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Abstract—In Industry 4.0, achieving semantic interoperability
is a significant problem due to the complexities of current
automation systems and the numerous standards involved. The
study explores how Artificial Intelligence (AI) and semantic
interoperability connect within the Internet of Things (IoT)
framework to overcome barriers to technology adoption. The
main goal is to analyze how AI’s adaptive and predictive abil-
ities might transform semantic interoperability by studying Al-
driven methodologies to provide a flexible and efficient solution.
The main objective of the paper is to leverage Named Entity
Recognition (NER) AI models to streamline the identification of
entities within the Internet of Things (IoT) for achieving semantic
interoperability. It tests a Natural Language Processing (NLP)
translator on data representations not seen during training,
and the outcome highlights the efficiency of NLP in correctly
understanding and processing these representations.

Index Terms—Internet of Things, Semantic interoperability,
Natural Language Processing, Cyber Physical Systems, Artificial
Intelligence

I. INTRODUCTION

The IoT ecosystem is growing rapidly and includes devices
ranging from household appliances to industrial sensors [1] .
As of 2023, the number of connected IoT devices worldwide
has reached billions, which is expected to grow exponentially.
This growth, while promising, also creates complexities and
challenges in maintaining interoperability between disparate
systems [2].

Interoperability plays a pivotal role in ensuring seamless
integration and communication between diverse devices and
platforms. Interoperability is achieved generally at five distinct
levels:

1) Protocol-level standardisation: This standardisation
refers to the process of establishing uniform technical
standards or protocols for data exchange between sys-
tems. It ensures that different systems can communicate
with each other at a basic level. An example of protocol-
level standardization is the Internet Protocol Suite, com-
monly known as TCP/IP (Transmission Control Proto-
col/Internet Protocol).

2) Platform Interoperability: This level of interoperabil-
ity ensures that different software components can work
in conjunction within a unified framework. Container-
ization is one of the key methods to achieve this, as
it allows for the encapsulation of software in a way

that is portable and consistent across different computing
environments.

3) Syntactic Interoperability: Which focuses on achiev-
ing a standard structure or format for data exchange
to avoid vendor lock-in scenarios. By standardizing
the way in which data is formatted and exchanged,
organizations can ensure that their systems are not
overly dependent on a single vendor’s technology, thus
promoting flexibility and choice in their tech stack. An
illustrative example of this approach in action is the
use of Zigbee2MQTT middleware [3]. Zigbee2MQTT
acts as a bridge between Zigbee devices and a MQTT
server, translating Zigbee communication into a standard
MQTT format.

4) Semantic Interoperability: Beyond syntactic consis-
tency, understanding the underlying meaning or context
of each data packet becomes crucial at the edge node.
This level is concerned with ensuring that the semantics
of exchanged information are understood by both the
sender and the receiver.

5) Organizational interoperability: Organizational inter-
operability is the exchange of important data between
multiple organizations, regardless of their geographical
locations, infrastructure, and information systems [4].

The emergence and advancement of Artificial Intelligence
(AD has introduced promising pathways to address interop-
erability challenges. Al’s ability to understand, process, and
respond to natural language, patterns, and contexts makes it
uniquely positioned to bridge the semantic gaps that often
impede interoperability within IoT [5]. This paper addresses
the challenges of technological adoption in Industry 4.0 by
exploring Al-driven techniques that provide a flexible and ef-
ficient solution to achieve semantic interoperability in modern
automation systems with diverse standards. It tackles semantic
interoperability and translation beyond just exchanging data.
The objective is to ensure the data is meaningful and usable
across different systems. This involves translating information
models and standards that define the semantics of data and
services so they can be correctly interpreted by various indus-
try sectors, products, vendors, etc., even if these entities use
different representational systems.



A. Motivation

Expanding on Nilsson’s prior work on interoperability with
the Machine-to-Machine (M2M) translator [6], we were mo-
tivated to advance our research by creating a Named Entity
Recognition (NER) model. The NER model is designed to
recognize and retrieve items from the extensive data within the
IoT communication ecosystem. We aim to leverage NER tech-
nology to enhance data comprehension and facilitate improved
translation and communication among interconnected devices
and systems. This motivation stems from the understanding
that precise entity extraction is pivotal for enabling seamless
and meaningful translations within the complex network that
converts data to a unified format at the gateway or the edge,
ultimately enhancing interoperability and functionality within
the Internet of Things (IoT) environment.

