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Abstract—Energy efficiency is crucial in modern smart build-
ing management. Effective energy management not only reduces
operational costs but also promotes environmental sustainability
by reducing carbon emissions. Additionally, optimizing energy
usage improves occupant comfort and productivity, contributing
to a healthier and more sustainable built environment. Recently
researchers have focused on cutting-edge technologies to develop
efficient models that predict energy consumption and ensure a
trade-off between occupant, provider and environment needs.
Among such technologies, Internet of Things (IoT), edge/fog
computing, and federated Learning (FL) have significantly have
proven their efficiency in this domains. In this paper, we provide
a performance analysis of such technologies for energy consump-
tion prediction in smart buildings. According to a set of defined
criteria, we select some recent proposed techniques and we study
their performance through various assessment metrics. Our idea
behind such comparison is to identify promising techniques while
using Friedman test and furthermore highlight further open
research problems in the domain. Real-world data has been
used to measure and evaluate each approach providing valuable
insights for practical implementation and deployment in smart
building environments.

Index Terms—Smart Buildings, Energy Management, Predic-
tive Models, Cutting-Edge Technologies, Friedman Test.

I. INTRODUCTION

RECENTLY, energy efficiency has gained a significant
attention from research and market communities, and it

represents a key concern for companies, institutions, and gov-
ernments. With the increasing number of population, the eco-
nomic viability and the concerns mounted over environmental
sustainability, the need to optimize energy usage has become
essential nowadays [1]. One of the big contributors of energy
consumption is buildings with their various purposes, e.g.
residential, commercial, industrial, governmental, etc. Energy
consumption in such buildings can be significantly influenced
by external conditions, such as weather changes and meteo-
rological factors, and internal conditions, such as the number
of occupants and their behaviors. Such conditions can highly
impact the use of heating and cooling systems, appliances
and machines, and overall energy demand in buildings. Thus,
understanding and analyzing these conditions influences are
critical for developing effective energy management strategies
and optimizing energy consumption in such buildings.

Cutting-edge technologies have emerged as an efficient
solution for managing energy consumption in buildings. On
one hand, the Internet of Things (IoT) is used as a pivotal
technology that offers unprecedented opportunities to revolu-
tionize energy management practices. By enabling seamless
connectivity and data exchange among devices, IoT facilitates
real-time monitoring and control, leading to more efficient
energy consumption. On the other hand, the integration of
Edge/Fog Computing (EFC) and Federated Learning (FL)
will further improve the efficiency of energy optimization
solutions. Hence, EFC decentralizes computing resources,
enabling quicker decision-making and response to data gen-
erated by IoT devices, while FL allows collaborative and
privacy-preserving across decentralized devices, leading to
personalized and optimized strategies. The combination of
such technologies in a one system allow the optimization of
energy consumption in smart buildings.

Aiming to highlight the importance of cutting-edge tech-
nologies, particularly IoT, FEC and FL, in managing and pre-
dicting energy consumption, this paper presents a performance
analysis study of the recent advances of such technologies in
smart buildings. Our objective is two-fold: first, we perform an
analysis and experimental comparative study of some selected
research works according to a defined set of assessment met-
rics. The selection of existing techniques was based on their
novelty, contributions, and publication in reputable journals.
Considering that no technique is performing well for all the
metrics, we then employ a statistical test, i.e. Friedman test,
to determine promising techniques that stand out as the most
efficient solution for addressing the multifaceted challenges in
energy management systems. The simulation and experimental
study was done using real-world data to measure and evaluate
each technique while providing valuable insights for practical
implementation and deployment in a smart building.

The remaining sections of the paper are structured as
follows. Section II presents the comparative study of litera-
ture review techniques. Section III describes the performance
metrics used in the comparative study. In section IV, we
describe the simulations performed in this study along with
the used dataset and the discussion of the results. In section
V, we provide opportunities and future directions for ongoing
researches. The paper is concluded in section VI.
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II. ENERGY CONSUMPTION PREDICTION IN SMART
BUILDINGS: A COMPARATIVE STUDY

Researchers have largely integrated cutting-edge technolo-
gies in designing energy consumption models dedicated to
smart buildings [2–9]. In this section, we particularly focus on
some promising techniques proposed recently in the literature
and demonstrated efficient performance compared to other
existing ones.

