
Optimized spectral clustering methods for potentially divergent
biological sequences

ABSTRACT

Many recent research works in bioinformatics demonstrated that
clustering is a very efficient technique for sequence analysis. Spectral
clustering is particularly efficient for highly divergent sequences1 and
GMMs (Gaussian Mixture Models) are often able to cluster overlapping
groups given an adequately designed embedding. In the present paper, we
use spectral embedding and Mixture Models for clustering potentially
divergent biological sequences. Our approach results in a pipeline
consisting of the following steps: i- sequence alignment, ii- pairwise affinity
computation of the sequences, iii- Laplacian Eigenmap embedding of the
data, and iv- GMM-based clustering. Improving the quality of the generated
clustering and the performance of this approach is directly related to the
enhancement of each one of these four steps.

Our main contribution is proposing four GMM-based algorithms for
automatically selecting the optimal number of clusters and optimizing the
clustering quality. A clustering quality assessment method, based on
phylogenetic trees, is also proposed. Moreover, a performance study and
analysis have been conducted while testing different clustering methods and
GMM implementations. Experimental results demonstrated the superiority
of using the BIC (Bayesian Information Criterion) for selecting the optimal
GMM configuration.

Keywords: Biological sequence clustering, Clustering quality analysis,
Spectral clustering, Gaussian Mixture Model, Eigenmap, Affinity matrices.

1. INTRODUCTION

In the last two decades, the cost of sequencing a genome has decreased
at a dramatic rate from 100 million dollars at the end of the 20 th century to
less than $1000 nowadays. This led to an explosion in the number of
sequenced genomes and proteins. The large number of newly discovered
biological sequences allows the researchers in bioinformatics to study the
relationships between the different sequenced species and to reconstruct

1 Having an intra-cluster similarity of 85% or lower 1.

1

their phylogenetic tree and ancestors. Many tools were developed to analyze
the sequenced data. In particular, clustering packages were implemented to
compare a set of sequences and regroup them into clusters according to their
similarity. Howerver, it is worth emphasizing that mutations can lead to
similarities lower than 85% between sequences belonging to the same
cluster 1.

The clustering of biological sequences is currently playing a paramount
role in linking the huge number of newly discovered sequences to their
variants and ancestors. However, current methods can only partially tackle
this problem due to its scale and complexity. Many research works [2-4]
have concluded that spectral clustering may represent an efficient tool for
biological sequence clustering and, to our knowledge, only one of them has
been publicly released 4. In 4 the relevance of using GMMs (Gaussian
Mixture Models) for unsupervised clustering of biological sequences was
demonstrated through various numerical validation experiments. Contrarily
to most of the widely used clustering tools, GMM-based approaches require
no user intervention and are well adapted to clustering divergent sequences
as well. The targeted sequences could be mutations from a same gene (or
genome), or even cross-species divergent but homologous sequences or
fragments.

The difficulty in studying newly discovered biological sequences lies
primarily in their unknown degree of divergence when compared to each
other or to other known sequences. Therefore, neither the accurate selection
of the similarity threshold, nor the selection of the clusters’ centroids is
trivial for a traditional clustering tool. In such cases, traditional tools,
requiring a user-defined similarity threshold, cannot be considered reliable.
On the other hand, GMM-based alternatives which do not require any a
priori knowledge of an arbitrary similarity threshold, seem to be well
adapted to efficiently tackle such problems. GMM showed good
classification performances in several applications where clusters overlap,
such as biological sequence clustering 4, age and gender recognition 5, real-
time segmentation of HD video 6, etc. GMMs and other similarly finite
mixture models 7 are usually calibrated using an Expectation Maximum
(EM) algorithm [8-10] or one of its accelerations [11-13]. However, the use
of EM-type algorithms requires expertise due to the well-known drawbacks
[14, 15] and computational issues for large and high dimensional data 16.

2

Therefore, users should rely on packages that carefully address these subtle
technical issues.

The tool presented in 4 implements the following operations for
clustering a set of biological sequences: i- sequences’ alignment, ii-
pairwise affinity computation of the sequences, iii- Laplacian Eigenmap
embedding of the data, and iv- GMM-based clustering. The quality of the
generated clustering, and the performance of this approach, are often greatly
impacted by the tool or the algorithm used at each stage. These tools or
algorithms affect the alignment quality, the pairwise similarity computation
between sequences, and the GMM performance. The present work
investigates how the use of different techniques and their implementations
at the clustering stage contribute to accelerating the clustering or improving
its quality. Our contributions include suggesting a significantly faster
substitute to the GMM that was used in 4 while proposing new GMM-based
algorithms for enhancing the quality of the clustering. The experimented
features, methods, and algorithms were integrated into a clustering package
published on a public online repository2.

The remainder of this article is organized as follows. In Section 2, the
clustering of biological sequences is introduced and different clustering
techniques are detailed. The sequences’ alignment, the affinity computation
methods, and some existing GMM implementations are also presented in
this section. In Section 3, four approaches to automatically choose the most
relevant clustering based on given criteria are presented. The experimental
protocol is detailed in Section 4. The results of the experiments are
presented and discussed in Section 5. Finally, Section 6 recapitulates our
findings and presents some future prospects for our project.

2. State of the art

2.1. Clustering biological sequences

Many research works were conducted to efficiently cluster biological
sequences. However, most of the proposed approaches are highly sensitive
to user-defined parameters, i.e. the similarity or identity threshold.
Moreover, they are designed to quickly cluster highly similar sequences.
Indeed, the lowest possible similarity threshold is usually larger than 75%

2 https://github.com/johnymatar/SpCLUST-V2/tree/master/src/code
3

(e.g., in tools like CD-HIT-EST), and most of the experiments conducted in
the studies introducing these tools, only consider similarities larger than
85%. These tools are not able to accurately detect communities among
potentially divergent sequences. To sum up, existing clustering packages
can be broadly divided into two categories, based on their objectives:

• packages and tools suitable for fast clustering of highly similar
sequences but requiring a user-defined threshold;

• intervention-free tools that can even cluster potentially divergent
sequences.

