
Software Defined Radio for Time and Frequency
applications: example of passive monitoring of

TWSTFT and other timing signals
(Invited Paper)

J.-M Friedt∗
∗FEMTO-ST Time & Frequency, Besançon, France. Email: jmfriedt@femto-st.fr

Abstract—Software Defined Radio (SDR) is a paradigm aimed
at minimizing the contribution of hardware and maximizing
the contribution of software when processing radiofrequency
signals. While the concept is mostly used in the context of
digital communication for agile systems flexible enough to
adapt to unexpected conditions, accessing the raw samples
right after the digitization of the radiofrequency wave provides
opportunities for benefiting from information on the physical
system before the signal has been processed. Not only does
this access to the physical layer provide security, e.g. GNSS
anti-spoofing and anti-jamming using null steering, but also
the opportunity to finely recover timestamps in the context
of time and frequency transfer. Free, opensource software is
readily distributed for reproduction of the experiment at the
Oscillator Instability Measurement Platform (OscIMP) Digital
repository at https://github.com/oscimp/gr-satre
for SATRE TWSTFT signal reception or
https://github.com/oscimp/gnss-sdr-1pps/ for
GNSS-controlled 1 PPS generation, and repetition of the
measurements at remote sites, a core requirement of a scientific
endeavor.

ADC
SDR

ADC
SDR

LO

PLL

LO−IF IF

hardware solution fully digital solution0−IF solution

Fig. 1. Left: the hardware implementation of a super-heterodyne radiofre-
quency receiver, strongly application dependent. Right: the ultimate SDR,
with the antenna signal sampled by the analog to digital converter (ADC)
for software processing. Middle: the practical solution, with a first frequency
transposition from radiofrequency band to baseband prior to ADC conversion.

The SDR paradigm aims at reducing hardware to a min-
imum which is mostly comprised of a (complex, real and
imaginary) frequency transposition mixer and a fast analog to
digital converter (Fig. 1), moving all processing to software.
The software provides long term stability (a digital algorithm
does not drift), reconfigurability for using the same hardware
for multiple applications, and tunability [1]. Furthermore,
software implementation provides logging and remote control.
The availability of huge non-volatile storage capacity with
large bandwidth allows for post-processing with the analysis
of as many channels as needed without constraint on computa-
tional power. However, the complex SDR framework including
efficient hardware access, high performance computing and
relying possibly on heterogeneous processing architectures
(GP-CPU, GPU, FPGA) are challenging to maintain on the

long term.

I. SDR FOR ONE-WAY RECEPTION OF TWO-WAY SATELLITE
TIME AND FREQUENCY TRANSFER (TWSTFT) SIGNALS

TWSTFT signals are broadcast by time and frequency
metrology institutes every even UTC hours to compare their
clocks and steer TAI and hence UTC. A geostationary re-
lay satellite, Telstar11N, located at -37.5◦ over the Atlantic
ocean, allows for sharing signals not only between European
stations but also with North American stations at Boulder
and Washington DC. The Ku band relay satellite uplink is
14 GHz transmitted by the 2.4 m parabola dish of the Very
Small Aperture Terminals (VSAT) located at each metrology
institute, but the 11 GHz downlink signal is readily received
with any consumer grade television satellite receiver parabola
reflector (Fig. 2) feeding a Low Now Block (LNB) including
frequency transposition by 9.75 GHz and low noise amplifier.

Fig. 2. Right: experimental setup, with a consumer grade satellite TV
reception parabola reflector and a Low Noise Block at the focal point feeding
a B210 SDR receiver. Left: recorded signal during even UTC hour (blue)
when SATRE modems from metrology institutes are broadcasting, and black
during odd UTC hours and no communication is occurring.