A. Energy Management in Smart Homes

The authors in [10] introduced an efficient approach to
predict the energy consumption in smart home environments
based on resident activities and behaviors. The proposed
technique is a Markov-chain-based probabilistic model where
the generated predictions are utilized by a developed comfort-
aware energy-saving mechanism named as prediction- and
feedback-based proactive energy conservation (PF-PEC). The
aim of PF-PEC is to reduce the total energy consumption
while maintaining standard human comfort levels. In addition,
the authors implemented a fog-based Internet of Things (IoT)
architecture to seamlessly integrate PF-PEC into real-world
scenarios.

B. SHEMS for Residential Demand-Side Management

The authors in [11] presented a Smart Home Energy
Management System (SHEMS) based on Tridium’s Niagara
Framework tailored for residential demand-side management.
Basically, SHEMS focuses on optimizing energy usage and
improving management practices within smart homes. It in-
volves a two-stage Non-Intrusive Appliance Load Monitoring
(NIALM) system: the first stage uses fog-cloud comput-
ing to analyze aggregated current and voltage measurements
from a minimal set of plug-panel sensors for efficient load
management of relevant electrical appliances. The second
stage integrates Artificial Neural Networks (ANN) for more
comprehensive data analysis. Indeed, such fog-cloud analytics
play a crucial role in processing and analyzing data, ensuring
the system scalability and responsiveness. Data are collected
from electrical appliances that were targeted, learned, and
recognized through AI including a laptop, hair dryer, steamer,
electric fan, and vacuum cleaner.

C. Distributed FL-based Load Forecasting Mechanism

In [12] the authors study a federated learning based mech-
anism for load forecasting using smart meter data. This
mechanism allows the training of a Long Short-Term Memory
(LSTM) model using data from all participating smart meters,
without necessitating the sharing of local data. Furthermore,
the authors examine two alternative federated learning strate-
gies: the first one is FedSGD, which conducts a single step
of gradient descent on the client before consolidating updates
on the server. The second one is FedAVG, which executes
multiple steps before consolidation. Given the diverse nature of
residential consumers, training a single model poses challenges
due to variations in load profiles among consumers. The
performance of both FedAVG and FedSGD models is tested

on real-world data provided by London Hydro through Green
Button Connect My Data (CDM).

D. Integrating FL and Clustering for Electrical Load Fore-
casting

The work presented in [13] introduced a hybrid approach
for predicting individual household and aggregate electrical
demands, with a focus on preserving data privacy through fed-
erated learning and edge computing. The proposed approach is
based on: 1) FedAvg for data aggregation, 2) LSTM for time-
series analysis and forecasting, and 3) a clustering method
with hyperparameter tuning where clients are grouped based
on their data similarities. Then, and algorithm is integrated
into the federated learning stage in order to detect and remove
consumers deterring the global model. Consequently, the train-
ing loss of clients in each round is assessed and compared
to previous rounds to check whether it is getting smaller or
not; the clients whose loss is 60% worse compared to 20
rounds ago are removed from the federated learning process.
Such operation not only guarantees precise predictions but
also tackles the crucial issue of data privacy in the realm of
electrical load forecasting.

E. Residential Load Forecasting Using Modified FL

The authors in [14] aimed to achieve day-ahead forecasting
for residential load by employing a customized federated
learning algorithm, with a particular emphasis on customer
demand management. The proposed approach entails training
local models for clients within the federated learning frame-
work using LSTM architecture. In addition, the approach al-
lows the determination of each client local model performance
for acceptance in the global model and the utilization of the
Adam optimizer. Data collected from 3, 226 households of 40
buildings in Seoul, South Korea have been used in the training
and validation of LSTM model.