The most popular algorithms and tools from both categories are
presented in the next subsections.

2.1.1. Fast clustering of highly similar sequences

High-speed clustering of highly similar sequences mostly relies on
greedy, hierarchical, Dirichlet Process means (DP-means) 17, or mean shift
18 algorithms. It requires some user-defined parameters, such as a similarity
or identity threshold and, optionally, the centroids of the clusters. The
sequences are then grouped into clusters based on the provided parameters.
Following this scheme, several tools are publicly available, such as CD-HIT
19, UCLUST 20, DNACLUST 21, HPC-CLUST 22, and DACE 23. Most
of these tools group the sequences around the clusters’ representatives, or
centroids, based on a user-provided similarity threshold, but they differ in
the way they choose these representatives.

CD-HIT and DNACLUST order the sequences according to their
length. Each sequence is either added to a previously created cluster, if its
similarity with a previously chosen centroid does not exceed the user-
provided threshold, or it is considered as a new centroid for a new cluster. In
contrast, UCLUST performs the classification without prior sorting of the
input sequences, thus the input order might impact the resulting clustering.

In order to achieve better clustering speed, various approaches were
adopted by the aforementioned tools. CD-HIT avoids the costly pairwise
sequences’ alignment by using word counting for computing similarities.
HPC-CLUST takes an already aligned set of sequences as input and it uses a
distributed hierarchical algorithm that clusters subsets of the sequences and
finally merges the closest clusters. DACE uses parallel computation to
rapidly cluster large datasets. After an iterative partitioning of the input

4

sequences into non-intersecting subsets, DACE uses the DP-means
algorithm to cluster the sequences in parallel.

The type of supported input sequences represents another distinction
between the clustering tools. The CD-HIT package offers CD-HIT-EST for
nucleotide sequences clustering and CD-HIT-PROTEIN for protein
sequences clustering, while UCLUST and DACE can cluster both types of
sequences. Conversely, DNACLUST and HPC-CLUST are not designed to
handle protein sequences.

2.1.2. Intervention-free clustering of potentially divergent sequences

The mutations in biological sequences occur in variable and
unpredictable degrees which turns the choice of the identity or similarity
threshold into a challenging dilemma when clustering a set of sequences
without a priori knowledge. Only a few recent studies tackled this problem
and were successful in clustering potentially divergent sequences [4, 24].
Their solutions rely on mixture models and perform the clustering based on
a probability distribution 25. Contrary to the tools targeting highly similar
sequences mentioned above, these packages do not need any user
intervention, especially for the choice of the identity or similarity threshold.

The authors in 24 proposed an original Python-based clustering package
that uses an unsupervised learning approach, namely the Gaussian Mixture
Model clustering applied after a Laplacian Eigenmap dimensionality
reduction. We note that the Gaussian Mixture Model 26 is a probabilistic
model for detecting sub-communities within a certain community. The
objective of this package is accurate clustering even for divergent
sequences. The number of clusters is determined using statistical criteria,
such as the Bayesian information criterion (BIC) 27. The use of this
statistical criterion leads to an autonomous process that does not rely on
neither user-chosen clusters' centroids, nor identity thresholds. This
clustering package consists of four main stages.

1. Sequence alignment: this stage relies on the third-party module
MUSCLE 28, to align the sequences.

2. Similarity matrix calculation: an NxN square matrix, where N is the
number of input sequences and each (i,j) element is the pairwise similarity
index between sequences i and j. Similarity indices are derived from the

5

pairwise distances between sequences that are computed with the
EDNAFULL scoring matrix.

3. Dimensionality reduction: the Laplacian Eigenmap of a transformed
version of the similarity matrix, called the affinity matrix, is computed,
leading to a size reduction of the matrix.

4. Sequence clustering: in this last stage, the Gaussian Mixture Model
is applied to the results obtained in step 3 to cluster the sequences.

This model exhibited competitive results, especially in the case of
highly divergent sequences. However, its speed significantly degraded
when applied to large datasets.

Since the similarity matrix calculation stage represents an intensive
computation step of the order of O((N2-N)/2), the authors in 4 proposed an
optimized hybrid C++ /Python package where the second stage is
implemented in C++ and computed in parallel to reduce its execution time.
Based on the experimental results published in 4, the hybrid package
delivers up to 126X speed-up, when compared to the original package. In
addition, its capabilities were extended to cluster protein sequences, by
introducing two additional scoring matrices, namely BLOSUM62 and
PAM250 29.

Despite the advantageous intervention-free property of the latter
algorithm and its performance improvement, it is still not expected to scale
well for large datasets. This is due to the alignment required in its first stage.
Conversely, further accuracy and speed improvements remain possible by
enhancing each one of its stages. In the next three subsections, the possible
improvements for each stage are discussed.

2.2. The sequences' alignment and similarity computation

One of the fundamental techniques for visualizing the dissimilarities
and computing the distance between a pair of sequences is their alignment.
This technique discloses the mutations, insertions, and deletions phenomena
that differentiate the sequences. Therefore, many efficient algorithms were
proposed for aligning the sequences and computing the pairwise distances,
such as Needleman-Wunsch, Sankoff and Sellers 30. MUSCLE 28, MAFFT
31, DECIPHER 32, and CLUSTALX 33 are a few examples of alignment

6

tools. The alignment speed and accuracy represent two major differentiating
aspects between these tools that might influence the clustering quality.
Therefore, it is crucial to investigate the effects of the alignment on the
spectral clustering technique in order to enhance the quality of the produced
clustering.

2.3. The affinity matrix computation

Following the alignment, the pairwise distance is computed using a string
metric, such as the Needleman-Wunsch distance. Then, the similarity is
inferred from the pairwise distance. For instance, in 21, the similarity is
equal to:

1− distance
 length of the shorter sequence

The distance choice and the similarity definition vary from package to
package, which might produce different clusterings, even when considering
the same similarity threshold.