B. Contribution

In the context of managing multiple interconnected systems
(A, B, C, etc.), a significant challenge arises in efficiently
collecting and storing entities extracted from various data
sources. The problem involves developing a robust data man-
agement solution for the semantic extraction, organization, and
storage of entities into a unified storage. This article discusses
our work in connecting Natural Language Entity Recognition
(NER) with the Internet of Things (IoT) to improve semantic
interoperability in the IoT environment. We are developing
a NER middleware translator that can function with many
IoT devices and their many data formats, including JSON,
XML, and YAML. This translator is trained on data from
different real sensing devices with unique data representations.
It is tested on diverse datasets with different formats and
structures. Central to our solution is a generic data processing
and preparation middleware. The middleware is intended to
clean and standardize incoming data, regardless of its initial
format or structure, to provide a uniform and consistent input
for subsequent processing. After completing the first data
preparation phase, we implemented an advanced (NER) model.
This model aims to precisely identify and categorize entities in
the data (temperature, humidity, GPS location, pressure, etc)
and efficiently convert them into a unified data structure.

The organization of this paper is as follows: Section II
provides a comprehensive overview of Al and semantic in-
teroperability. Section III presents some of the related work
on semantic interoperability. Sections IV and V presents the
detailed contributions of this paper and the implementation
methodology of the proposed technique respectively. Section
VI presents the experimental results, and finally, Section VII
concludes the paper.

II. BACKGROUND

Industry 4.0 represents the fourth industrial revolution,
characterized by the integration of digital technologies, au-
tomation, and data exchange in manufacturing environments.
Semantic interoperability is a cornerstone of Industry 4.0, en-
abling seamless communication between various components
such as machines, sensors, and human operators.

Several solutions have been developed to address semantic
interoperability challenges in Industry 4.0, including ontol-
ogy, standardization initiatives, middleware solutions, seman-
tic web, and machine learning.

1) Ontology-based approaches: Utilizing ontologies to de-
fine common vocabularies and relationships, enabling ma-
chines and systems to understand and interpret data consis-
tently. For example, check the work of Kelly et al. [7].

2) Standardization initiatives: Adopting industry standards
and protocols to ensure data is exchanged in a universally
understood format. For example, check this work for refer-
ence [8].

3) Middleware solutions: Implement middleware layers that
act as translators between different systems, ensuring data is
interpreted correctly across diverse platforms. For example,
check this work for reference [9].

4) Semantic web: Employs ontology-based approaches,
leveraging ontologies to establish shared vocabularies and
associations, facilitating uniform data comprehension and in-
terpretation across machines and systems. Thus achieving
seamless integration and smarter interactions across the IoT
ecosystem. For reference check [4].

5) Artificial intelligence: Artificial Intelligence (AI) has
significantly enhanced interoperability across various domains.
Al’s capabilities in machine learning, natural language pro-
cessing, and real-time analysis enable the development of in-
telligent systems that can autonomously handle inconsistencies
and changes within interconnected devices. For example, Nil-
son et al. [10] combined interoperability and M2M translation
in this work.

III. RECENT WORK ON SEMANTIC INTEROPERABILITY

Recent advancements in Neural Machine Translation
(NMT) and Semantic Interoperability have significantly con-
tributed to addressing the challenges of data heterogeneity
and ensuring seamless communication across various domains,
including the IoT and healthcare. This section synthesizes
key findings from recent literature, highlighting innovative
approaches and methodologies.