F. Data Silos Problem using FL

An efficient approach for tackling data silos in building
energy consumption prediction is presented in [15]. By har-
nessing federated learning and employing an Artificial Neural
Network (ANN) model, the proposed approach enables col-
laborative model training across decentralized datasets. The
incorporation of an ANN model highlights its capability to
capture intricate patterns, enhancing the accuracy of short-
term energy consumption predictions. In the training stage,
operational data from 13 similar office buildings are used and
are located in the cold climate zone with similar gross floor
areas.

G. Comparative Study: A Summary

Table I summarizes the compared techniques according to
some factors including the publication year, the approaches
of cutting-edge technologies used in the architecture, and the
used models and methods.
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Table I
COMPARATIVE STUDY: A SUMMARY.

Ref. Year Cutting-Edge Technologies ModelsIoT FEC FL
[10] 2023 X X Markov-chain, PF-PEC
[11] 2021 X X SHEMS, NIALM, ANN
[12] 2022 X X LSTM, FedSGD, FedAVG
[13] 2022 X X FedAvg, LSTM, Clustering
[14] 2023 X X FedAAVG, LSTM
[15] 2022 X X ANN, Aggregation

III. PERFORMANCE METRICS DESCRIPTION

In order to evaluate the efficiency of the cutting-edge based
techniques described in the previous section, we employ 7
performance metrics that are widely used in the literature to
assess the energy consumption in smart buildings.

1) Mean Squared Error (MSE): It is a statistical measure
used to quantify the average squared difference between the
predicted and actual energy consumption values, measured in
kilowatt-hours (kWh). It serves as a measure of the accuracy
of prediction models, while lower MSE values indicating
better performance in estimating energy consumption. MSE
is calculated as follows:

MSE =
1

n

n∑
i=1

(Yi − Ŷi)
2 (1)

Where:
• n indicates the number of observations.
• Yi indicates the actual value for observation i
• Ŷi indicates the predicted value for observation i

2) Root Mean Squared Error (RMSE): It is a metric used
to quantify the typical magnitude of errors between predicted
and actual energy consumption values. RMSE is calculated
similarly to MSE, but it takes the square root of the average
squared differences between the predicted and actual values.
Lower RMSE values indicate better performance in estimating
energy consumption. RMSE is often expressed in units of
kWh, similar to MSE. RMSE can be calculated as follows:

RMSE =

√√√√ 1

n

n∑
i=1

(Yi − Ŷi)2 (2)

Where n, Yi, and Ŷi are similarly defined to those in Eq.
(1).

3) Mean Absolute Error (MAE): It is a metric used to
measure the average absolute difference between the predicted
and actual energy consumption values with units typically
expressed in kWh. MAE provides a straightforward measure
of prediction accuracy, calculated by averaging the absolute
differences between predicted and actual values. Like MSE
and RMSE, lower MAE values indicate better performance in
estimating energy consumption. MAE calculation is shown as
follows:

MAE =
1

n

n∑
i=1

|Yi − Ŷi| (3)

4) R-squared (R2): It is a statistical metric used to evaluate
the goodness-of-fit of a predictive model. It indicates the
proportion of the variance in the energy consumption data
that is explained by the independent variables included in
the model. R2 values range from 0 to 1, with higher values
indicating a better fit of the model to the data. R2 is calculated
according to the following equation:

R2 = 1−
∑n

i=1(Yi − Ŷi)
2∑n

i=1(Yi − Ȳ )2
(4)

Where Ȳ is the mean of the actual values Yi.

5) Accuracy: It refers to the closeness of predicted energy
consumption values to the actual energy consumption values,
typically measured as a percentage (%). Accuracy is a measure
of how well a predictive model performs in estimating energy
usage patterns. Higher accuracy indicates that the model
predictions closely align with the actual energy consumption
data, while lower accuracy suggests discrepancies between
predicted and observed values. The following equation show
the calculation of accuracy metric:

Accuracy =
NumberofCorrectPredictions

TotalNumberofPredictions
(5)

6) Average Latency: It refers to the average amount of time
taken for a predictive model to generate predictions of energy
consumption data, typically measured in seconds (s). Average
latency measures the delay between the input of data to the
model and the output of predictions. Lower latency values
indicate quicker prediction times, allowing for faster responses
to changes in energy consumption patterns.

