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Transmission enhancement of sound waves across the interface between media with different
impedances is a classical problem in acoustic communication, for instance in the case of the water-
air interface. Different strategies, including bubble-embedded metasurfaces or impedance-matched
metamaterials, have been developed to render the interface transparent. Transmedia wave en-
hancement is up to now either broadband or incorporating customized wavefront manipulation.
In this work, we explore the use of transformation acoustics and gauge transformation to realize
both goals simultaneously. Transformation acoustics is first argued to provide lossless transme-
dia sound enhancement, though at the expense of adapting the cross-section to respect power-flow
conservation. It is specifically proven that a gradient anisotropic metamaterial provides perfect
transmission between two media in 2 dimensions and that perfect steering of sound waves is allowed
as well. Gauge transformation theory is then adapted from transformation elasticity to provide 1-
dimensional perfect sound transmission via a gradient Willis-like acoustic metamaterial. Finally, the
two transformations are combined together to implement broadband acoustic transmission perfectly
and focusing at the water-air interface. The lens designed by the proposed method is achromatic.
The work in this paper is expected to provide alternative solutions for transmedia communication
and to open new application scenarios for transformation acoustics.
Keywords: Transformation acoustics, Acoustic metamaterials, Transmedia transmission, Precise
wave manipulation

I. INTRODUCTION

The enhancement of sound wave transmission
through the water-air interface is receiving increas-
ing attention1, for applications to environmental
monitoring and marine communications2,3. As a
typical problem in wave propagation, it is well
known that the transmitted power is related to
the ratio of the acoustic impedances of the two
media. Acoustic impedance, the product of sound
speed and mass density, is thus generally used to
describe the ability of homogeneous media to carry
plane waves. At first sight, it seems impossible
to transmit waves integrally between water and
air4. There is indeed a huge contrast in acoustic
impedance, of about 3600, which leads to a theo-
retical power transmission rate as low as 0.1%5.

Two techniques have been developed along the
past two decades to improve transmission: bubble
scattering and transmission line theory. The po-
tential of bubble scattering was first discovered in
the analysis of the radiation characteristics of un-
derwater point sound sources by Oleg6–8. It was
predicted that natural sound sources, e.g. air bub-
bles oscillating under water, should be beneficial
for transmedia sound transmission. This idea was
then proven through multiple scattering theory
and demonstrated experimentally by Bretagne et
al.9 with a meta-screen consisting of a single layer
of bubbles. The bubble-embedded structure made
of hydrophobic materials proposed by Cai et al.
suggested a more practicable method10 within the
concept of metamaterials11 and metasurfaces12.
Efficient transmission at different frequencies was
achieved by adjusting the immersion depth of the

structure. The technique was recently simplified
by Gong et al.13 with membrane-sealing bubbles
supplying better operability. Such designs can also
be extended to multiple frequencies or be made
broadband using series and parallel connected bub-
bles of different scales14 or resonance modes15.

Based on transmission line theory, another so-
lution was proposed by Zhang et al.16. Non-
reflective transmission can be observed when two
mismatched media are connected through a com-
posite waveguide with specific effective impedance.
Similarly, Bok et al.17 proposed a membrane-mass
metasurface with extremely thin thickness and ver-
ified it experimentally. Interestingly, some bubble-
based structures have also been found to provide
matched equivalent impedance10,14,15. They how-
ever suffer from some critical limitations. Struc-
tures containing resonant components often lead to
a relatively narrow operation bandwidth. Conse-
quently, the efficiency and the information capac-
ity of transmedia acoustic communications are dif-
ficult to improve. One may turn to focused vortex-
based communication18 to achieve multiplexing19

at a given frequency. But the transmitted phase
difference is then fixed in a discrete fashion to ei-
ther π/2 or 3π/2, as determined by transmission
line theory20. This results in a huge obstacle for
further modulation of the wave field, whereas cus-
tom phase modulation is essential.

Some solutions have been proposed to solve
these issues. First, a wider operation bandwidth
can be achieved by considering materials with gra-
dient impedance distribution21. Direct water-air
communication through acoustic wave was hence
demonstrated by Zhou et al. with extremely high
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capacity and accuracy22. But the relationship be-
tween gradient function and transmittance is not
yet proven clearly23. Second, an arbitrary phase
difference modulation can be supplied by the se-
ries connection of two or more different impedance-
matched units for further enhancement and wave-
front manipulation24,25. Additional functions like
acoustic focusing enhancement and acoustic vor-
tex generation were thus implemented. However,
there is up to now no clear solution to simultane-
ously achieve both goals.
Transformation acoustics may offer an alterna-

tive solution26,27. It originates from coordinate
transformation theory and enables many func-
tionalities in electromagnetism28,29, acoustics30–34,
elasticity35–38, thermology39–41, and even multi-
coupled physics42–44, due to the universal exis-
tence of coordinate transformation invariance in
the governing equations45. Invisibility cloaking
is the most commonly considered application46.
The use of transformation theory for metasurface
design has also aroused great interest47,48. Pre-
cise wave manipulation can be achieved by struc-
tures with specific gradients of properties. Fur-
thermore, additional degrees of freedom become
available for field regulation as the amplitude be-
comes adjustable with the introduction of gauge
transformation37,44,49. However, most studies in-
volving gauge transformations remain in transfor-
mation elasticity. It still has considerable potential
in transformation acoustics.
In this paper, broadband transmedia sound

transmission and enhancement is considered based
on the combination of transformation acoustics
and gauge transformation. It is first shown that
two arbitrarily different media can be continu-
ously connected using a 2D spatial transformation.
Gauge transformation with a Willis-like material
is then adapted from transformation elasticity and
perfect acoustic transmission is realized in 1D. Fi-
nally, it is argued that phase modulation can be
allowed when combining the two transformations
together. As an example, a broadband and achro-
matic lens is designed for acoustic signal enhance-
ment. All theoretical developments are validated
through numerical simulation.

II. METAMATERIAL DESIGN BASED ON

THE INVERSE ANALYSIS OF

TRANSFORMATION ACOUSTICS

Transformation theory originates from the co-
ordinate transformation method. The solving pro-
cess can be interpreted as applying a mapping F to
the governing equation in original space, as shown
in Fig. 1(a). The governing equation in trans-
formed space is often described by curvilinear co-
ordinates in a concise form. In the transformation,
the original space with a regular grid is regarded
as real or objective, whereas the transformed space

is virtual.

The application of transformation theory to
metamaterial design follows an inverse application
of the coordinate transformation method, which
is depicted in Fig. 1(b). A simple equation in
virtual space with a known solution is considered
first. The mapping F is then constructed to re-
late both coordinate systems. The coefficients of
the transformed governing equation in real space,
rather than the solution itself, serve as the major
guidance during metamaterial design; they form
the transformed material parameters. One can di-
rectly obtain the material parameters at given co-
ordinates, as the grid is regular.