In the domain of IoT, semantic interoperability mechanisms
have been a focal point, with researchers proposing various
solutions to enhance communication and integration. Rahman
et al. [4] and Santo et al. [11] both highlight the need for
semantic models and interoperability solutions in IoT, with
the latter specifically discussing the integration of NMT in IoT
devices. Lakka et al. [12] and Venceslau et al. [13] propose
semantic interoperability mechanisms and review the state-of-
the-art in this area, while Pliatsios et al. [14] introduces the
concept of Semantic Social Network of Things (SSNT) to sup-
port open, interoperable IoT environments. Balakrishna et al.
[15] and Novo et al. [16] further explore semantic approaches
for IoT data integration and the extension of the Web of Things
architecture to enhance semantic interoperability. Lastly, Gui
et al. [17] presents a data-driven natural language interface for
Industrial IoT use cases, which could potentially benefit from
NMT advancements.
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Fig. 1: The proposed framework for semantic interoperability.

Parallelly, the field of NMT has seen remarkable progress
with the integration of deep learning models and semantic
knowledge. Tian et al. [18] and Sharma et al. [19] both
highlight the potential of deep learning models in NMT, with
[18] specifically focusing on the use of ontologies to enhance
translation speed and quality. Nguyen et al. [20] and Rapp
et al. [21] explore the integration of semantic information
into NMT models, with [20] demonstrating the effectiveness
of abstract meaning representation (AMR) semantic graphs
and [21] using semantic role labeling (SRL) to improve
translation performance. Sulem et al. [22] and Moussallem
et al. [23] propose methods for enhancing NMT through
semantic structural decomposition and knowledge graph aug-
mentation, respectively. Finally, Yin et al. [24] and Li et al.
[25] address the issue of compositional generalization in NMT,
with [24] introducing categorization to source contextualized
representations and [25] proposing a neuron interaction-based
representation composition approach. These studies collec-
tively underscore the potential of deep learning and semantic
knowledge integration in advancing NMT.

Despite these advancements, several limitations and chal-
lenges persist. Key among them is the need for more robust
models that can handle the vast diversity of IoT devices
and data formats. Achieving high levels of semantic inter-
operability requires models that can adapt to new, unseen
data structures and languages. Additionally, the integration of
semantic information into NMT models remains a complex

task, necessitating further research to optimize these processes
for real-world applications.

IV. PROPOSED APPROACH

We define the Neural Machine Translation (NML) interoper-
ability problem in terms of Named Entity Recognition (NER),
which identifies readings from each device. For instance,
consider Device A outputting in JSON format, Device B in
XML, and Device C in YAML, among others. The goal is
to convert these outputs into a unified format. Generally, the
translated messages from Devices A, B, and C may not be
semantically and structurally identical to the original messages
communicated. However, we can enhance the translator to
recognize entities and transform them into a unified format. As
illustrated in Figure 1, Devices A, B, and C, each with different
output formats, send their data to an NLP middleware. The
middleware then detects entities and generates a standardized
format, which is then saved on the edge/cloud.

V. IMPLEMENTATION METHODOLOGY

This section describes the methodology used in this paper
and covers model selection, dataset preprocessing, and label-
ing.

A. Model Used:

In the context of Natural Language Processing (NLP),
spaCy [26], an advanced open-source library, offers a particu-
larly powerful tool for Named Entity Recognition (NER). NER



in spaCy is designed to identify and categorize key information
in text, such as names of people, places, organizations, as
well as expressions of times, quantities, monetary values,
percentages, and more. This functionality is critical in a wide
range of applications, from information extraction to content
classification and entity linking.

We used this model configuration which based on bert-
base-uncased” and is designed for token classification tasks,
utilizing “BertForTokenClassification.” It consists of 12 trans-
former layers with hidden size 768 and 12 attention heads.
The model employs GELU activation and 0.1 dropout proba-
bilities for both attention and hidden layers. Absolute position
embeddings are used, with a maximum position embedding
of 512 and a vocabulary size of 30522. The configuration
supports token classification labels and enables caching during
computation.

B. Dataset and pre-processing

In this work the data was publicly available data on
Data.Gov '. We chose some files with Iot data with several
formats json, xml which are automated sensors readings with
multiple formats, the data is under the name (The Array of
Things). (AoT) is an experimental urban measurement system
comprising programmable, modular “nodes” with sensors and
computing capability so that they can analyze data internally,
for instance counting the number of vehicles at an intersection
(and then deleting the image data rather than sending it to
a data center). AoT nodes are installed in Chicago and a
growing number of partner cities to collect real-time data on
the city’s environment, infrastructure, and activity for research
and public use. The concept of AoT is analogous to a “fitness
tracker” for the city, measuring factors that impact livability in
the urban environment, such as climate, air quality, and noise.

