Optimization of Pockels effect in poled amorphous waveguides for efficient electro-optic modulation

SIRAWIT BOONSIT¹, VASILEIOS MOURGELAS¹, LARA KARAM², MILOS NEDELJKOVIC¹, NADEGE COURJAL³, MARC DUSSAUZE² AND **GANAPATHY SENTHIL MURUGAN¹**

1 Optoelectronics Research Centre, University of Southampton, Southampton, SO17 1BJ, United Kingdom 2 Institut des Sciences Moléculaires, Université de Bordeaux, Talence Cedex 33405, France 3 FEMTO-ST TEMIS, 15B avenue des Montboucons, BESANCON Cedex 25030, France *sb5e21@soton.ac.uk

Motivation

Crystalline materials are renowned for their strong nonlinear response $(\chi^{(2)})$ but encounter fabrication challenges such as low index contrast in traditional diffused lithium niobate waveguides and difficulty in etching for lithium niobate-on-insulator platform [1]. In contrast, amorphous materials offer fabrication flexibility due to their isotropic nature but lack inherent second-order nonlinear response. Nonetheless, this deficiency can be addressed through techniques such as thermal poling. Recently, inducing nonlinearity in materials like sodium-doped niobium oxide (Nb₂O₅) thin films have shown promising results ($\chi^{(2)} = 29 V. cm^{-1}$, comparable to lithium niobate) [2,3].

University of Southampton

Figure. 2. Surface of Sodium-doped Nb_2O_5 poled film (a) and SHG intensity as a function of the incident power for the films of different thicknesses measured by specular reflection SHG microscopy (b) [2]

Electro-optic modulators (EOMs) are vital in optical communication systems, offering precise control over optical signals. Traditionally, they rely on materials

Simulation results

Single mode waveguide

Including SiO₂ top cladding

- exhibiting the electro-optic effect, like lithium niobate (LiNbO₃), known for strong coefficients. However, their fabrication complexity and bulky components hinder integration into compact photonic circuits.
- \succ Nb₂O₅ thin films, characterized by broad transparency, a high refractive index (~2.1-2.2) at 1550 nm, and significant induced $(\chi^{(2)})$, emerge as promising candidates for advanced waveguide platforms

Objectives

- Design and optimize the EO phase modulator based on
- Nb_2O_5 strip and rib waveguides
- Examine two poling configurations: homogenous and patterned poling
- □ Assess influence of poling direction on optical field using both TE and TM polarizations
- \Box Achieve lowest possible voltage-length product (V_{π}L) for
- EO phase modulators.

Figure. 4. Single mode dimensions of Strip waveguide (a), Rib waveguide (b) for both TE and TM modes

Figure. 5. Field confinement factor of Strip waveguide (a) and Rib waveguide (b) for each single mode waveguide dimension

Figure. 10. Diagram of Rib (left) and Strip (right) waveguide with SiO_2 cladding

Waveguide	W (μ m)	T (μm)	Gap (μm)	<i>δg</i> (μm)	Loss (dB/cm)	V _π L (V.cm)
Strip	-	-	2.1	0.45	~1	18.8
Strip with	4 5	0.88	2.1	0.45	0.17	16.9
cladding	1.5		1.6	0.25	2	12
Rib	-	-	4.5	0.80	~1	45.6
			4.5	0.80	0.0005	46.4
Rib with top cladding	1.8	0.5	2.2	0.41	0.30	18.6
g			1.9	0.26	1.82	14.6

Table 1. Summary of voltage-length product of strip and rib
 waveguide with/without top SiO₂ cladding

Conclusions

Strip waveguide (0.88 µm thick, 1 µm wide) demonstrated significant modulation with figure of merit ($V_{\pi}L$) of 20 V.cm, attributed to TE polarization interaction.

Figure 3. The diagram shows the model of rib waveguide (left) and strip waveguide (right) with labelled parameters

Simulation Procedure

 $\left(\frac{1}{n_x^2} - r_{13}E_z\right)x^2 + \left(\frac{1}{n_y^2} - r_{13}E_z\right)y^2 + \left(\frac{1}{n_z^2} - r_{33}E_z\right)z^2 - 2xzr_{13}E_x = 1$

• Patterned poling:

 $\left(\frac{1}{n_x^2} - r_{11}E_x - r_{13}E_z\right)x^2 + \left(\frac{1}{n_y^2} - r_{21}E_x - r_{13}E_z\right)y^2 + \left(\frac{1}{n_z^2} - r_{21}E_x - r_{33}E_z\right)z^2$ $-2xz(r_{13}E_x + r_{21}E_z) = 1$

Figure. 6. Plot of gap between anode and cathode (G) for a loss of 1 dB/cm and the gap between waveguide and electrode (δg) for a Strip waveguide (a) and a Rib waveguide (b) for each single mode waveguide dimension

Electric field distribution, change of effective index

Figure. 7. (a) Cross section of fundamental TE mode distribution in the rib waveguide. (b) DC electrical field distribution at 1,1.5,2,2.5,3,3.5, 4, 4.5 and 5 V. (c) Effective refractive index change due to the applied voltage

- Rib waveguides showed nearly two-fold lower performance (45) V.cm) due to wider electrode gaps.
- Addition of SiO₂ cladding layer improved efficiency (17 V.cm for strip, 19 V.cm for rib).
- Future work will focus on fabricating the EO phase modulator
- with induced nonlinearity of Nb_2O_5 .

Figure. 11. Induced Second Harmonic Generation (SHG) signal showing the sustainability of induced optical nonlinearity through waveguide fabrication.

Funding

This work was supported by "The Future Photonics Hub" (EPSRC grant EP/N00762X/1). SB thanks the Thailand government for his PhD studentship.

References

1. Wang C, Zhang M, Chen X, Bertrand M, Shams-Ansari A, Chandrasekhar S, et al. Integrated lithium niobate electro-optic modulators operating at CMOS-compatible voltages. 2018;562(7725):101-4.

2. Karam, L., F. Adamietz, D. Michau, et al., Second-Order Optical Response in Electrically Polarized Sodo-Niobate Amorphous Thin Films: Particularity of Multilayer Systems. Advanced Photonics Research, 2021. 2(6): p. 2000171.

3. Karam, L., F. Adamietz, D. Michau, et al., Electrically micro-polarized amorphous sodo-niobate film competing with crystalline lithium niobate second-order optical response. Advanced optical materials, 2020. 8(13): p. 2000202.

4. Verbiest, T., K. Clays, and V. Rodriguez, Second-order nonlinear optical characterization techniques: an introduction. 2009: CRC press

Modulating efficiency, voltage-length product

(C)

>

Figure. 8. Voltage-length product of single mode dimensions of Strip waveguide (a) TE (b) TM modes for both poling conditions

Figure 9. Voltage-length product of single mode dimensions of Rib waveguide (a) TE (b) TM modes for both poling conditions

14000

12000

10000

- 8000

6000

- 4000

- 2000