In the formulation of the transmedia problem we
consider in this work, transformation theory is also
applied inversely, as depicted in Fig. 1(c). There
is however a crucial question that needs to be an-
swered beforehand: which media can be connected
together through a transformation? The question
of the existence of a solution achieving simulta-
neously broadband transmission enhancement and
arbitrary wavefront manipulation is indeed impor-
tant but easily overlooked. Therefore, the mapping
F should be checked first to connect different me-
dia. Appling it in the original space, the required
parameters in the transformed space, i.e. the real
space, can then be obtained.

Transformation theory in this paper is discussed
along the following line. The original virtual space
is occupied by the single material m1 that is di-
vided into three regions, as shown in Fig. 2.
Three sub-mappings are applied to these three re-
gions, respectively. Mapping F1 connects region
m1 on the left side to regionm′

1 in real transformed
space. For simplicity, it is set as the identity map-
ping, so that original and transformed parameters
are the same. Mapping F3 connects the original
medium m1 on the right side onto region m′

3. Note
that it is a constant mapping if m′

3 is a homoge-
neous medium. After these two mappings are de-
termined, mapping F2 is established by imposing
continuity conditions on the boundaries Γ1 and Γ2

separating the three regions. m′
2 is therefore a gra-

dient metamaterial with spatially varying parame-
ters. Theoretically, waves can propagate from m′

1

to m′
3 through m′

2 without reflection, just like they
would in a homogeneous medium.

A. 2D metamaterials based on

transformation acoustics with spatial

transformation

Under the framework of transformation acous-
tics, the original space is described by a scalar
Helmholtz equation. The governing equation
for time-harmonic acoustic waves in homogeneous
medium with a mass density ρ and a bulk modulus
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FIG. 1: Schematic diagram of (a) coordinate transformation method, (b) transformation theory, (c) inverse
analysis of transformation theory.

(a)

(c)(b)

FIG. 2: Schematic diagram of transmedia problem
based on transformation metamaterials. (a) The orig-
inal space is occupied by material m1 and divided into
three regions. (b) The transformed space consist of
three media m′

1, m
′

2 and m′

3, and is obtained by three
different transformations. The transformed space and
the original space share consistent continuity at Γ1

and Γ2. (c) Replacing m′

3 with an impedance-matched
medium m′

4, plane waves can be transmitted without
reflection.

K then reads

∇ ➲ ρ−1∇p (x) + ω2K−1p (x) = 0, (1)

where ω is the angular frequency and ∇ = ∂
∂xex +

∂
∂yey is the gradient operator in original space.

The mapping F is represented by the transforma-
tion matrix

F (x′) =
∂x′

∂x
=

[

∂x′

∂x
∂x′

∂y
∂y′

∂x
∂y′

∂y

]

(2)

whose determinant is the Jacobian J . Substituting
Eq. (2) into Eq. (1), the transformed governing
equation is

∇′
➲

[

ρ′−1 (x′)∇′p (x′)
]

+ ω2K ′−1 (x′) p (x′) = 0,
(3)

where ∇′ = ∂
∂xex

′ + ∂
∂yey

′ is the gradient opera-

tor in transformed space. The transformed specific
volume is the tensor

ρ′−1 (x′) = ρ−1FFT

J
(4)

and the transformed bulk modulus is the scalar

K ′−1 (x′) =
K−1

J
. (5)

The mapping F3 relates two homogeneous media
so the restriction of the transformation matrix to
region m′

3 is a constant matrix

F (x′) |m′

3
= F3 =

[

a b
c d

]

. (6)

Since we want m′
3 to be a natural material, for

instance air, the specific volume is imposed to be
isotropic

ρ′−1 (x′) |m3
= ρ−1F3F

T
3

J3
= ρ′−1I. (7)

The ratios of mass densities and bulk moduli before
and after transformation are respectively defined

as α = ρ′

ρ and β = K′

K . Hence, the components of

the transformation matrix obey the relations

a2 + b2

ad− bc
=α, (8a)

ac+ bd =0, (8b)

ad− bc =β, (8c)

c2 + d2

ad− bc
=α. (8d)

These equations have no solution if α ̸= 1, as
shown in Appendix A. This condition imposes the
transformation to act only on the bulk modulus
but to leave the mass density unchanged. Setting
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α = 1 and writing a = a0, the transformation ma-
trix can be solved as

F3 =

[

a0 ±
√

β − a20
∓
√

β − a20 a0

]

. (9)

Substituting into Eq. (2), the coordinate transfor-
mation is obtained by integration

{

x′ = a0x ±
√

β − a20y +hx,

y′ = ∓
√

β − a20x +a0y +hy.

}

(10)

where hx and hy are constants. It can be noted
that 0 ≤ |a0| ≤

√
β.

The polar decomposition of the transformation
matrix F3 = V R (RRT = RTR = I, detR = 1,
V 2 = F3F

T
3 ) is introduced to check its physical

significance

F3 = V R =

[√
β 0
0

√
β

]





√

a2
0

β ±
√

1− a2
0

β

∓
√

1− a2
0

β

√

a2
0

β



 .

(11)
V is a stretching matrix that is uniquely deter-
mined by the ratio of bulk moduli. R is a rotation
matrix. It can be noted that the ratio of the co-
efficients of the original coordinates in Eq. (10)
determines the angle of rotation after transforma-
tion. There is no rotation only if a20 = β.

We can now precise the mapping F2. Continuity
conditions44 need to be satisfied on boundaries Γ1

and Γ2

F2 (x
′) |Γ1

= F1 (x
′) |Γ1

= I, (12)

F2 (x
′) |Γ2

= F3 (x
′) |Γ2

= F3. (13)

In between these boundaries, we request the map-
ping to vary smoothly with space coordinates, for
instance as a polynomial of x and y, but it is
not uniquely defined. A specific example with
simple parameters is provided next as a intuitive
demonstration of the design process for transfor-
mation metamaterials. The original space is set
as a waveguide filled with water with a mass den-
sity of ρw = 1000 kg/m3 and a bulk modulus of
Kw = 2.25 × 109 Pa. Assuming that the medium
to be connected owns a mass density ρ′ = ρw and
a bulk modulus K ′ = Kw/4, then α = 1 and
β = 0.25. Impedances are mismatched, with the

impedance ratio γ = Z′

Zw
=

√
αβ = 0.5. The origi-

nal space is composed of three rectangles with the
same height hw = 10 cm. The length of the left
and right parts is set to ws = 50 cm, whereas the
length of the middle part is set to wm = 20 cm.
The origin of the coordinate system is chosen at
the center of the middle part for convenience. A
plane wave with unit amplitude is incident along
the positive x direction. The line segment with
endpoints (−wm/2, 0) and (wm/2, 0) is imposed to
remain unchanged under transformation, so that

F2 (x, 0) = (x′, 0) . (14)

(a)

(c)

(e)

(g)

(b)
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FIG. 3: Response for plane wave incidence under
different configurations. The normalized pressure is
shown in all panels. A homogeneous medium with
α = 1, β = 1, γ = 1 and a0 =

√
β is considered first

at frequencies (a) f1 = 5000 Hz and (b) f2 = 10000
Hz. (c-d) Two impedance-mismatched media with
γ = 0.5 are connected through a bare interface. Two
impedance-mismatched media with α = 1, β = 0.25
and γ = 0.5 are then connected by a metamaterial
based on spatial transformation for (e-f) a0,1 =

√
β,

(g-h) a0,2 =
√

3β/4, and(i-j) a0,3 =
√

β/4.

