previously mentioned, we assume that the artifact in some
specific classes results from the small size of the extracted
training dataset belonging to its corresponding rule.
Cityscapes: It is an extreme case dataset due to the perspective
effect and the capture viewpoint: far assets - even if they
are distant from each other - are closer (and smaller) when
projecting in a 2D space, affecting random rules. Therefore,
a data cleaning process or adding depth information to our
pipeline is essential. Still, our approach extracted 25 rules, and
expanded the training dataset from 22,973 to 38,749 distinct
images (168.67%). As a result, it has achieved better results,
in a lower number of training steps (6200 steps), like car and
street marking shapes.
DOTA: Satellite images are perfect 2D images (no depth
perspective) that highlight the efficiency of our proposed
approach. We extracted 21 rules and the training dataset
was augmented from 1,869 images to 11,620 distinct images
(621.72%). We executed it at a resolution of 256x256 px to
preserve the appearance of small instances that are sometimes
omitted in traditional approaches.

B. Quantitative assessment

For each of the 6 models, we generated, respecting the same
class distributions, approx. 20,000 images for assessment.
We conducted our experiment assessment using the Frechet
Inception Score (FID) as it is one of the most widely accepted
scores for assessing image generation based on its quality
and diversity - the lower the value, the better it is [7], [16].
We calculated the FID to compare synthesized datasets at
different resolution scales (512, 256, 128, 64, and 32 px)
to their corresponding original-scale training dataset using
the following available repository: [29], [34]. We assume
that the more we downsample an image, and due to the
compression algorithm, the more fine-grained features are lost,
like small and far assets, surface details, etc. Therefore, by
calculating multi-scale FID, we prove that our approach is
capable of maintaining better fine-grained features compared
to the traditional GAN approaches that take the training image

Fig. 5. Our proposed approach to maintaining complex image details -
Comparing Ground Truth (GT) images’ subpart to the traditional generation
vs our approach. (Zoom in for better comparison)

as a single instance.

TABLE IV
MULTI-SCALE FID CALCULATION AND COMPARISON

Dataset FID512

y FID256

y FID128

y FID64

y FID32

y
Ours - 13.42 62.07 162.10 218.44
Ours (CRGAN) - 11.22 30.25 113.57 177.95
Cityscapes 15.45 21.15 61.35 199.03 317.61
Cityscapes (CRGAN) 14.86 18.00 37.58 141.60 253.92
DOTA - 31.04 49.55 139.28 217.31
DOTA (CRGAN) - 21.78 35.31 108.16 178.75

In Table IV, we notice that our approach, the so-called
CRGAN, has achieved better FID scores (equivalent to lower
scores) at different resolution scales. This proves our previ-
ously mentioned objective of maintaining fine-grained details
from complex image datasets.

VII. CONCLUSION & FUTURE WORK

In this paper, we define a complex scene image as a compo-
sition of various behaviors between the image objects. Hence,
it is possible to decompose an image into multiple sub-images
based on objects’ behaviors and relationships. In parallel, it is
more important to detect assets in their dynamic active states,
especially in the industrial field. Therefore, we proposed our
framework that consumes a labeled complex dataset, extracts
objects’ behavioral rules, and, consequently, splits the images
(and their sub-images) into classes satisfying the previously
extracted rules. As a result, the training dataset is increased in
size, labeled, and more focused on specific assets highlighting
their details. After feeding them into a conditional training of
StyleGAN3, the model takes into consideration more details
from a larger dataset which enhanced our image generation
with better shape formations and completions.
However, on one side, our framework is modular, so it can
be used in association with other generative models, e.g., new
GANs or diffusion models. On the other hand, it makes the



Fig. 6. Samples of generated images for our dataset (a) without and (b) with our approach at 25,000 steps, Cityscapes (c) without and (d) with our approach
at 6,200 steps, and DOTA (e) without and (f) with our approach at 7,500 steps, and using StyleGAN3 as backbone

generation quality highly dependent on that generative model,
and it requires a labeled dataset for rule extraction. Thus, the
ability to discover and cluster image areas and sub-regions
in an unsupervised manner is the subject of future work.
In addition, including depth information could improve the

quality of the extracted rules. Moreover, it is worth balancing
the conditional class samples by automatically picking distinct
and the most representative samples of that class distribution
to avoid long-tail class distributions [9].
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