Hence, a SDR receiver connected to the LNB and
tuned to the 11 GHz downlink frequency offset by
9.75 GHz is able to record the signal as documented
at webtai.bipm.org/ftp/pub/tai/data/2024/ in
the time_transfer/twstft subdirectory. The header of
each exchange file published by BIPM includes the downlink

frequency, namely 10953.9500 MHz for the European link and
11497.0600 for the North American link. The SDR receiver
is hence tuned to 1204 MHz, with a bandwidth of 5 MHz
matching the Telstar11N channel width, and the complex IQ
datastream recorded to file for post-processing. A major benefit
of the SDR approach over the hardware decoding by SATRE
modem is the ability to

• record all broadcasting stations at any given time without
being limited by a finite number of receiver channels

• run as many computation steps on the records with no
limitation on computational capability of the processing
unit.

The first item impacts the passive reception capability which
requires compensating for satellite motion in space which is
not cancelled as would be in a TWSTFT processing. In order
to identify the satellite position in space, trilateration is used
considering that the broadcast station locations are known,
and time of flight differences are computed to identify the
satellite position and subtract its contribution from the one-
way time of flight measurement. However, when using SATRE
records as published by BIPM, stations only exchange two-
by-two messages and trilateration requires interpolating the
measurements to increase the number of observations during
the even hour. In the SDR approach, not such interpolation is
needed since all broadcast signals are recorded continuously.

The second item allows processing all downlink signals
sequentially without requiring dedicated computational in-
frastructure such as Graphical Processing Units (GPU) or
Field Programmable Gate Arrays (FPGA) co-processors, and
allows for prototyping time of flight estimation algorithms and
satellite positioning on the recorded data.

As was discussed at [2], publicly available information
allows for reverse engineering the SATRE pseudo-random
sequences and decode the Binary Phase Shift Keying mod-
ulated messages. The satellite position in space is computed
following the classical approach used in Global Navigation
Satellite System positioning, namely linearizing the range
equation from cti =

√
(xi − x0)2 + (yi − y0)2 + (zi − z0)2

with (x, y, z) the cartesian coordinates indexed with 0 for the
satellite and i for station i, with ti the time of flight observed
for message broadcast by station i and c = 300 m/µs the
speed of light. Due to the short code length used by SATRE
modems, the time of flight difference between broadcasting
stations is plagued by a 4 ms uncertainty which is manually
inserted considering the known locations of the emitters and
the known nominal parking position of the satellite. The Taylor
series linearization of the above equation when the satellite
position is offset by (dx, dy, dz) from its parking position
becomes cti = xi−x0

Ri
dx+ yi−y0

Ri
dy+ zi−z0

Ri
dz with (dx, dy, dz)

the unknowns solved by a pseudo-inverse matrix computation
since Ri the nominal range from station i to the satellite are
known and cti are the observations.

When using BIPM published measurements, the result of
the satellite position allows for reducing the timing uncertainty
from ±30 µs to ±30 ns, from the freely moving satellite to
its compensation by identifying the location and subtracting

its contribution. This result is achieved by considering that
the CH station is not used in computing the satellite position
and all other broadcasting station measurements are used for
estimating (dx, dy, dz), and this contribution is subtracted
from the CH measurement which is also published by BIPM
(Fig. 3).

30268 30270 30272 30274 30276 30278
-40

-20

0

20

40

tim
e

de
la

y
(u

s) raw position

TwoWay CH

TWCH-position

TWCH-linear fit(-1)

TWCH-linear fit(+1)

TWCH-parabolic fit

30268 30270 30272 30274 30276 30278

-0.2

-0.1

0

0.1

tim
e

de
la

y
(u

s)

MJD-30000 (days)

TWCH-position

TWCH-linear fit(-1)

TWCH-linear fit(+1)

TWCH-parabolic fit

Fig. 3. Impact of various interpolation schemes of the BIPM published
datasets. Top the time of flight measurements used for estimating the satellite
position, excluding CH. Bottom: time of flight difference between CH
observations published by BIPM after subtracting the contribution of the
satellite motion in space around its parking position.