The transformation F2 and the constants hx and
hy are obtained by inspection, combining Eqs.
(12), (13) and (14), and considering the simplest
possible polynomial dependence:

{

x′ = x±
√

β−a2
0

2 y±
√

β−a2
0

wm
xy,

y′ = a0+1
2 y− 1−a0

wm
xy.

(15)

hx = (1− a0)wm, (16)

hy =
√

β − a20wm. (17)

The analysis presented above is frequency inde-
pendent, hence the results should be both broad-
band and achromatic. Two operating frequencies,
f1 = 5000 Hz and f2 = 10000 Hz, are adopted in
the following numerical simulations. The compu-
tation domain is terminated on both sides by two
perfectly matched layers (PML) with a thickness of
10 cm, in order to avoid external reflections. Three
cases are considered, with a0 =

√
β,

√

3β/4 and
√

β/4. It can be inferred from the polar decom-
position of the transformation matrix [Eq. (11)]
that the positive or negative value of b in Eq. (9)
determines the sign of the rotation angle. We set
b = +

√

β − a20 in the following discussion for con-
venience. Detailed metamaterial parameters are
given in Appendix B. Simulation results are sum-
marized in Fig. 3. The sound fields of Figs. 3(a-
b) in the original space are shown for reference
(α = β = γ = 1, a0 =

√
β). When γ = 0.5, there

is impedance contrast at a planar interface leading
to partial transmission of sound waves, as shown
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FIG. 4: Response for plane wave incidence under differ-
ent configurations. The normalized pressure is shown
in all panels. Two impedance-mismatched media with
γ = 0.5 are connected through a bare interface are
considered first at frequencies (a) f1 = 5000 Hz and
(b) f2 = 10000 Hz. Two impedance-mismatched me-
dia with α = 0.5, β = 0.5 and γ = 0.5 are then con-
nected by a metamaterial based on spatial transforma-
tion for (c-d) a0,1 =

√
β, (e-f) a0,2 =

√

3β/4, and (g-h)

a0,3 =
√

β/4.

in Figs. 3(c-d). The remaining panels show what
happens when the metamaterial based on trans-
formation acoustics is introduced, keeping γ = 0.5
constant. For a0,1 =

√
β, as shown in Figs. 3(e-

f), the rotation angle is zero; the medium on the
transmitted side narrows and shortens under the
coordinate transform and the wavelength become
shorter. The sound wave is perfectly transmit-
ted into the target medium, maintaining a pla-
nar mode. The amplitude of the pressure in ev-
ery section of the sound field is unitary, inside
as swell as on both sides of the metamaterial. If
a0 is decreased, the transmitted wave is steered

with a refraction angle θ = arctan
√

β
a2
0

− 1. For

a0,2 =
√

3β/4, as shown in Figs. 3(g-h), the re-

fraction angle is 30◦. For a0,3 =
√

β/4, as shown
in Figs. 3(i-j), the refraction angle is 60◦. 100%
transmission efficiency is obtained in all cases, re-
gardless of the angle of rotation.

The condition α = 1 is a strong limitation, since
only media with the same mass density can be con-
nected. Fortunately, the theory can be further de-
veloped in conjunction with impedance matching
theory. A medium m′

4 whose acoustic impedance
is the same as that of m′

3 can be connected onto it
without causing any reflection. Further setting the
thickness of m′

3 to zero, the transmission medium
is replaced directly with m′

4, as shown Fig. 2(c).
Transmission should still be perfect under the exci-
tation of plane waves. Consider for concreteness a
medium m′

4 with mass density ρ′ = ρw/2 and bulk
modulus K ′ = Kw/2, so that α = 0.5 and β = 0.5.
The impedance ratio with m′

1 is still γ = 0.5. The
transmission between m′

1 and m′
4 remains partial
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FIG. 5: The normalized pressure for a water-air trans-
media metamaterial based on spatial transformation is
shown at 10000 Hz. The huge contrast in impedance
between water and air leads to small port areas on the
air side.

when no metamaterial is introduced, as shown in
Figs. 4(a-b). When the three metamaterials in
Figs. 4(c-h), with α = 0.5, β = 0.5 and γ = 0.5,
are introduced as a connection perfect transmis-
sion can be observed again.

Theoretically, an impedance-matched connec-
tion between water and air can be achieved thanks
to metamaterials based on spatial transformation.
The norm-preserving nature of the solution ensures
that the amplitude of transmitted sound waves are
equal to the amplitude of incident waves, which is
a significant enhancement of the sound pressure
compared to the plane wave value 1/6024. Set-
ting the material of m′

4 as air with mass density
ρa = 1.18 kg/m3 and bulk modulus K = 1.38×105

Pa, the result of numerical simulation at 10000 Hz
is given in Fig. 5. The metamaterial works as
expected, but the reduction in waveguide cross-
section is obviously strong.

It should be noted that the method in this sec-
tion could be extended to 3D but does not work in
1D. Indeed, in 1D the material parameters change
as

ρ′−1 (x′) = ρ−1 ∂x
′

∂x
, (18)

K ′−1 (x′) =
K−1

∂x′/∂x
, (19)

hence the impedance ratio
(

γ =
√
αβ

)

is always 1.
This conclusion can also be reached by checking
the conservation of power flow. In 2D or 3D, this
conservation expresses as

|p21|
2Z1

×A1 =
|p22|
2Z2

×A2. (20)

where A1 and A2 are the areas of the incident
and transmission ports, respectively. Due to the
norm-preserving nature of the spatial transforma-
tion (p1 = p2), a difference in impedance directly

results in a change in port area,
(

Z1

Z2
= A1

A2

)

. That

characteristic can be observed in both Figs. 3 and
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4. For the 1D case, in contrast, the ratio of port
areas is always 1 and the impedance is unchanged
in a 1D transformation.