7) Execution Time: It refers to the duration for a program
to complete data processing, cleaning, model training, and
prediction generation, typically measured in seconds (s). It
covers loading, preprocessing, cleaning, model training, and
prediction for energy consumption. Lower times mean faster
processing, enabling quicker insights and responses to energy
usage changes, vital for efficient energy management systems.

IV. PERFORMANCE EVALUATION

In our simulation, we used a HPE ProLiant ML150 Gen9
Server with a processor of 64-bit 6-core Intel Xeon CPU
running at 1.7 GHz. In addition, the used RAM is 64 GB
and the storage capacity is 240 GB SSD with 8 TB HDD.
The server runs Windows Server 2012 R2. We implemented
all techniques using Python.

A. Dataset Description

The Pecan Street dataset was used for simulations. It is a
well-known benchmark dataset in the field of energy consump-
tion prediction in smart buildings. This dataset is widely used
for evaluating and benchmarking total energy consumption.
It includes minute-interval appliance-level customer electricity
use from nearly 1, 000 houses and apartments in Pecan Street’s
multi-state residential electricity use research, as well as
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ERCOT market operations. For prediction purposes, we took 2
years worth of continuous electricity usage data of 12 houses
comprising 17, 428 raw data from the Pecan Street dataset.
Using one house of electrical usage was very low to predict
so we chose a bunch of houses usage and used a summation of
it as the electricity usage. The dataset contains 10 features for
each record, which provide information about weather data
from weather underground and energy usage data. Table II
shows the feature description along with their measurement
units.

Table II
DATASET DESCRIPTION.

Feature Unit
DateTime timestamp

TotalUsage Kwh
Month 1-12

Temperature Fahrenheit
Humidity %

Hour of the day 0-23
Minute of the day 0-3599

Day of week 0-6
Weekend/Weekday 0/1

Holiday 0/1

B. Result Discussion
Table III shows the performance of each technique in terms

of various tested metrics. The table reveals that all techniques
show promising results for real-time monitoring of energy
consumption in smart buildings and accurately predicting the
occupant behavior and need. This demonstrates the powerful
of cutting-edge technologies integrated in efficiently managing
the energy in smart buildings. Furthermore, the following
observations are eminent:

• There is no dominating technique that performs optimally
according to all performance metrics.

• Edge and fog based techniques perform better in terms
of computation compared to those based on federated
learning (see results of average latency and execution
time metrics).

• Techniques use neural network models, particularly
LSTM and ANN, in their architecture give better predic-
tion accuracy compared to those without neural networks.

Table III
RESULTS COMPARISON.

Approaches/
Metrics [10] [11] [12] [13] [14] [15]

MSE 92.8 23.27 16.72 19.99 42.53 16.77
RMSE 9.63 4.82 4.08 4.47 6.52 4.09
MAE 7.66 3.67 3.03 3.27 4.84 3.06
R2 0.57 0.89 0.91 0.91 0.8 0.92

Accuracy 57.12 89.28 92.3 94.82 80.35 92.25
Average latency 0.11 0.54 0.99 0.92 0.88 0.68
Execution time 0.26 41.9 224.2 856.03 117.12 145.72

C. Best Approach Selection
The results of Table III demonstrated that the selection

of the best approach should be highly dependent on the

performance metrics. For instance, the technique proposed
in [13] is considered as the best powerful one in terms of
accuracy, but not for other metrics. To determine the best
performant technique according to all metrics, a statistical test
should be used. We focused on the Friedman test that is a non-
parametric statistical method designed for comparing multiple
related groups. Friedman test is an extension of the Wilcoxon
signed-rank test and suitable for scenarios in which data may
not adhere to a normal distribution. Additionally, such test is
valuable in scenarios where the dependent variable is measured
on an ordinal scale, and observations are paired or matched
across all conditions or levels of the independent variable.