Pre-processing serves as a crucial preliminary step in the
development of NER models. This pivotal preprocessing stage
is designed to refine and optimize text data, ensuring its
suitability for subsequent NER tasks. We implemented various
preprocessing techniques, including the removal of unneces-
sary characters, tokenization to segment text into meaningful
units, normalization of decapitalization, and potentially apply-
ing advanced linguistic processes like lemmatization or stem-
ming. Additionally, we tailored specific preprocessing steps to
address the nuances inherent in NER tasks, such as managing
entity mentions, resolving coreferences, or standardizing entity
representations. The output is illustrated in Figure 2.

C. Data labeling

It involves annotating words or phrases in a corpus to indi-
cate their respective entity types such as device Id, locations,
organizations, dates, and more. This process requires human
interference to assign appropriate labels to each entity instance,
ensuring consistency and accuracy throughout the dataset.
Effective data labeling not only enhances the performance
of NER models but also contributes to the development of

Thttps://catalog.data.gov/dataset/?tags=iot

robust natural language processing applications across vari-
ous domains. Entity annotation involves manually or semi-
automatically labeling the text data with named entity tags,
indicating the boundaries and types of entities present. for
example ( 17, 32, 'TEMPERATURE’) which indicated the
start and the end of the temperature entity in the input text.
Annotated data serves as the training set for supervised NER
models, guiding them to recognize named entities accurately
during training and inference.

D. Data preparation

In our data preparation process, we begin with text cleaning
as the first step. Text cleaning serves as the initial stage
of preprocessing where we aim to remove noise and ir-
relevant information from our text data. Our common text
cleaning techniques encompass lowercasing, removing special
characters, and eliminating stopwords. Lowercasing ensures
consistency in casing, while removing special characters and
stopwords aids in reducing noise within the text.

Moving on to the next step, we engage in Tokenization.
Tokenization involves the segmentation of text into individual
words or tokens. Here, spaCy offers efficient tokenization
methods, encompassing word and sentence tokenization. Our
tokenizer adeptly manages complex tokenization scenarios
such as hyphenated words and contractions, thus contributing
to accurate Named Entity Recognition (NER) outcomes.

Proceeding to Step 3, we delve into Part-of-Speech (POS)
Tagging. This stage leverages POS tagging capabilities to
furnish contextual information. POS tagging proves crucial
for comprehending context within our data. For instance,
in the sentence “The temperature outside is 29 degrees,’
POS tagging aids in capturing the relationship between the
words “temperature” and 729 degrees” as they are contextually
linked. Moreover, POS tagging may encounter influences from
factors like word ambiguity, context dependency, and syntactic
variations.

Our final step encompasses linguistic annotations aimed at
normalizing words, sentence segmentation for dividing text
into sentences, and word vectors for numerically representing
word meanings. These annotations encompass tokenization for
segmenting text into individual units, part-of-speech tagging
for labeling each token’s grammatical category, dependency
parsing to uncover syntactic relationships between words,
and named entity recognition for identifying entities such as
location and temperature.

VI. RESULTS AND ANALYSIS

This work uses the Keras library and the Tensorflow back-
end to train the Custom spaCy model. We used an NVIDIA
Tesla Titan X GPU to train and assess the models on the
dataset.