B. 1D metamaterials based on

transformation acoustics with gauge

transformation

2D or 3D spatial transformation achieves per-
fect connection between arbitrary media, preserv-
ing the wave amplitude. The huge contrast in
impedance between water and air, however, leads
extremely small port areas on the air side, as ap-
parent in Fig. 5. The ratio of port areas is
A2

A1
= 1/60. This fact makes the solution ques-

tionable in practice, despite the superior sound en-
hancement. Therefore, conventional transforma-
tion acoustics based on spatial transformation may
only be suitable in case of slight impedance mis-
match.
Gauge transformation, inspired by transforma-

tion elasticity44, may provide an alternative so-
lution. As an energy-preserving transformation,
the wave amplitude becomes variable while the
dispersion relation is not disturbed. It has been
observed that Willis-like materials50are inevitably
introduced by a gauge transformation37,44,49. For-
tunately, there have been reports suggesting that
materials with Willis-like properties are actually
accessible51,52 or can even be tunable53. The cor-
responding tuning strategies have also been thor-
oughly developed54,55 for easier implementation.
In this section, we examine how the Willis-like
properties are introduced by transformation acous-
tics under a gauge transformation.
As a transformation on wave amplitude, 1D

gauge transformation can be defined as

p (x) = G (x) p′ (x) . (21)

Note that the spaces before and after transfor-
mation share the same regular coordinate system,
which is a special case of Fig. 1(c). Substituting
Eq. (21) into Eq. (1), the transformed governing
equation is

∂

∂x

[

ρ′′−1 (x)
∂

∂x
p′ (x) + S (x) p′ (x)

]

= S (x)
∂

∂x
p′ (x) + Ep′ (x)− ω2K ′′−1 (x) p′ (x) ,

(22)

where






S(x) = G(x)
ρ

∂G(x)
∂x ,

E(x) = 1
ρ

(

∂G(x)
∂x

)2

,
(23)

are the Willis-like terms introduced by the gauge
transformation. The transformed mass density

and bulk modulus are

ρ′′ (x) =
ρ

G2 (x)
, (24)

K ′′ (x) =
K

G2 (x)
. (25)

The acoustic impedance changes proportionally to
G−2(x), as do ρ(x) and K(x). It can be noticed
that Willis coupling requires a non constant gauge
function G(x), since parameters S(x) and E(x) are
defined from its first derivative. When connecting
different media, larger Willis coupling will result
from larger impedance mismatch or thinner meta-
materials.

As an important special case, we consider first a
transformation between two homogeneous media,
for which the gauge transformation should be lin-
ear. The Willis terms vanish and the parameters
for the target material (m′

3 in Fig. 2) are

ρ′′ =
ρ

G2
3

, (26)

K ′′ =
K

G2
3

, (27)

with α = β = γ = G−2
3 . As a note, the gauge

transformation obeys the conservation of power
flow, since

|p′21 |
2Z1

=
G2

3|p′22 |
2Z1

=
|p′22 |
2Z2

. (28)

Physically, the change in wave amplitude exactly
compensates for the change in acoustic impedance,
without impacting wave propagation.

Next, the gauge transformation for m′
2 can be

inferred to provide a smooth connection and is not
unique. Here, we assume that the gauge transfor-
mation follows a polynomial form

G2 (x) =

n
∑

i=0

aix
i. (29)

The gauge transformation should be first-order dif-
ferentiable on the boundaries Γ1 : x = x1 and
Γ2 : x = x2, leading to the degradation condition44

G2 (x1) = 1, (30)

∂G2 (x1)

∂x
= 0, (31)

G2 (x2) = γ− 1
2 , (32)

∂G2 (x2)

∂x
= 0. (33)

It can be checked by inspection that the simplest
solution is obtained when n = 3 (there are no so-
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lution for smaller polynomial degrees) and is







































a3 =
2
(

γ−
1
2 −1

)

(x1−x2)
3 ,

a2 =
−3(x1+x2)

(

γ−
1
2 −1

)

(x1−x2)
3 ,

a1 =
6x1x2

(

γ−
1
2 −1

)

(x1−x2)
3

a0 =
γ−

1
2 x3

1−3γ−
1
2 x2

1x2+3x1x
2
2−x3

2

(x1−x2)
3 .

(34)

Because gauge transformation affects the wave am-
plitude without touching spatial coordinates, the
wavelength and the sound speed are unchanged.
The impedance is modified, however, and connec-
tion between arbitrary media can be achieved by
combining the solution with impedance matching
theory, as illustrated in Fig. 2(c).
The water-air sound transmission using a meta-

material based on gauge transformation is consid-
ered now. The numerical simulation model adopts
the same geometry settings as in the previous sec-
tion. An intermediate medium m′

3 with α = β =
γ = Za

Zw
is used to establish the gauge transforma-

tion. Substituting these parameters, along with
Eqs. (23-25,29,34), into Eq. (22), the results of
numerical simulations are given in Figs. 6(a,b).
Detailed metamaterial parameters are given in Ap-
pendix B.
Because of power flow conservation, the wave

amplitude in region m′
3 is relatively small. The

transmitted wave has a normalized amplitude
of about 1/60, which is exactly the theoretical
limit value for complete transmission given by Eq.
(28)24. The quantity G (x) p′ (x) is depicted in
Figs. 6(c) and (d) for better observation. It can be
noted that the results are actually consistent with
the original field p (x) = G (x) p′ (x). The sound
pressure distribution along axis y = 0 is shown in
Fig. 6(e), together with the variations of ± 1

G(x) .

It can be observed that the phase and wavelength
remain unchanged after the gauge transformation.
The envelope of the wave amplitude |p′ (x)| follows
the gauge transformation ± 1

G(x) . Replacing region

m′
3 with region m′

4 (air), the total fields p′ (x) and
G (x) p′ (x) at operating frequencies f1 and f2 are
given in Figs. 6(f-i). Intact sound transmission
from water to air is achieved without reflection.

C. Transmedia acoustic lens based on

spatial-gauge cooperative transformation

Although gauge transformation can achieve a
perfect connection between arbitrary media in 1D
and has the potential to be expanded to 2D or 3D,
phase modulation is directly not included at first.
However, it is essential in order to supply further
wavefield modulation for transmedia acoustic com-
munication. The combination of spatial and gauge
transformations may provide a solution, as shown
next, with 1D analysis as in the previous section.
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FIG. 6: Response for plane wave incidence under dif-
ferent configurations. The normalized pressure p′ (x)
for two impedance-mismatched media connected by
a metamaterial based on gauge transformation the-
ory with α = β = γ = Za

Zw
is shown at frequen-

cies (a) f1 = 5000 Hz and (b) f2 = 10000 Hz. (c-
d) The gauge transformed pressure field G (x) p′ (x)
has unitary amplitude variations. (e) The normalized
pressure distributions p(x) and p′(x) are shown along
y = 0, together with the gauge transformation func-
tion ±G (x). The normalized pressure p′ (x) for two
impedance-mismatched media connected by a meta-
material based on gauge transformation theory with
α = ρa

ρw
, β = Ka

Kw
, and γ = Za

Zw
, is shown at frequen-

cies (f) f1 and (g) f2. (h-i) The gauge transformed
pressure field G (x) p′ (x) again has unitary amplitude
variations.