Typically, the procedure of applying the Friedman test
involves ranking the data for each group independently based
on the squared differences between the ranks of correspond-
ing observations across different groups. The null hypothesis
assumes no difference among the groups, while the alterna-
tive hypothesis posits a significant difference. If the p-value
associated with the Friedman statistic is below the chosen
significance level, the null hypothesis is rejected, indicating a
significant difference among the groups. Then, post-hoc tests,
such as bilateral test, can be employed to pinpoint specific
group differences when the overall test yields a significant
result. In our case, e.g. energy consumption in smart buildings,
Friedman test is applied according to the following steps:

• We consider Table III as a matrix M[7][6], where 7 indi-
cates the number of performance metrics and 6 represents
the number of compared techniques. Thus, each column
depicts the performance of one technique according to
all metrics and each row depicts the performance of all
techniques given one metric.

• For each metric m, we rank each technique t from 1 to
6 based on its performance.

• We calculate the sum of ranks Rt for each technique
according to all the metrics: Rt =

∑7
m=1 tm.

• We calculate the Friedman distribution:

F =
12

M × T (T + 1)

T∑
t=1

R2
t − 3×M(T + 1) (6)

where M indicates the total number of metrics and T is
the total number of techniques.

• We compared the computed Friedman result to the chi-
squared distribution with T − 1 degrees of freedom to
obtain the p-value. In this study, we fixed p-value to 0.005
to minimize the risk level of rejecting the hypothesis.

• We finally apply Nemenyi test to perform pairwise com-
parison between the techniques. To do so, we calculated
the average rank for each technique which serves as an
aggregate measure of performance across all evaluated
metrics. After determining the highest average rank, we
identify the technique that, on average, performed the best
across all metrics considered. In our analysis, the results
show that he technique proposed in [12] acts as the best
one existing in this domain.

V. OPPORTUNITIES AND FUTURE DIRECTIONS

Indeed, the literature review demonstrated huge researcher
efforts to integrate cutting-edge technologies into energy man-
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agement in smart buildings. However, the effectiveness of such
integration is significantly impacted by internal and external
building factors such as the number of residents, the weather
conditions, etc. Such dynamic factors pose crucial challenges
for the traditional energy management systems whether in the
infrastructure or data analysis levels. Hence, there is a growing
emphasis on improving the proposed solutions or developing
new efficient ones that are adaptable to such factors. In light
of this study, we provide opportunities and directions for
ongoing researches to address some key considerations in the
design and implementation of energy management in smart
buildings. We also highlight strategies and technologies to
enhance performance and resilience of the existing solutions.

A. Scalability

• Description: it refers to the ability of the smart build-
ing system to accommodate a growing number of edge
devices, fog nodes, and data sources while maintaining
performance and efficiency.

• Challenges: as the number of devices and data sources
increases in smart building environments, scalability be-
comes a significant concern. Scaling machine/deep learn-
ing algorithms to handle a large volume of data dis-
tributed across edge devices and fog nodes without com-
promising performance and efficiency poses challenges.

• Considerations: designing scalable architectures and al-
gorithms that can efficiently distribute computational
tasks, manage communication overhead, and ensure syn-
chronization among distributed components is crucial
for energy management in smart buildings. Additionally,
implementing mechanisms for dynamic resource allo-
cation and load balancing can help address scalability
challenges.

B. Security and Privacy

• Description: both keys arise due to the decentralized
nature of edge/fog computing and the sensitive nature
of data collected from smart building environments.

• Challenges: protecting the privacy of data and ensuring
secure communication between edge devices, fog nodes,
and central servers is paramount. Edge devices may have
limited security capabilities, making them vulnerable to
cyber threats and attacks. Furthermore, federated learning
involves sharing model updates and aggregated informa-
tion across distributed nodes, raising concerns about data
leakage and unauthorized access.

• Considerations: implementing robust encryption tech-
niques, authentication mechanisms, and access control
policies to safeguard data privacy and ensure secure
communication is essential. Additionally, incorporating
privacy-preserving techniques such as differential privacy
and secure multi-party computation can mitigate privacy
risks associated with federated learning.