In 24 and 4, the affinity matrix was computed as a Random Walk
Normalized Laplacian and it proved to be relevant for the clustering of
biological sequences. However, other interesting matrices have been
proposed for spectral clustering [34-37], such as the Non-normalized
Laplacian, Modularity 35, and the Bethe Hessian (Deformed Laplacian) 38
. These matrices are defined as follows:

 Non-normalized Laplacian:

L=D−A

where A is the adjacency matrix between the sequences and D is its
diagonal matrix of degrees.

 Random Walk Normalized Laplacian:

Lrw=D−1L ,

where D is the degrees matrix of the adjacency matrix and L is the
Nonnormalized Laplacian matrix. The Laplacian matrix is symmetric and
positive semidefinite.

7

 Modularity:

M= 1
K (A− 1

K
k kT)

where A is the adjacency matrix, k is the degrees vector of A, and K is the
total degree of A. High values for this quality function reveal the possible
existence of strong communities.

 Bethe Hessian:

H r=(r2−1) I+D−rA

where I is the identity matrix, D is the degrees matrix of the adjacency
matrix A, and the constant r is the square root of the average degree of the
graph, as suggested in 36.

2.4. The GMM implementations

The last stage of this spectral clustering tool uses the GMM. Various
implementations of this mixture model are publicly available, like the
GaussianMixture() 39 and spectral_embedding() 40 functions from
Python's scikit-learn library 41. Moreover, there are also free and standalon
e3 C++ implementations of the GMM, such as the paperrune 42 and our
implementation4 43. The GMMs implemented with a lower-level
programming language (C++ vs Python) are expected to compute faster and
enhance the speed and the scalability of this heavy-computational approach.

Most of these implementations of the GMM take an m×n features
matrix5 as input, where m is the number of features and n is the number of
samples. Conversely, spectral_embedding() 40 merges the dimensionality r
eduction and the sequence clustering phases and takes an n×n pairwise
similarity matrix as input, where n is the number of samples. The
(normalized or not) Laplacian matrix computation is embedded in the
spectral_embedding() function. The dimension of the projection subspace,

3 which uses standard libraries and does not require any additional software to work.
4 whose methods are inspired from Python’s GaussianMixture().
5 This matrix is formed by the most significant Eigenvectors computed from the affinity
matrix.

8

reflecting the number of resulting clusters can be specified; by default, this
parameter is set to 8.

These libraries do not exactly apply the same algorithms and therefore
they do not give identical results. Moreover, these implementations do not
offer the same features. For example, some of them include the computation
of some information criteria that reflect the quality of the GMM 44 such as
the Log-Likelihood implemented in 42, or the Bayesian Information
Criterion (BIC) implemented in 43 and 39. The BIC is defined as follows:

BIC=ln (n)k−2 ln (L)

where n is the data size, k is the number of features for the model, and
L is its likelihood. The spectral_embedding() function does not provide any
method to compute statistical indices of quality. These statistical indexes
can be exploited to improve the produced clustering.

These libraries could also take a seed as input that affects the initial
random distribution, and might possibly affect the resulting clustering. If
not provided, this seed is randomly generated. Since, the C++
pseudorandom number generator, used to generate random seeds in the
GMM implementations, is not cross-platform consistent (the rand()
function is not the same depending on the platform, and for the same seed, it
might generate different numbers on different operating systems), a custom
pseudorandom generator was introduced in 43 in order to preserve the
consistency of the results. It is based on Microsoft's rand formula:
(a∗seed+c)%m where a=214013, c=2531011, and m=231. If no seed is
provided by the user, the seed is equal by default to 0. In the next section, the
main contributions of this work are presented.

3. Approaches and methods

3.1. Four approaches to fine-tuning the GMM

Given the promising advantages of the spectral clustering in the
aforementioned tools [4, 24], our approach is to exploit the parameters of
the state-of-the-art GMM implementations, to fine-tune the produced
clusterings and improve their quality. Four approaches to automatically
choose the most relevant clustering based on given criteria are presented in

9

this section. The first algorithm consists of maximizing the GMM
likelihood. This is achieved by performing several iterations as illustrated in
Figure 1.

Figure 1: Choosing the best clustering based on maximum likelihood.

The given number of clusters is modified at each iteration, and it ranges
between 1 and the number of sequences. The second approach is similar to
the previous one. It simply substitutes the maximum likelihood with the
lowest BIC. It is woth noting that additional implementations using the AIC
(Akiake Information Criterion) and ICL (Integrated Complete Likelihood)
were omitted because they resulted in the same output when compared to
the implementation using BIC.

The third approach consists of executing the previous algorithm a user-
defined number of times, with a different random seed at each iteration. Let
us recall that the random seed impacts the initial random distribution of the
centroids, leading to a potentially different clustering for each seed. The
clustering that scores the maximum number of occurrences is selected. The
counting procedure of the occurrences of each clustering distinguishes
between the same clustering with different labeling and different clustering.
Figure 2 illustrates this method.

10

Figure 2: Choosing the best clustering based on the occurrence frequency.

Its computation time, compared to the previous one, is proportional to
the chosen number of iterations. Moreover, this algorithm requires a larger
amount of memory, since it saves the labels vector for the resulting
clustering at each iteration. Therefore, it requires a substantial amount of
memory if the input dataset and the chosen number of iterations are both
large.

The fourth algorithm shares some aspects of similarity with the third
one. It successively clusters the sequences using different seeds, but just
keeps in memory the designated best clustering (e.g., the one that scores the
best BIC). Moreover, in order to reduce the execution time of this algorithm,
an additional parameter can be defined to stop the iterative process before
reaching the chosen number of iterations. For example, if no BIC
improvement is detected after a certain number noImp of consecutive
iterations.

11

Figure 3: Choosing the best clustering based on the best reached BIC.

Figure 3 illustrates this algorithm that requires less computation time
than the previous one in the case where the stop condition is fulfilled prior to
reaching the chosen number of iterations. The detailed inputs and
parameters, for the implementations that were used in these four algorithms,
can be found in Tables 4 and 5 in Appendix 1. To evaluate the four methods
on real datasets, where a clustering ground truth is unknown, an additional
method for selecting a reference clustering is proposed in the next
subsection.