The gauge transformation is now defined in trans-
formed space as

p (x′) = G (x′) p′ (x′) . (35)

Substituting Eq. (35) into Eq. (1), the trans-
formed governing equation is given by

∂

∂x′

[

ρ′′′−1 (x′)
∂

∂x′
p′ (x′) + S′ (x′) p′ (x′)

]

= S′ (x′)
∂

∂x′
p′ (x′) + E′p′ (x′)− ω2K ′′′−1 (x′) p′ (x′) ,

(36)

where










S′ =
G(x′)

ρ
∂x′

∂x

∂G(x′)
∂x′

,

E′ = 1
ρ
∂x′

∂x

(

∂G(x′)
∂x

)2

,
(37)
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are the Willis-like terms introduced by the spatial-
gauge cooperative transformation. The trans-
formed mass density and bulk modulus are

ρ′′′ (x′) =
ρ

G2 (x′) ∂x′

∂x

, (38)

K ′′′ (x′) =
K

G2 (x′)

∂x′

∂x
. (39)

The acoustic impedance changes proportionally to

G−2(x′) and does not depend on the ∂x′

∂x term. In
contrast, the acoustic velocity changes proportion-

ally to |∂x′

∂x | but does not depend on G(x′). Hence,
the gauge transformation adapts the wave ampli-
tude to the change in acoustic impedance, whereas
the spatial transformation regulates the local wave-
length.
For a transformation between two homogeneous

media, the spatial-gauge cooperative transforma-
tion is linear

G (x′) |m3
= G3 (40)

x′ = F3x+ hx (41)

The Willis terms vanish, and the parameters for
the target material (m3 in Fig. 2) are

ρ′′ =
ρ

G2
3F3

, (42)

K ′′ =
KF3

G2
3

. (43)

The coefficients of the transformations can be
solved uniquely as

G3 = (αβ)
− 1

4 = γ− 1
2 , (44)

F3 = (β/α)
1
2 . (45)

It can be noted that the gauge transformation is
only determined by the impedance ratio γ, which
ensures the conservation of power flow expressed
by Eq. (28). The spatial transformation is only

determined by the ratio of sound speeds, F3 = c′

c .
Transformation between arbitrary media can thus
be achieved considering these two independent de-
sign variables.
Transformation F2 is again determined by the

continuity conditions [Eqs. (12-13)] and the degra-
dation conditions [Eqs. (30-33)] as

x′ =
F3x2 − x1 + hx

x2 − x1
(x− x1) + x1 (46)

F2 =
∂x′

∂x
=

F3x2 − x1 + hx

x2 − x1
(47)

G2 (x
′) = a0 + a1x

′ + a2x
′2 + a3x

′3. (48)

For the given original coordinates x1 and x2, the
length of the metamaterial changes with hx accord-
ing to

t = F3x2 − x1 + hx. (49)

Conversely, for fixed length t = t0 and coordinate
x1, the phase difference can be adjusted by chang-
ing x2. For different x2 and x̂2, the phase difference
at a given frequency f0 is

∆φ = k0 (x2 − x̂2) , (50)

where k0 is the wavenumber of the medium in orig-
inal space. A metasurface based on generalized
Snell’s law can consequently be realized, for which
phase modulation is achieved with perfect power
flow conservation. An interesting fact is that when
x1 = x′

1 and x2 = x′
2, the replacement from m′

3 to
m′

4 is actually a linear transformation applied on
m′

3 along the propagation direction.
It appears from the theory of spatial-gauge

transformation that perfect transmission can not
be achieved with a graded material in 1D unless
Willis coupling is added. Due to the degradation
condition [Eqs. (30-33)], the gauge transformation
has to be continuous at the boundaries. Willis
coupling terms then arise naturally when writing
the acoustic equation Eq. (37). They only vanish
when γ = 1, which indicates that an impedance
difference is not permitted at all without Willis
coupling. In practice, considering the graded ma-
terial described by Eqs. (38,39) only would pro-
vide a smooth connection between two impedance-
mismatching media without involving Willis cou-
pling. It is indeed generally considered intuitive
that graded materials can provide transmittance
with limited reflection. In order to precise this
intuition, we provide an numerical simulation ex-
ample in Appendix C that illustrates the contri-
bution of Willis coupling to perfect transmission:
in the absence of Willis coupling, large transmit-
tance is achieved for high frequencies - or shorter
wavelegnths - but strong reflection is observed for
low frequencies - or longer wavelengths.

Transmedia manipulation of the wave field can
now be implemented after phase difference modu-
lation is allowed. Considering the decrease in am-
plitude from water to air, a focusing lens is de-
signed at the interface for further enhancement of
acoustic signals. Setting the center of the lens at
(0, 0) and the focal length to l0, the distribution of
phase difference along the y-axis is

∆φ (y′) = k′0

(

√

y′2 + l20 − l0

)

+ C0, (51)

where k′0 is the wavenumber of the medium in
transformed space at the operating frequency f0.
Substituting this expression into Eq. (50), x̂2 (y)
should obey

x̂2 (y
′) =

k′0
k0

(

√

y′2 + l20 − l0

)

+x2+C0/k0. (52)

When the excitation frequency changes from f0 to
f1, the wavenumbers in original space and trans-
formation space become k1 and k′1, respectively.
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FIG. 7: A lens designed by spatial-gauge cooperative transformation theory for the water-air interface. Response
to plane wave excitation is shown at (a) 6000 Hz, (b) 8000 Hz, (c) 10000 Hz, (d) 20000 Hz, (e) 40000 Hz, and (f)
80000 Hz. The incident field on the left is depicted with the real part of the complex pressure. The transmission
field on the right is depicted with the amplitude of the complex pressure.