For training we took 70% of the data, 15% for testing
and 15% for evaluation, we utilized LOSS_TOK2VEC which
pertains to the loss function associated with the token-to-
vector (TOK2VEC) component of the model, and LOSS NER,
which is the loss function associated with the named entity



Loss Tok2Vec | Loss NER | Fl score | ENT_P | ENT_R | Accuracy
With Data Preparation | Trning__| 000 0.00 100,00 | 100.00 | 100.00 | 1.00
Validation | 7.85 876 100.00 | 100.00 | 100.00 | L.00
Benchmark | 21.86 3645 9435 96.15 | 9259 | 0.96
: | Traming | 9.78 36.77 99.87 9982 [ 99.63 | 099
Without Data Preparation |~z i —1—g7 37 17079 92.56 a2 [ 9271 [ 092
Benchmark | 214.90 612.00 0.73 064 07 072

TABLE I: Results of training, evaluation, and benchmarking of the model using prepared and unprepared data.

latitude :  41.838713 LATITUDE

longitude : -87.665778 LONGITUDE

id: 6 DEVICE_ID

node_sensor_number: 03d DEVICE_ID

north_south_street : _

Fig. 2: Training data sample with annotations.

address :

location_type : Urban Center -AQ

category : Urban Air Quality Monitoring

long: -73.9855 LONGITUDE

lat: 40.7580 LATITUDE

node id : -

Fig. 3: Benchmark data sample with different keys and values
unseen in training.

recognition (NER) component of the model. The F1 score, the
harmonic mean of precision and recall, serving as a measure
of the model’s accuracy in identifying named entities. The
precision score, measuring the ratio of true positive predictions
to the total number of positive predictions made by the
model. The recall score, measuring the ratio of true positive
predictions to the total number of true entities present in the

data. Lastly, The score which is the accuracy of the model.

The table 1 presented in this analysis provides a compre-
hensive examination of a model’s performance across various
phases, with and without data preparation, in the context
of named entity recognition (NER). In the scenario with
data preparation, the model exhibited exceptional performance
during the training phase, achieving a perfect fit to the data
with Tok2Vec loss and NER loss registering at 0.00. Further-
more, it attained perfect scores for F1, entity precision, recall,
and overall accuracy, indicating robust performance across
different evaluation metrics. This consistency was maintained
during the validation phase, reaffirming the model’s ability to
generalize well to unseen data. Even in the benchmark phase,
where randomly generated data was introduced, the model
showcased commendable performance with high F1 scores,
precision, recall, and accuracy, underscoring its capacity for
effective generalization. Conversely, in the scenario without
data preparation, the model’s performance was notably lower
across all phases, with higher losses and slightly diminished
scores for evaluation metrics. Particularly, in the benchmark
phase, the model exhibited significant degradation in perfor-
mance, highlighting the critical role of data preparation in
enhancing the model’s ability to generalize to unseen datasets.
This analysis underscores the importance of meticulous data
preparation in NER tasks, as it substantially influences the
model’s overall performance and generalization capabilities.
Additionally, it’s worth noting that the model’s accuracy
decreased when focusing too much on the structural aspects
and the opening and closing of each entity, indicating the need
for further refinement in its approach.

Analyzing Figure 3 in detail, it becomes apparent that
despite the JSON file containing a variety of keys and values,
the model consistently identifies the entities it was trained to
detect. This resilience is particularly notable when the order of
the data is shuffled. The model’s ability to maintain accuracy
across different permutations underscores its robustness and
adaptability to diverse input structures. This suggests a high
degree of generalization in its learning, enabling it to effec-
tively process varied data formats and arrangements without
compromising performance.

VII. CONCLUSION

In conclusion, our exploratory study shows that Al improves
semantic interoperability in the IoT ecosystem. The technique
relies on Named Entity Recognition (NER) models to detect
and classify textual data from heterogeneous IoT devices with
different data representations. The framework uses generic



data processing middleware to normalize heterogeneous IoT
data. This middleware integrates data into a uniform NLP
training pipeline for tokenization, stopword removal, sentence
splitting, POS tagging, and spaCy-powered NER. This careful
approach ensures that the NLP Translator accurately translates
refined and organized data. The translated entities are stored
in NoSQL storage like MongoDB, demonstrating the system’s
scalability and data retrieval. Our NER model, trained with
excellent tokenization and entity extraction precision, scored
well in key performance criteria. Despite the complexity
of validation across varied datasets, the model has shown
precision and adaptation, suggesting its potential for wider IoT
use. The architecture supports current IoT infrastructures and
Industry 4.0 principles, demonstrating how Al can transform
semantic interoperability and a smarter, more connected envi-
ronment.
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