3.2. Generating a reference clustering

When the properties of a certain set of sequences are unknown,
establishing the evolutionary relationship between these sequences is a
challenging step. This relationship can be represented by a phylogenetic tree
that helps in individually assessing each clustering of the dataset. Since it is
possible in each clustering to identify valid subclusters, it is not fair to assess
all the clusterings by using a single unified reference per dataset. Therefore,
we define a custom algorithm for assigning a reference for each produced
clustering. Primarily, this algorithm aims to define a reference clustering,

12

that is based on an existing clustering, and in which a certain acceptable
cluster is supposed to fully cover a sub-branch in the phylogenetic tree. The
algorithm takes as input the considered clustering and the phylogenetic tree
and produces the reference clustering. It consists of the following steps:

1. From the given clustering, the elements of the phylogenetic tree
are assigned labels as illustrated in Figure 4. The labels indicate to
which cluster each sequence belongs in the given clustering. For
example, in Figure 4 the clustering produced four clusters: clusters 1
to 4 are represented by the labels *, #, -, and + respectively.

2. The depth of the phylogenetic tree (TD) is computed and a counter
is initialized to TD−1. At each iteration, it is decremented by 1 till it
reaches 0.

3. On each iteration, for each inner node that has a depth equal to the
counter, the following cases are possible:

a) if all the first-level descendants of the node are leaves, a cluster
consisting of these leaves is formed. The newly formed cluster
is labeled according to the dominant label, the label that occurs
the most among the cluster elements. If no dominant label was
found, i.e. two labels have the same high number of
occurrences, the undefined label is attributed to the cluster.

b) if the first-level descendants of the node include a leaf and at
least one already formed cluster, the leaf is added to the cluster
that is the closest to it. The cluster is relabelled according to the
dominant label between its elements.

c) if the first-level descendants of the node include at least two
clusters and: a- two adjacent clusters have the same label, they
are merged, b- one of the clusters is labelled as "undefined", it is
merged with an adjacent cluster and the resulting cluster is
relabelled according to the dominant label between its
elements, c- two clusters have different labels, they are not
modified, d - one of these clusters is small (less than 4

13

elements) and is surrounded by two larger clusters having the
same label, the small cluster is merged with its surrounding
clusters because it is considered to be just noise in the cluster.

4. After the final iteration, if there are still clusters with undefined
labels, they are assigned new labels. If two or more clusters have the
same label, they are also assigned new labels.

Figures 4 and 5 illustrate how a reference clustering is generated
according to the algorithm described above. In the first sub-figure of Figure
4, the elements of the phylogenetic tree are assigned labels ¿ or +) which
indicate to which cluster each sequence belongs in the given clustering. The
depth of each node in the tree is also displayed. In this example, the depth of
the tree (TD) is equal to 6. After this initialization step, the iterative process
starts with the inner nodes at depth ¿ TD−1. The second subfigure of Figure
4 illustrates the first iteration of the algorithm. In this example, there is only
one inner node with a depth ¿5. It contains two leaves/sequences (Elt 11 and
Elt 12). Both sequences belong to the third cluster. Therefore, a cluster
containing both sequences is formed and labeled as "Cluster 3" in the
reference clustering. This new cluster is represented by a red rectangle in
Figure 4. Figure 5 illustrates the remaining iterations.

Figure 4: Initial state and first iteration.

14

Figure 5: Clusters identification and final state.

At the second iteration with inner nodes of depth ¿4, three new clusters
are created. The first one consists of Elt 1 and Elt 2 and is labeled as "Cluster
1" because both of its sequences belong to the first cluster. The second
cluster is created in the same way as the previous one. The third new cluster
consists of Elt 14 and Elt 15 which belong to different clusters and thus there
is no dominant label in this cluster. For this reason, this cluster is labeled as
"Undefined". It can also be noticed that Elt 3 was added to "Cluster 3" and
since "Cluster 3" is still the dominant label in this cluster, its label was not
changed. Figure 5 displays the next three iterations and then the iterative
process stops at the root node ¿ depth ¿0¿. In this example, the resulting
reference clustering consists of three clusters: the first two are homogeneous
but the third one contains sequences belonging to three different clusters in

15

the given clustering. However, six of its nine sequences belong to the same
cluster and thus their dominant label is assigned to this cluster.

4. Experimental protocol

4.1. The datasets

Three real biological sequence datasets have been considered to evaluate the
proposed approaches in the spectral clustering pipeline:

 A first set of 78 complete genome sequences, belonging to HIV-1
type B virus samples identified in Cyprus, and downloaded from the
Los Alamos National Laboratory's website6.

 A second set of 100 genomic sequences, belonging to the NADH
dehydrogenase 3 (ND3) mitochondrial gene, from a collection of
Platyhelminthes and Nematoda species.

 A third set of 24 different nucleoprotein (NP) sequences, belonging
to the strain A/H1N1 of the Influenza virus, and downloaded from
NCBI's Influenza Virus database7.

Table 1 shows a brief description of the first three datasets which
contain each a single type of sequences. The statistics on the sequences
were retrieved from the output of MUSCLE 28. The pairwise similarity,
between the sequences of each dataset, was computed using MatGAT
45 which calculates the similarity after using the Myers and Miller
global alignment algorithm 46.

Table 1: Statistical description of the real datasets.

Dataset
Seqs
count

Max
length

Avg
length

Min
similarity

%

Max
similarity

%

Avg
similarity

%
HIV 78 8272 8167 86 99.4 89.6

NADH 100 369 341 46.2 99.7 62.8
Influenza 24 498 498 97.4 99.8 98.8

Since a clustering ground truth is not available for these three datasets, a
phylogenetic tree, showing the evolutionary relationship among the

6 https://www.hiv.lanl.gov/components/sequence/HIV/search/search.html
7 https://www.ncbi.nlm.nih.gov/genomes/FLU/Database/nph-select.cgi

16

sequences of each set, is used for producing individual reference clusterings
later, based on the proposed method in Section 3 Indeed, there are many
tools that, given an aligned set of sequences, can build the phylogenetic tree
of these sequences. In this work, the tree for each set of data was built
according to the following procedure:

1. MUSCLE 28 computed the sequences' alignment.

2. PhyML 3.0 47 generated the phylogenetic tree. The automatic
model selection, based on the likelihood criteria, was selected. This
selection, provided by SMS 48, was set to use the BIC (Bayesian
Information Criterion).