Then, the phase difference supplied by the lens is

∆φ (y′) = k1

(

k′0
k0

(

√

y′2 + l20 − l0

)

+ C0/k0

)

= k′1

(

√

y′2 + l20 − l0

)

+ C1. (53)

It is thus clear that the designed lens is achromatic.
We set x1 = x′

1 = −10 cm, x2 = x′
2 = 10 cm,

l0 = 50 cm and C0 = 0, from which the expres-
sion for x̂2 can be uniquely determined. 51 units
with a width of 9.5 mm are arranged evenly along
the y-axis and are separated by rigid walls with a
thickness of 0.5 mm. Each unit has its correspond-
ing x̂2, which can be obtained by substituting the
ordinate of its center point into Eq. (52). Their
interior is filled with the Willis-like material whose
parameters are obtained by substituting x̂2 and
Eqs. (46-48) into Eqs. (37-39). Detailed meta-
material parameters are given in Appendix B. The
incident field and the transmission regions are set
as two rectangular regions with a width of 80 cm
and a height of 60 cm. Perfectly matched layers
with a thickness of 10 cm surround both domains
to avoid reflection on the external boundaries(not
drawn for simplicity). A plane sound wave is ex-
cited by a line source with a length of 50 cm, placed
75 cm away from the left side of the metasurface.
Numerical simulation of the operation of the

lens is reported in Fig. 7 for 6 different frequen-
cies. A wave is incident from the water side.
When it reaches the metasurface, only minor re-
flection occurs. Waves are transmitted through the
Willis-like materials filling the unit cells compos-
ing the metasurface and are focused in air. The
transmitted beams focus at a distance of about
50 cm after the metasurface. The focus is sta-
ble under a considerably broad frequency range,
from 6000 Hz to 40000 Hz, validating achromatic-
ity. The transmission field seems no longer ideal
when it reaches 80000 Hz. This is mainly because
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e
6000Hz

8000Hz

10000Hz

20000Hz

40000Hz

80000Hz

FIG. 8: Normalized pressure distribution on the trans-
mission side of the metasurface along the y = 0 axis at
different frequencies.

the sound wavelength on the air side decreases to
about 4 mm, which is less than the thickness of the
unit cell. Sound pressure distributions are shown
along the horizontal axis y = 0 in Fig. 8. The
lens performance appears to improve with increas-
ing frequency. Actually, the acoustic wavelength
decreases with frequency, causing waves to con-
verge to a tighter focus. The pressure at the fo-
cal point exceeds by least 2-7 times the theoretical
limit for plane wave transmission, [|p2/p1| = 1/60
in Eq. (28)]. However, the performance is not
ideal only at 80000 Hz. Considering that the unit
cell thickness may play an important role in practi-
cal design, a discussion of the relationship between
thickness and broadband operation is provided in
Appendix D.
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III. CONCLUSION

In this paper, transformation acoustics has been
considered from the perspective of broadband
transmedia transmission with achromatic focusing
for water-air acoustic communication. The spa-
tial transformation and the gauge transformation
were applied both separately and jointly in the de-
sign of transformation metamaterials. Reflection-
less sound wave transmission between arbitrary
different media can be achieved in 2D based on
a spatial transformation. Transmitted waves own
a conserved amplitude and can be steered with
an arbitrary transmission angle. Gauge transfor-
mation was then introduced into transformation
acoustics to provide a 1D solution. Perfect con-
nection between media with very different acous-
tic impedances is achieved through Willis-like ma-
terials. Combining the two transformations, the
dilemma of phase locking on the water-air inter-
face can be effectively solved based on a spatial-
gauge cooperative transformation. A focusing lens
was designed for further enhancement of acoustic
signals and was shown to provide broadband and
achromatic operation. It should be mentioned that
the designed metamaterials may be put into prac-
tice by applying the effective medium theory or
homogenization. The operating bandwidth may
degrade to some extent when involving resonance.
However, the transformation proposed in this work
leaves great flexibility in design parameters. Prop-
erly designed transformation function is conducive
to the implementation of the designed metasurface.
Subsequent study will be devoted to developing ef-
fective gradient Willis materials for better prac-
ticability of spatial-gauge cooperative transforma-
tion. The work in this paper is expected to provide
theoretical support for transmedia acoustic com-
munication and the development of additional ap-
plication scenarios for transformation acoustics.
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Appendix A: Expression of matrix F3

Equations (8a-8d) imply that a2+b2 = c2+d2 =
αβ ̸= 0. Multiplying Eq. (8c) with a and using Eq.
(8b) implies αd = a. Similarly, multiplying Eq.
(8c) with c and using Eq. (8b) implies αb = −c.

Inserting those relations in Eq. (8b) gives (α2 −
1)bd = 0. Hence, either of the three factors must
equal zero. If b = 0, then c = 0 and a2 = d2; we
are then led to α2 = 1. If d = 0, then a = 0 and
b2 = c2; we are again led to α2 = 1. As a whole,
α2 = 1 necessarily applies. Considering positive
mass densities, α = 1. As a result, solutions are of
the form of Eq. (9).

Appendix B: Explicit expressions of material

parameter

The metamaterials for the simulations in Sect.
II A are described by

ρ′−1 = ρ−1FFT

J

=
ρ−1

∂x′

∂x
∂y′

∂x − ∂x′

∂y
∂y′

∂x

[

∂x′

∂x
∂x′

∂x + ∂x′

∂y
∂x′

∂y
∂x′

∂x
∂y′

∂x + ∂x′

∂y
∂y′

∂y
∂y′

∂x
∂x′

∂x + ∂y′

∂y
∂x′

∂y
∂y′

∂x
∂y′

∂x + ∂y′

∂y
∂y′

∂y

]

(B1)

K ′−1 =
K−1

∂x′

∂x
∂y′

∂x − ∂x′

∂y
∂y′

∂x

, (B2)

where the partial derivatives can be determined by
Eq. (15) as



























∂x′

∂x = 1 +

√
β−a2

0

wm
y,

∂x′

∂y =

√
β−a2

0

2 +

√
β−a2

0

wm
x,

∂y′

∂x = − 1−a0

wm
y,

∂y′

∂y = a0+1
2 − 1−a0

wm
x.

(B3)

According to the discussion at the beginning
of Sect. II, all parameters should be de-
scribed by transformed coordinates. It can
be noted that Eq. (15) is monotonic when
(x ∈ [−wm/2, wm/2] ∩ y ∈ [−hm/2, hm/2]). Then
its inverse function can be given as
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x =

(

a0+1
2 −

√
β−a2

0

wm
y′ + 1−a0

wm
x′

)

+

√

(

a0+1
2 +

√
β−a2

0

wm
y′ + 1−a0

wm
x′

)2

+ 4(1−a0)
wm

(√
β−a2

0

2 y′ − a0+1
2 x′

)

2(1−a0)
wm

,

(B4)

y =

(

−a0+1
2 + 1−a0

wm
x′ +

√
β−a2

0

wm
y′
)

+

√

(

−a0+1
2 + 1−a0

wm
x′ +

√
β−a2

0

wm
y′
)2

+ 4

(√
β−a2

0

2
1−a0

wm
+

√
β−a2

0

wm

a0+1
2

)

y′

2

(√
β−a2

0

2
1−a0

wm
+

√
β−a2

0

wm

a0+1
2

) .