In a practical passive measurement setup (Fig. 2), an Ettus
Research B210 receiver is connected to the LNB output
of a consumer grade satellite TV reception antenna and 5-
second long records are collected during even UTC hours
and the broadcasting stations are exhibiting best geographical
distribution for satellite position computation, including SP
in Sweden and ROA in southern Spain. Due to the poorer
signal to noise ratio from the smaller parabola reflector, the
result is much worse than the one obtained when using
BIPM published datasets (Fig. 4), but still demonstrates the
feasibility. Most limiting in the current approach, the pseudo-
inverse calculation does not include any filtering and insight
in the physics of satellite motion (Kalman filtering) nor is
any celestial mechanics involved in estimating the satellite
position. These developments are in progress.

In order to improve modelling of the satellite kinematic
behavior, velocity measurements are desirable. Since neither
the satellite bent-pipe transponder transposing the 14-GHz
uplink signal to the 11-GHz downlink carrier, nor the LNB
local oscillator, are metrological, the carrier frequency is not
used for estimating the satellite velocity. Instead, the code
drift rate at the output of the correlator is a fine estimate
of the satellite motion in the ±5 ns/s range. However, this
fine time of flight measurement is dependent on the sampling
rate defined by the SDR local oscillator. When collecting
data from an analog to digital converter (ADC) clocked by
the on-board temperature compensated quart crystal oscillator
(TCXO), the frequency offset (2 ppm) and fluctuation over
time is clearly visible, preventing the estimate of the satellite
velocity. Controlling the ADC with an external hydrogen

328 330 332 334 336

-40000

-20000

0

20000

40000
di

st
an

ce
 (

m
)

MJD-60000

dBesancon-T11N+dParis-T11N
OP received time
difference

328 330 332 334 336

-4e-05

-2e-05

0

2e-05

4e-05

dt
 (

s)

MJD-60000

difference

Fig. 4. Passive recording of the SATRE signals using the setup shown in Fig.
2, and resulting time of flight difference between the downlink signals and
the estimated satellite motion contribution.

maser generated frequency source allows for recovering the
satellite velocity (Fig. 5). On the other hand, this measurement
means that the TXCO can be controlled to the ±5 ppb level
of the satellite speed in an approach similar to the GNSS
disciplined oscillator without compensating for satellite orbital
behavior.

330 335 340 345

2.06e-06

2.08e-06

2.1e-06

2.12e-06

2.14e-06

MJD-60000 (days)

330 335 340 345
-1e-08

-5e-09

0

5e-09

1e-08

MJD-60000 (days)

ve
lo

ci
ty

 (s
/s

)
ve

lo
ci

ty
 (s

/s
)

Fig. 5. Impact of the local oscillator on the velocity measurement as estimated
with the code drift rate. At first the crystal oscillator (TCXO) on-board the
B210 receiver is used, exhibiting a 2.1 ppm frequency offset and long term
fluctuations and drift, and during the second half of the measurement the SDR
is clocked by a 10 MHz from a hydrogen maser.

Despite the multistatic emission of the broadcast signal
allowing for trilateration of the satellite position, estimating the
velocity vector (rather than only the projection to the receiver)
would require fine velocity estimate since the geometry is
unfavorable with a baseline extending 2700 km over the
European continent and the ground to satellite distance of
39000 km, leading to a configuration close to a monostatic
measurement which would require sub-picosecond/s velocity
measurement for estimating the full velocity vector compo-
nents.

II. SDR FOR SECURE GNSS RECEPTION WITH 1-PPS
GENERATION

The ability to record SDR signals for post-processing
also means that SDR is perfectly suited for replay at-
tacks in which the recorded signal is broadcast in or-
der to make the receiver believe the erroneous sig-
nal is indicative of the current time or frequency in-
formation. These replay attacks, trivially implemented at
github.com/oscimp/usrp_recordAndReplay using
SDR, similar to signal spoofing attacks, are more subtle than
jamming attacks which are readily detected with a loss of
service: the receiver believes that a signal is received and
is unable to identify whether the genuine information or a
spoofed information is being decoded.