3. The resulting phylogenetic tree was visualized using PRESTO
(Phylogenetic tReE viSualisaTiOn8).

All these assembled datasets are publically hosted on an online
repository9.

4.2. The experiments

Our set of experiments aims to compare the GMM implementations
presented in Section 2 and the GMM-based algorithms proposed in Section
3. The three first datasets were used for this set of experiments. In this
evaluation, after the alignment stage using MUSCLE, the similarity
matrices and the Eigenmaps are calculated using the same algorithms used
in SpCLUST. The clustering is then computed using one of the following
methods:

 The GaussianMixture() function, from the scikit-learn
library, that is embedded in SpCLUST.

 The algorithm introduced in Figure 1, which uses the
paperrune’s C++ GMM implementation and labeled
"MaxLikelihood".

 The spectral_embedding() function using the Normalized
Laplacian matrix also from the scikit-learn library.

8 http://www.atgc-montpellier.fr/presto/
9 https://github.com/johnymatar/SpCLUST-V2/tree/master/src/datasets

17

 The remaining three algorithms, presented in Section 3, that
use our C++ GMM implementation. The method described in Figure
1 in which the maximum likelihood is replaced by the best BIC, is
labelled "Fast". The one illustrated in Figure 2 is called "MostFreq",
and it executes 500 iterations. Finally, the last algorithm outlined in
Figure 3 is named "BestBIC". It executes a maximum of 100
iterations but stops earlier if no improvement is detected after 70
consecutive iterations.

We recall that the computation of the Laplacian Eigenmap is embedded
in the spectral_embedding() function. Conversely, for the
GaussianMixture() function, the Eigenmap is computed using functions
from the numpy linear algebra library. For the remaining C++
implementations of the GMM, an implementation10 of Jacobi's Eigen
solving algorithm is used. The used datasets will be also clustered using
UCLUST and CD-HIT, which are the best competitors to SpCLUST. Since
the spectral_embedding() function does not include any method that
facilitates the choice of the adequate number of clusters, this number will be
set similarly to the number of clusters produced by SpCLUST.

5. Experimental results

We recall that in our set of experiments, the presented GMM
implementations in Section 2 and the proposed algorithms detailed in
Section 3 are evaluated. The datasets are also clustered using UCLUST and
CD-HIT for comparison. In order to cover a wide range of similarities, the
identity thresholds chosen for UCLUST and CD-HIT ranged between 0.5
and 0.99, with a step of 0.1 in the [0.5,0.8[interval, and a step of 0.01 in the
¿ interval. For any identity threshold lower than 0.8, CD-HIT failed to
cluster the data. For the sake of comparison, only the produced clusterings
having a number of clusters close to the ones from SpCLUST were
considered.

To evaluate the quality of each clustering, the degree of similarity
between the clustering and the reference must be computed using a relevant
metric. Many clustering quality metrics are available in the literature [49, 50
]. In this work, the Adjusted Rand Index (ARI) was selected to compute the
degree of similarity, because it only requires the labels, and it is able to

10 https://github.com/edwardlfh/testv2/tree/master/jacobi
18

compare clusterings with different number of clusters. This index computes
a similarity measure between two clusterings by considering all pairs of
samples and counting pairs that are assigned in the same or different
clusters. It ranges from 0 for two completely different clusterings to 1 for
two identical ones.

Table 2 displays, for each dataset and each clustering returned from the
considered methods, the number of clusters in both generated and reference
clusterings, and the ARI between them. Note that ARI is omitted in the
following three special cases:

1. when a clustering consists of only one cluster;
2. when the number of clusters, formed of singletons, is greater

than half of the number of sequences (most of the sequences are
clustered as one sequence per cluster);

3. when the labels of adjacent leaves on the phylogenetic tree
are very heterogeneous and the resulting clustering does not reflect
any correct grouping on the tree.

The clusterings, matching the first special case, will be discussed later
according to the properties of the involved dataset. Conversely, those
matching the second case are not significant, because the sequences
belonging to a same dataset are a priori known to be related.

Table 2: External clustering validation using the Adjusted Rand Index.

HIV NADH Influenza

Nb. Clusters
ARI

Nb. Clusters
ARI

Nb. Clusters
ARI

ref. gen. ref. gen. ref. gen.

SpCLUST 4 5 0.777 5 4 0.957 4 5 0.932

Paperrune's GMM - MaxLikelihood 6 6 0.236 11 8 0.838 3 3 0.847

sklearn.manifold.spectral_embedding () 7 3 0.119 7 4 0.694 4 3 0.653

Fast 3 3 0.801 4 2 0.804 - 1 -

MostFreq 2 2 0.941 4 2 0.841 - 1 -

BestBIC 3 3 0.828 4 3 0.839 2 2 1

UCLUST (id 0.5) - 78 - 5 6 0.374 - 1 -

UCLUST (id 0.88) - 78 - - 83 - - 1 -

UCLUST (id 0.89−0.94) - 78 - - 86−95 - 2 2 1

19

UCLUST (id 0.95−0.96) - 78 - - 97 - 3 3 1

CD-HIT (id 0.91) - 66 - - 90 - - 1 -

CD-HIT (id 0.92) - 69 - - 92 - 1 2 -

CD-HIT (id 0.93-94) - 71−72 - - 94-95 - 2 2 1

CD-HIT (id 0.95−0.97) - 73−75 - - 97−98 - 3 3 1

The MostFreq algorithm scored the best ARI in the case of clustering the
HIV set of sequences. The BestBIC version obtained the second rank,
followed by the Fast algorithm. As expected, when the number of clusters in
the reference clustering and the generated clustering match, the latter
obtains a good score. On the other hand, failing to produce the same number
of clusters as the reference clustering, might penalize the score of the
generated clustering.