(B5)

Substituting them back to Eqs. (B1-B2), the re-
quired material parameters can then be acquired.
The metamaterials for the simulations in Sect.

II B are described by






















S(x) = G(x)
ρ

∂G(x)
∂x ,

E(x) = 1
ρ

(

∂G(x)
∂x

)2

,

ρ′′ (x) = ρ
G2(x) ,

K ′′ (x) = K
G2(x) .

(B6)

Substituting Eqs. (29) and (34) into them, their
explicit expression can be obtained


























S(x) =
(a0+a1x+a2x

2+a3x
3)(a1+2a2x+3a3x

2)
ρ ,

E(x) =
(a1+2a2x+3a3x

2)
2

ρ ,

ρ′′ (x) = ρ
(a0+a1x+a2x2+a3x3)2

,

K ′′ (x) = K
(a0+a1x+a2x2+a3x3)2

.

(B7)
Similarly, the metamaterials for the simulations

in Sect. II C are described by






























S′ =
G(x′)

ρ
∂x′

∂x

∂G(x′)
∂x′

,

E′ = 1
ρ
∂x′

∂x

(

∂G(x′)
∂x

)2

,

ρ′′′ (x′) = ρ

G2(x′) ∂x′

∂x

,

K ′′′ (x′) = K
G2(x′)

∂x′

∂x .

(B8)

Substituting Eqs. (47) and (48) into them, their
explicit expression can be obtained


































S′ =
(a0+a1x

′+a2x
′2+a3x

′3)(a1x+2a2x
′+3a3x

′2)
ρ

F3x̂2(y′)−x1+hx

x̂2(y′)−x1
,

E′ =
(a1x+2a2x

′+3a3x
′2)

2

ρ

F3x̂2(y′)−x1+hx

x̂2(y′)−x1
,

ρ′′′ (x′) = ρ

(a0+a1x′+a2x′2+a3x′3)2
F3x̂2(y′)−x1+hx

x̂2(y′)−x1

,

K ′′′ (x′) = K
(a0+a1x′+a2x′2+a3x′3)2

F3x̂2(y′)−x1+hx

x̂2(y′)−x1
.

(B9)
where the explicit expression for x̂2 (y

′) is given in
Eq. (52) and hx is determined by

hx = t0 + x1 − F3x2. (B10)

Appendix C: Contribution of Willis coupling

in transmedia acoustic transmission

The metamaterials defined by Eqs. (37-39) en-
able acoustic connection between arbitrarily dif-
ferent media. They would simplify to graded
impedance-matching materials if Willis terms were
removed. Here, we use an example to discuss
the role of Willis coupling in transmedia transmis-
sion. We set x1 = x′

1 and x2 = x′
2 in Eq. (B9)

whereas other parameters are set following Sect.
II. B. Then the transformation-induced metama-
terial can be determined with parameters consis-
tent with Fig. 6(f-g). The graded material used
for comparison is set to have the same mass den-
sity and bulk modulus but with S′ = 0 and E′ = 0.

Power flow transmittance is defined as T =
|p2

t |/Za

|p2
i |/Zw

where pi = 1 is the unitary incident amplitude
in water and pt is the transmission amplitude in
air, respectively. The simulation results for the
two designs in the range 5 kHz-40 kHz are pre-
sented in Fig. 9. The blue line represents the
transformation-induced metamaterial, exhibiting
perfect performance. When the Willis terms are
removed, transmittance changes to the orange line.
Almost no power flow is transmitted at lower fre-
quencies, whereas the transmittance gradually ap-
proaches 1 as the frequency increases.

It can be concluded that Willis coupling com-
pensates for the reflections caused by drastic
impedance changes. In the homogeneization pic-
ture, the graded material can be regarded as a
thin layer at lower frequencies, for which the wave-
length is relatively large, thus providing an abrupt
impedance change that converges to a step func-
tion for the zero frequency. For a large frequency,
impedance changes slow down compared to the
shorter wavelength. The contribution of the Willis
terms thus diminishes and the transmittance pro-
vided by the two designs almost overlap. As a
consequence, a slower impedance change rate pro-
vides a lower operating frequency for graded mate-
rials without Willis coupling. Conversely, a graded
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FIG. 9: Comparison of the transmittance provided
by metamaterials with Willis coupling (blue line) and
graded material.

material incorporating Willis coupling achieves
broad bandwidth transmedia transmission com-
pactly. However, it should be mentioned that the
transformation function in this work, as well as
the grading function, are presented as polynomi-
als, whereas the definition of transformation F2 is
actually not unique. There may still be a specific
transformation function that leads to a slighter dif-
ference between metamaterial and graded material
transmittance at lower frequencies. Hence the con-
tribution of Willis terms can be mitigated and the
design of the metamaterial may be simplified.

Appendix D: Effect of the unit thickness on

the achromatic lens

Simulation results for generalized Snell’s law
based lenses with different thicknesses of units at

three different frequencies 6000 Hz, 10000 Hz, and
40000 Hz, are shown in Fig. 10. Three designs
were examined, including 25 units with a thickness
of 1.95 cm, 13 units with a thickness of 3.95 cm,
and 7 units with a thickness of 7.95 cm. All units
are separated by rigid walls with a thickness of
0.5 mm. Other configurations are consistent with
those in Sect. II C.

It can be observed that the lens with 25 discrete
units operates normally at low frequencies (6000
Hz in Fig. 10 (a) and 10000 Hz in Fig. 10 (b)).
However, a failure similar to Fig. 7 (f) also occurs
at 40000 Hz. The performance at low frequency is
basically the same when the number of units de-
creases to 13 in Fig. 10 (d), while some additional
scattering occurs in the transmission field at 10000
Hz in Fig. 10 (e). This lens does not work at all
at 40000 Hz in Fig. 10 (f). When the number of
units decreased to 7, the convergence of the sound
beam is still observed at 6000 Hz as shown in Fig.
10 (g). Interestingly, the performance at 10000 Hz
in Fig. 10 (h) can be barely maintained as well
even though the wavelength decreases to 34 mm,
which is less than half of the unit thickness. This
could be greatly beneficial for the production of
metamaterials in practice. Substantially, almost
no reflection on the water side can be perceived in
all cases even in Fig. 10 (i).

∗ Electronic address: wangyanfeng@tju.edu.cn
1 Oleg A Godin. Sound transmission through water–
air interfaces: New insights into an old problem.
Contemporary Physics, 49(2):105–123, 2008.