GNSS and especially the legacy GPS L1 civilian signal
is especially sensitive to such attacks, lacking any means
of authenticating the downlink messages. SDR is perfectly
suited for generating such spoofing attacks, assuming as was
introduced above that a local oscillator representative of the
GNSS oscillator stability is used to clock the SDR. On the
other hand, since SDR is able to receive the raw IQ stream
from multiple antennas, a direction of arrival analysis can be
performed prior to decode the GNSS payload and estimate
the receiver position: inconsistent direction of arrivals with a
single spoofing source generating the signals expected to be
broadcast by a satellite constellation distributed in space is an
indication of spoofing attack. Once detected, null steering can
cancel this incoming spoofing signal, allowing to recover the
genuine information [3].

However, once SDR has allowed to cancel the jamming or
spoofing source using null-steering, the payload is decoded
using e.g. the free and opensource gnss-sdr [4], leading to
the positioning of the receiver and the estimate of the time
offset between the local clock and the GNSS clock. From
this information, the local oscillator is steered to match GNSS
frequency, and time delays are introduced to match phases.
However, the only timing information available to the SDR
receiver is the time at which samples were digitized by the
ADC, since all subsequent operations are asynchronous or
could even occur as batch processes if First In First Out (FIFO)
interfaces are used. Hence, the clock to be steered is the one
driving the ADC, not the processing unit running gnss-sdr.

In past investigations [5], a dedicated GNU Radio signal
processing block was introduced between the signal source
collecting the IQ streams from hardware and the subsequent
processing steps, gnss-sdr being based on the free, open-
source implementation of SDR named GNU Radio. Doing
so, the gnss-sdr source code must be tuned for each new
release, making the proposed solution difficult to maintain
on the long term. Since SDR relies on software process-
ing of datastreams, distributed computing is perfectly suited:
gnss-sdr provides a remote monitoring framework in which
all internal states of the position, velocity and timing (PVT)
solver are shared from a networking socket. Hence, steering
the clock driving the ADC is handled by a process independent

of gnss-sdr, with the added benefit of accessing the Time
of Week information broadcast by the monitoring server with
the bit duration of 20 ms resolution, removing this uncertainty
that remained in the past implementation.

III. CONCLUSION

Software defined radio provides an innovative framework
for radiofrequency signal processing reducing to a minimum
the hardware contribution – source of drift and unreliability
– and maximizing the software component. SDR setups are
readily expanded and reproduced by copying software pro-
cessing blocks, only limited by data transfer bandwidth and
computational power.

However, two major hindrances are identified for the wide
deployment of SDR in time and frequency metrology:

• software maintenance and long term consistency
• digital computation inaccuracies.
The first issue is a general challenge of increasingly

abstract software relying on more and more external
libraries and tools. At the time of this writing,
installing GNU Radio on a Debian GNU/Linux binary
distribution requires installing 740 packages (output of
debtree gnuradio | cut -d\- -f1 | grep \"
piped to | sort | uniq | wc -l), all depending
on each other for the proper operation of the complete
system. This reliance on external libraries induces that
any Application Programming Interface (API) change in
any of these dependencies breaks the complete system.
Long term software maintenance is becoming increasingly
challenging as libraries are constantly evolving, possibly in
directions diverging from their original or intended uses.
Major software framework restructuration – e.g. C++ to
Python communication shifting from SWIG to pybind in
the case of GNU Radio – breaks all backward compatibility
and involves all Out of Tree contributors to correct their
processing block implementation. Unless staff is dedicated to
software maintenance, this hassle is becoming an increasingly
heavy burden on engineers and researchers.

The second point is a core issue breaking the “stability”
promise initially stated at the introduction of this article [1].
While a given algorithm will always lead to the same result
when run on the same digital computer, various implementa-
tions of high level mathematical functions might lead to dif-
ferent results even though mathematically they are expected to
reach the same result. Not considering the issue of single preci-
sion or double precision floating point number representation,
even as simple a relation as exp(j(ω/2)t)·exp(−jω(t/2)) = 1
is not verified in practice. Indeed, the implementation of
the trigonometric functions and the associated numerically
controlled oscillator (NCO) involves incrementing a phase φ
at each discrete time step with φ ← φ + 2π · f/fs when
synthesizing an oscillator at frequency f sampled at fs. Since
φ ∈ [0 : 2π), the NCO implementation checks whether
φ lies within these bounds, and adds or subtracts integer
numbers of 2π to remain in this interval. However 2π being
irrational, it cannot be represented accurately, neither in integer