For example, SpCLUST produced one more cluster than the reference
clustering, and spectral_embedding() produced three clusters less than the
reference because in the reference clustering non-adjacent clusters on the
tree were not merged. Finally, UCLUST and CD-HIT both failed to cluster
this set, although its sequences show a minimum similarity of 86% (cf.
Table 1). Indeed, CD-HIT produced 5 clusters when the similarity
parameter was set to 0.8, but these clusters do not reflect any meaningful
grouping and scored the lowest ARI.

SpCLUST scored the highest ARI values for the NADH dataset,
followed by our GMM implementation with the MostFreq and BestBIC
approaches respectively. The MostFreq and Fast approaches produced two
highly similar clusterings as indicated by their close ARI scores and the
same number of clusters. The MaxLikelihood approach detected the largest
number of accurate clusters, while MostFreq produced the most accurate
clustering among our GMM implementations. As for the HIV set, UCLUST
and CD-HIT both failed to cluster this divergent dataset: although UCLUST
returned a reasonable number of 6 clusters when the identity parameter was
set to 0.5, this clustering earned a very low ARI when compared to the other
approaches.

The "Fast" method is similar to the one used in SpCLUST, except for the
K-Means implementation and the random number generator, which leads to

20

small differences in the results. For the NADH dataset, the seed used in
SpCLUST resulted in a better ARI score than BestBIC even though the
opposite was expected. This case might occur if the seed of the Fast
algorithm is not part of the ones considered in the BestBIC. This situation
can be corrected by increasing the set of possible seeds in the BestBIC
approach (Just 100 different seeds are considered by default). Indeed, three
additional experiments using the BestBIC algorithm, and involving seeds
from outside the scope of the initial experiment, scored an ARI of 0.957,
similarly to SpCLUST.

In the Influenza nucleoprotein dataset where the sequences are highly
similar, BestBIC scored a perfect ARI, similarly to UCLUST, and CD-HIT.
UCLUST and CDHIT produced equally accurate clusterings, consisting of
3 clusters, when the range of identity thresholds was set to 0.95 or higher.
However, the BestBIC approach produced a more balanced clustering
consisting of 2 clusters, which is similar to the one produced by UCLUST
and CD-HIT for a range of thresholds lower than 0.95. Fast and MostFreq,
for their parts, produced only a single cluster. This result is not absurd
because the sequences in this dataset are considered very similar for a tool
that targets clustering potentially divergent datasets. Applying UCLUST
and CD-HIT on this dataset, with identities inferior to 0.88 and 0.91
respectively, also produced a single cluster.

As shown in the previous experiments, traditional tools failed to cluster
divergent sequences, while GMM-based approaches have been successful.
For instance, even though CD-HIT produced a reasonable number of
clusters for the HIV dataset (5, with an identity threshold of 0.8), each
cluster seems to contain random sequences with no logical grouping and
thus a reference clustering could not be deduced to calculate the ARI.
Conversely, despite the fact that UCLUST and CD-HIT succeeded in
clustering very similar sequences, like the ones of the Influenza
nucleoprotein set, BestBIC also produced a good quality clustering.
Therefore, GMM approaches can be considered in most cases, regardless of
the dataset's degree of similarity.

Our GMM implementation with the BestBIC algorithm obtained the
highest average Adjusted Rand Index for the clustering of the three
considered datasets, equal to 0.889. It was followed by SpCLUST (using

21

GaussianMixture() from Python's scikit-learn library) and Paperrune's
GMM implementation with the MaxLikelihood algorithm that scored an
average ARI equal to 0.888 and 0.640 respectively. Therefore, on average,
the bestBIC approach outperforms the other evaluated tools, in terms of
clustering quality, on the chosen datasets. In addition to its good results on
potentially divergent datasets, it also performs as well as the traditional tools
on highly similar sequences. For all these reasons, this algorithm was
adopted in the next sets of experiments.

After evaluating the quality of the produced clusterings with the three
new approaches, a performance comparison between them and SpCLUST
was conducted. The tests were applied to the datasets introduced in this
article and the dataset of 1049 sequences used in 4 to profile SpCLUST.
This experiment was run three times over a machine equipped with an i7-
6700 3.4GHz processor. Table 3 shows the best recorded execution times
(among the three runs) for clustering the four datasets with the four GMM
implementations which include the computation time of the Eigenmap.

Table 3: Clustering time using the different GMM implementations and
algorithms.

GaussianMixture () Fast MostFreq BestBIC
HIV 2,025 ms ¿1 ms 4,039 ms 1,005 ms

NADH 5,046 ms 1 ms 6,063 ms 1,010 ms
Influenza 1,008 ms ¿1 ms 1,013 ms 3 ms

1049 sequences 2,280,816 ms 53,531 ms 82,837 ms 60,612 ms

The Fast approach achieved up to 42x speed up when compared to the G
aussianMixture() function from Python's scikit-learn library, on the large
dataset of 1049 sequences. MostFreq and BestBIC also recorded impressive
speedups with this dataset, when compared to the GaussianMixture()
function. Moreover, the Fast approach achieved higher speed-ups when
applied on the three smaller datasets while the the GaussianMixture()
function performed closely to our most complex approach; the MostFreq.
Therefore, it can be concluded that the proposed algorithms using our C++
GMM implementation outperform scikit-learn's GMM implementation.

22

6. Conclusion and future directions

In this work, four GMM-based algorithms, for enhancing the accuracy
and the performance of the intervention-free spectral clustering technique
for both highly similar and divergent biological sequences, are proposed.
The implementation of these algorithms presents major performance
enhancements when compared to SpCLUST. It relies on new C++
implementations of the Gaussian Mixture Model (GMM). The use of these
GMM implementations greatly enhances the performance of this technique,
when compared with the previously used Python GMM implementation. A
performance comparison for the clustering phase, between SpCLUST and
the implementation of the new algorithms, shows a speed-up ranging from
27x to 42x.