2 Tie Qiu, Zhao Zhao, Tong Zhang, Chen Chen, and
CL Philip Chen. Underwater internet of things
in smart ocean: System architecture and open is-
sues. IEEE transactions on industrial informatics,
16(7):4297–4307, 2019.

3 Zhi Sun, Hongzhi Guo, and Ian F Akyildiz.
High-data-rate long-range underwater communica-
tions via acoustic reconfigurable intelligent surfaces.
IEEE Communications Magazine, 60(10):96–102,
2022.

4 Timothy G Leighton. How can humans, in air, hear
sound generated underwater (and can goldfish hear
their owners talking)? The Journal of the Acoustical
Society of America, 131(3):2539–2542, 2012.

5 Allan D Pierce. Acoustics: an introduction to its
physical principles and applications. Springer, 2019.

6 Oleg A Godin. Anomalous transparency of water-air
interface for low-frequency sound. Physical Review
Letters, 97(16):164301, 2006.

7 OA Godin. Transmission of low-frequency sound
through the water-to-air interface. Acoustical
Physics, 53:305–312, 2007.

8 Oleg A Godin. Low-frequency sound transmission
through a gas–liquid interface. The Journal of the
Acoustical Society of America, 123(4):1866–1879,
2008.

9 Alice Bretagne, Arnaud Tourin, and Valentin Leroy.
Enhanced and reduced transmission of acoustic
waves with bubble meta-screens. Applied Physics
Letters, 99(22):221906, 2011.

10 Zheren Cai, Shengdong Zhao, Zhandong Huang,
Zheng Li, Meng Su, Zeying Zhang, Zhipeng Zhao,
Xiaotian Hu, Yue-Sheng Wang, and Yanlin Song.
Bubble architectures for locally resonant acous-
tic metamaterials. Advanced Functional Materials,
29(51):1906984, 2019.

mailto:wangyanfeng@tju.edu.cn


13

40000 Hz

(a) (c)

(d) (f)

6000 Hz 10000 Hz

(b)

(e)

N
o
rm

al
iz

ed
 P

re
ss

u
re

+1

-1

0

20 cm

N
o
rm

al
iz

ed
 A

m
p
li

tu
d
e0.05

0

(g) (i)(h)

N
=

2
5

N
=

7
N

=
1
3

FIG. 10: The comparison of lenses with different numbers of units designed by spatial-gauge cooperative transfor-
mation theory for the water-air interface. The performance of the lens discretized into 25 units with a thickness
of 1.95cm at (a) 6000 Hz, (b) 10000 Hz, (c) 40000 Hz. The performance of the lens discretized into 13 units with
a thickness of 3.95cm at (d) 6000 Hz, (e) 10000 Hz, (f) 40000 Hz. The performance of the lens discretized into
7 units with a thickness of 7.95cm at (g) 6000 Hz, (h) 10000 Hz, (i) 40000 Hz. The incident field on the left
is depicted with the real part of the complex pressure. The transmission field on the right is depicted with the
amplitude of the complex pressure.

11 Yan-Feng Wang, Yi-Ze Wang, Bin Wu, Weiqiu
Chen, and Yue-Sheng Wang. Tunable and active
phononic crystals and metamaterials. Applied Me-
chanics Reviews, 72(4):040801, 2020.

12 Badreddine Assouar, Bin Liang, Ying Wu, Yong Li,
Jian-Chun Cheng, and Yun Jing. Acoustic meta-
surfaces. Nature Reviews Materials, 3(12):460–472,
2018.

13 Xiao-Tong Gong, Hong-Tao Zhou, Shao-Cong
Zhang, Yan-Feng Wang, and Yue-Sheng Wang.
Tunable sound transmission through water–air in-
terface by membrane-sealed bubble metasurface.
Applied Physics Letters, 123(23):231703, 12 2023.

14 Zhandong Huang, Shengdong Zhao, Yiyuan Zhang,
Zheren Cai, Zheng Li, Junfeng Xiao, Meng Su, Qi-
uquan Guo, Chuanzeng Zhang, Yaozong Pan, et al.
Tunable fluid-type metasurface for wide-angle and
multifrequency water-air acoustic transmission. Re-
search, 2021, 2021.

15 Taehwa Lee and Hideo Iizuka. Sound propa-
gation across the air/water interface by a criti-
cally coupled resonant bubble. Physical Review B,
102(10):104105, 2020.

16 Hui Zhang, Zhi Wei, Li Fan, Jianmin Qu, and
Shu-yi Zhang. Tunable sound transmission at
an impedance-mismatched fluidic interface assisted
by a composite waveguide. Scientific Reports,
6(1):34688, 2016.

17 Eun Bok, Jong Jin Park, Haejin Choi, Chung Kyu
Han, Oliver B Wright, and Sam H Lee. Metasur-
face for water-to-air sound transmission. Physical
Review Letters, 120(4):044302, 2018.

18 Xin-Rui Li, Yu-Rou Jia, Yan-Chun Luo, Jie Yao,
and Da-Jian Wu. Mixed focused-acoustic-vortices
generated by an artificial structure plate engraved
with discrete rectangular holes. Applied Physics Let-
ters, 118(4), 2021.

19 Chengzhi Shi, Marc Dubois, Yuan Wang, and Xiang
Zhang. High-speed acoustic communication by mul-

tiplexing orbital angular momentum. Proceedings
of the National Academy of Sciences, 114(28):7250–
7253, 2017.

20 Shao-Cong Zhang, Hong-Tao Zhou, Xiao-Tong
Gong, Yan-Feng Wang, and Yue-Sheng Wang. Dis-
crete metasurface for extreme sound transmission
through water-air interface. Journal of Sound and
Vibration, 575:118269, 2024.

21 Bogdan-Ioan Popa. Broadband sound pressure en-
hancement in passive metafluids. Physical Review
B, 96(9):094305, 2017.

22 Ping Zhou, Han Jia, Yafeng Bi, Yunhan Yang,
Yuzhen Yang, Peng Zhang, and Jun Yang. Water–
air acoustic communication based on broadband
impedance matching. Applied Physics Letters,
123(19):191701, 2023.

23 Peder C Pedersen, Oleh Tretiak, and Ping He.
Impedance-matching properties of an inhomoge-
neous matching layer with continuously changing
acoustic impedance. The Journal of the Acoustical
Society of America, 72(2):327–336, 1982.

24 Hong-Tao Zhou, Shao-Cong Zhang, Tong Zhu, Yu-
Ze Tian, Yan-Feng Wang, and Yue-Sheng Wang.
Hybrid metasurfaces for perfect transmission and
customized manipulation of sound across water–air
interface. Advanced Science, 10(19):2207181, 2023.

25 Jingjing Liu, Zhengwei Li, Bin Liang, Jian-Chun
Cheng, and Andrea Alù. Remote water-to-air
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