nor in floating point representations. In the above expression,
the first term with ω/2 · t represents a signal generated at
sampling rate fs at frequency f/2, while the second expression
with ω · t/2 represents a signal at frequency f generated at
sampling rate fs/2, also resulting from generating a signal at
frequency f and sampling rate fs but decimated by a factor of
2. The GNU Radio implementation of this expression, using
two signal sources, a decimating block (Keep 1 in N) and
a complex conjugate multiplication, expected to lead to a
constant phase output induced by possible different delays in
the two branches, actually exhibit a slow drift induced by the
inaccuracy of the trigonometric function calculation (Fig. 6).

N=N (variable)

1 Msample display = 0.3 s

Options
Title: Not titled yet
Output Language: Python
Generate Options: QT GUI

Variable
ID: N
Value: 8

Variable
ID: samp_rate
Value: 3e6=3M

out

Signal Source
Sample Rate: samp_rate=3M
Waveform: analog.GR_COS_WAVE=Cosine
Frequency: 3k
Amplitude: 1
Offset: 0
Initial Phase (Radians): 0

out

Signal Source
Sample Rate: samp_rate/N=375k
Waveform: analog.GR_COS_WAVE=Cosine
Frequency: 3k
Amplitude: 1
Offset: 0
Initial Phase (Radians): 0

outin Complex to Arg
outin Keep 1 in N

out
in0

in1
Multiply Conjugate

outin
Throttle

Sample Rate: samp_rate=3M
Limit: None in

QT GUI Time Sink
Number of Points: 1024*1000=1.024M
Sample Rate: samp_rate/N=375k
Autoscale: Yes

Fig. 6. GNU Radio Companion flowchart mixing (complex conjugate
multiplication) one signal generated at f/8 and sampling rate fs on one side,
and at f and sampling rage fs/2 on the other branch, the fs/8 sampling rate
being achieved by keeping one very 8 samples. Bottom right: phase of the
output of the mixer, expected to be constant but observed to be drifting with
time.

While digital communication and demodulation schemes
in general are designed to compensate for these frequency
differences between emitter and receiver local oscillators, these
trigonometric function calculation issues might impact the
use of digital signal processing for high stability time and
frequency generation and dissemination applications.

ACKNOWLEDGMENT

The free and opensource SDR community is acknowledged
for developing and maintaining the software frameworks al-
lowing for this work to be completed, including authors and
maintainers of GNU Radio and gnss-sdr. The digital elec-
tronics workpackage of the Oscillator Instability Measurement
Platform (OscIMP) grant prompted these investigations and
supported financially hardware acquisition.

REFERENCES

[1] D. A. Mindell, Digital Apollo: Human and machine in spaceflight. Mit
Press, 2011.

[2] J.-M. Friedt, “Passive reception of two-way satellite time and frequency
transfer (TWSTFT) signals from a geostationary satellite, or GPS upside
down,” in Proc. 12th GNU Radio Conference, vol. 7, no. 1, 2022.

[3] W. Feng, J.-M. Friedt, G. Goavec-Merou, and F. Meyer, “Software
defined radio implemented GPS spoofing and its computationally efficient
detection and suppression,” IEEE Aerospace and Electronic Systems
Magazine, vol. 36, no. 3, pp. 36–52, 2021.

[4] C. Fernández–Prades, J. Arribas, P. Closas, C. Avilés, and L. Esteve,
“GNSS-SDR: An open source tool for researchers and developers,” in
Proc. 24th Intl. Tech. Meeting Sat. Div. Inst. Navig., Portland, Oregon,
Sept. 2011, pp. 780–794.

[5] D. Rabus, G. Goavec-Merou, G. Cabodevila, F. Meyer, and J.-M. Friedt,
“Generating a timing information (1-PPS) from a software defined radio
decoding of GPS signals,” in 2021 Joint Conference of the European
Frequency and Time Forum and IEEE International Frequency Control
Symposium (EFTF/IFCS). IEEE, 2021, pp. 1–2.