C. Performance Management

• Description: it involves the optimization of system per-
formance in terms of computational efficiency, latency,

and throughput while minimizing energy consumption
and resource utilization.

• Challenges: ensuring optimal performance of machine
learning algorithms on resource-constrained edge devices
and fog nodes is challenging. Factors such as limited
processing power, memory, and bandwidth can impact
the performance of distributed learning tasks. Moreover,
coordinating model training and aggregation processes
across heterogeneous devices introduces latency and com-
munication overhead.

• Considerations: employing lightweight machine learn-
ing models, efficient communication protocols, and task
scheduling algorithms can improve performance man-
agement in integrated edge/fog computing and federated
learning systems. Additionally, leveraging edge caching
and pre-processing techniques to reduce data transmission
and processing overhead can enhance overall system
performance.

D. Network Management

• Description: it involves overseeing the communication
infrastructure connecting various devices within the smart
building ecosystem, including edge devices, fog nodes,
and central servers.

• Challenges: managing the network architecture in smart
buildings presents challenges such as ensuring low la-
tency, high reliability, and seamless connectivity across
heterogeneous devices and communication protocols. Ad-
ditionally, accommodating the dynamic nature of smart
building environments, where devices may join or leave
the network frequently, adds complexity to network man-
agement tasks.

• Considerations: implementing robust network protocols
and architectures, such as 5G, Wi-Fi v6, and LoRaWAN,
can provide high-speed, reliable connectivity tailored to
the diverse requirements of smart building applications.
Furthermore, integrating network management solutions
with edge computing platforms can facilitate real-time
monitoring, analysis, and optimization of network traffic,
enhancing overall system reliability and responsiveness.

E. Cost Effectiveness

• Description: it involves optimizing the deployment and
operation costs associated with integrated edge/fog com-
puting and federated learning systems. This encompasses
expenses related to hardware procurement, infrastructure
setup, and ongoing operational expenditures.

• Challenges: deploying and managing edge devices, fog
nodes, and central servers incur various costs, including
hardware acquisition, infrastructure setup, and ongoing
operational expenses. Additionally, federated learning ne-
cessitates substantial computational resources and com-
munication bandwidth for model training and aggre-
gation, leading to increased energy consumption and
resource utilization.

• Considerations: adopting cost-effective hardware plat-
forms, energy-efficient algorithms, and resource provi-
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sioning strategies can help mitigate the financial implica-
tions of deploying and operating integrated systems. Fur-
thermore, exploring cloud-based solutions for offloading
computational tasks and leveraging serverless computing
models can reduce infrastructure costs and improve cost-
effectiveness.

F. Big Data Processing

• Description: it involves handling and analyzing large
volumes of data generated by edge devices and sensors
in smart building environments.

• Challenges: processing and analyzing big data in real-
time presents challenges due to the distributed nature
of edge/fog computing and the heterogeneity of data
sources. Moreover, traditional centralized data processing
approaches may not be suitable for handling the velocity,
variety, and volume of data generated in smart building
environments.

• Considerations: leveraging distributed data processing
frameworks, stream processing techniques, and edge
analytics algorithms can enable efficient handling and
analysis of big data in integrated edge/fog computing
environments. Additionally, employing data compression,
filtering, and aggregation methods at the edge can reduce
data transmission and storage overhead, facilitating real-
time analytics and decision-making.

VI. CONCLUSIONS

Predicting the energy consumption in smart buildings will
continue to emerge as a hot topic for research and market
communities. This is due to the crucial need of reducing the
operational costs and converging toward sustainable environ-
ment. Consequently, the integration of cutting-edge technolo-
gies, mainly IoT, edge/fog computing and federated learning,
into smart buildings is demonstrating as a promising solution
to overcome the challenges related to energy management in
such systems. In this paper, we studied the performance of
such technologies according to a set of defined metrics. By
identifying potential techniques from the literature review, we
implemented, tested, and identified promising techniques using
Friedman test. In our evaluation, real-world data is used while
providing valuable insights for practical implementation and
deployment in smart building environments.
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