Moreover, four algorithms to improve the spectral clustering quality
were proposed: i- a fast single random seed run with minimizing the BIC, ii-
another fast single random seed run with maximizing the Likelihood, iii- the
most frequent clustering over several iterations with different seeds, iv- the
clustering scoring the best BIC from a user-defined number of iterations.

A comparative study, between the proposed algorithms, SpCLUST 4,
UCLUST 20, and CD-HIT 19, was conducted over three different datasets
of real genomic and protein sequences. In contrast with most of the state-of-
the-art tools, the spectral clustering technique aims for an intervention-free
and a reasonably fast clustering of datasets, regardless of their level of
similarity. Although this technique is not yet expected to compete with
traditional tools speed-wise and scalability-wise, the experiments revealed
that the proposed algorithms produce competitive clusterings for both
highly similar and highly divergent datasets. The validation of the obtained
results was based on a novel algorithm for selecting the reference clustering,
and on a carefully selected external clustering validation index; the
Adjusted Rand Index.

Possible future extensions to this work include exploiting more
clustering techniques in the biological sequences clustering field, including
deep learning ones. Further performance improvement is possible, by
implementing a parallel computation algorithm for the Eigenmap
calculation and the GMM. Finally, defining a novel algorithm for
calculating the pairwise similarities without the need for aligned sequences,

23

can further enhance the speed and the scalability of the spectral clustering
approach.

REFERENCES
x

1.Li Y, Xia F, Wang Y, Yan C, Jia A, Zhang Y. Characterization of a
highly divergent Sugarcane mosaic virus from Canna indica L. by deep
sequencing. BMC microbiology. 2019;19:1-8.
https://doi.org/10.1186/s12866-019-1636-y

2.Pentney W, Meila M. Spectral clustering of biological sequence data.
Paper presented at: AAAI, 2005.

3.Paccanaro A, Casbon JA, Saqi MAS. Spectral clustering of protein
sequences. Nucleic acids research. 2006;34(5):1571–1580.
https://doi.org/10.1093/nar/gkj515

4.Matar J, El Khoury H, Charr JC, Guyeux C, Chrétien S. SpCLUST:
Towards a fast and reliable clustering for potentially divergent
biological sequences. Computers in biology and medicine.
2019;114:103439. https://doi.org/10.1016/j.compbiomed.2019.103439

5.Bocklet T, Maier A, Bauer JG, Burkhardt F, Noth E. Age and gender
recognition for telephone applications based on gmm supervectors and
support vector machines. Paper presented at: 2008 IEEE International
Conference on Acoustics, Speech and Signal Processing, 2008.
https://doi.org/10.1109/ICASSP.2008.4517932

6.Genovese M, Napoli E. ASIC and FPGA implementation of the
gaussian mixture model algorithm for real-time segmentation of high
definition video. IEEE Transactions on very large scale integration
(VLSI) systems. 2013;22(3):537–547.
https://doi.org/10.1109/TVLSI.2013.2249295

24

7.McLachlan GJ, Peel D. Finite mixture models: John Wiley & Sons;
2004.

8.Dempster AP, Laird NM, Rubin DB. Maximum likelihood from
incomplete data via the EM algorithm. Journal of the Royal Statistical
Society: Series B (Methodological). 1977;39(1):1–22.
https://doi.org/10.1111/j.2517-6161.1977.tb01600.x

9.Wu CFJ. On the convergence properties of the EM algorithm. The
Annals of statistics. 1983:95–103.

10.McLachlan GJ, Krishnan T. The EM algorithm and extensions. Vol
382: John Wiley & Sons; 2007.

11.Chrétien S, Hero AO. Acceleration of the EM algorithm via proximal
point iterations. Paper presented at: Proceedings. 1998 IEEE
International Symposium on Information Theory (Cat. No.
98CH36252), 1998. https://doi.org/10.1109/ISIT.1998.709049

12.Chrétien S, Hero AOIII. Kullback proximal algorithms for maximum-
likelihood estimation. IEEE transactions on information theory.
2000;46(5):1800–1810. https://doi.org/10.1109/18.857792

13.Celeux G, Chrétien S, Forbes F, Mkhadri A. A component-wise EM
algorithm for mixtures. Journal of Computational and Graphical
Statistics. January 2012;10:697–712.
https://doi.org/10.1198/106186001317243403

14.Biernacki C, Castellan G, Chretien S, Guedj B, Vandewalle V. Pitfalls
in Mixtures from the Clustering Angle. Paper presented at: Working
Group on Model-Based Clustering Summer Session, 2016.

25

15.Biernacki C, Chrétien S. Degeneracy in the maximum likelihood
estimation of univariate Gaussian mixtures with EM. Statistics &
probability letters. 2003;61:373–382. https://doi.org/10.1016/S0167-
7152(02)00396-6

16.Shi M, Bermak A. An efficient digital VLSI implementation of
Gaussian mixture models-based classifier. IEEE Transactions on Very
Large Scale Integration (VLSI) Systems. 2006;14(9):962–974.
https://doi.org/10.1109/TVLSI.2006.884048

17.Kulis B, Jordan MI. Revisiting k-means: New algorithms via Bayesian
nonparametrics. arXiv preprint arXiv:1111.0352. 2011.

18.Cheng Y. Mean shift, mode seeking, and clustering. IEEE transactions
on pattern analysis and machine intelligence. 1995;17(8):790–799.
https://doi.org/10.1109/34.400568

19.Li W, Godzik A. Cd-hit: a fast program for clustering and comparing
large sets of protein or nucleotide sequences. Bioinformatics.
2006;22(13):1658–1659.
https://doi.org/10.1093/bioinformatics/btl158

20.Edgar RC. Search and clustering orders of magnitude faster than
BLAST. Bioinformatics. 2010;26(19):2460–2461.
https://doi.org/10.1093/bioinformatics/btq461

21.Ghodsi M, Liu B, Pop M. DNACLUST: accurate and efficient
clustering of phylogenetic marker genes. BMC Bioinformatics. June
2011;12:271. https://www.doi.org/10.1186/1471-2105-12-271

22.Matias Rodrigues JF, von Mering C. HPC-CLUST: distributed
hierarchical clustering for large sets of nucleotide sequences.
Bioinformatics. 2013;30(2):287–288.
https://doi.org/10.1093/bioinformatics/btt657

26

23. Jiang L, Dong Y, Chen N, Chen T. DACE: a scalable DP-means
algorithm for clustering extremely large sequence data. Bioinformatics
. December 2016;33:834-842.
https://doi.org/10.1093/bioinformatics/btw722

24.Bruneau M, Mottet T, Moulin S, et al. A clustering package for
nucleotide sequences using Laplacian Eigenmaps and Gaussian
Mixture Model. Computers in Biology and Medicine. 2018;93:66-74.
https://doi.org/10.1016/j.compbiomed.2017.12.003

25.Larrañaga P, Calvo B, Santana R, et al. Machine learning in
bioinformatics. Briefings in Bioinformatics. March 2006;7:86-112.
https://doi.org/10.1093/bib/bbk007

26.Reynolds DA. Gaussian mixture models. Encyclopedia of biometrics.
2009;741.

27.Vrieze SI. Model selection and psychological theory: a discussion of
the differences between the Akaike information criterion (AIC) and the
Bayesian information criterion (BIC). Psychological methods.
2012;17(2):228. https://doi.org/10.1037/a0027127

28.Edgar RC. MUSCLE: multiple sequence alignment with high accuracy
and high throughput. Nucleic acids research. 2004;32(5):1792–1797.
https://doi.org/10.1093/nar/gkh340

29.Substitution matrix. Wikipedia. Available at:
https://en.wikipedia.org/wiki/Substitution_matrix. Accessed
September 27, 2018.

30.Waterman MS. Efficient sequence alignment algorithms. Journal of
theoretical biology. 1984;108(3):333–337.
https://doi.org/10.1016/S0022-5193(84)80037-5

27

https://en.wikipedia.org/wiki/Substitution_matrix

31.Katoh K, Standley DM. MAFFT multiple sequence alignment software
version 7: improvements in performance and usability. Molecular
biology and evolution. 2013;30(4):772–780.
https://doi.org/10.1093/molbev/mst010

32.Wright ES. DECIPHER: harnessing local sequence context to improve
protein multiple sequence alignment. Bmc Bioinformatics.
2015;16:322. https://doi.org/10.1186/s12859-015-0749-z

33.Larking MA, Blackshields G, Brown NP, et al. ClustalW and ClustalX
version 2. Bioinformatics. 2007;23(21):2947–8.
https://doi.org/10.1093/bioinformatics/btm404

34.Von Luxburg U. A tutorial on spectral clustering. Statistics and
computing. 2007;17:395–416. https://doi.org/10.1007/s11222-007-
9033-z

35.Langone R, Alzate C, Suykens JAK. Modularity-based model selection
for kernel spectral clustering. Paper presented at: The 2011
International Joint Conference on Neural Networks, 2011.
https://doi.org/10.1109/IJCNN.2011.6033449

36.Saade A, Krzakala F, Zdeborová L. Spectral clustering of graphs with
the bethe hessian. Paper presented at: Advances in Neural Information
Processing Systems, 2014.

37.Dall'Amico L, Couillet R, Tremblay N. Optimized Deformed Laplacian
for Spectrum-based Community Detection in Sparse Heterogeneous
Graphs. arXiv preprint arXiv:1901.09715. 2019.

38.Dall'Amico L, Couillet R, Tremblay N. Revisiting the Bethe-Hessian:
improved community detection in sparse heterogeneous graphs. Paper
presented at: Advances in Neural Information Processing Systems,
2019.

28

39. sklearn.mixture.GaussianMixture. Scikit-Learn. Available at:
https://scikit-learn.org/stable/modules/generated/sklearn.mixture.Gaus
sianMixture.htm. Accessed December 27, 2019.

40. sklearn.manifold.spectral_embedding. Scikit-Learn. Available at:
https://scikit-learn.org/stable/modules/generated/sklearn.manifold.spe
ctral_embedding.htm. Accessed December 27, 2019.

41.Pedregosa F, Varoquaux G, Gramfort A, et al. Scikit-learn: Machine
Learning in Python. Journal of Machine Learning Research.
2011;12:2825–2830.

42.GitHub - paperrune/GMM: C++ implementation of Gaussian Mixture
Model. GitHub. Available at: https://github.com/paperrune/GMM.
Accessed December 2, 2019.

43.GitHub - johnymatar/GMM: a Gaussian Mixture Model library
featuring BIC and AIC. GitHub. Available at:
https://github.com/johnymatar/GMM. Accessed October 10, 2021.

44.Raghavan VV, Gudivada VN, Govindaraju V, Rao CR. Cognitive
computing: Theory and applications. Vol 35: Elsevier; 2016.

45.Campanella JJ, Bitincka L, Smalley J. MatGAT: an application that
generates similarity/identity matrices using protein or DNA sequences.
BMC bioinformatics. 2003;4:1–4. https://doi.org/10.1186/1471-2105-
4-29

46.Myers EW, Miller W. Optimal alignments in linear space.
Bioinformatics. 1988;4(1):11–17.
https://doi.org/10.1093/bioinformatics/4.1.11

29

https://github.com/johnymatar/GMM
https://scikit-learn.org/stable/modules/generated/sklearn.mixture.GaussianMixture.htm
https://scikit-learn.org/stable/modules/generated/sklearn.mixture.GaussianMixture.htm
https://scikit-learn.org/stable/modules/generated/sklearn.manifold.spectral_embedding.htm
https://scikit-learn.org/stable/modules/generated/sklearn.manifold.spectral_embedding.htm
https://github.com/paperrune/GMM

47.Guindon S, Dufayard JF, Lefort V, Anisimova M, Hordijk W, Gascuel
O. New algorithms and methods to estimate maximum-likelihood
phylogenies: assessing the performance of PhyML 3.0. Systematic
biology. 2010;59(3):307–321. https://doi.org/10.1093/sysbio/syq010

48.Lefort V, Longueville JE, Gascuel O. SMS: smart model selection in
PhyML. Molecular biology and evolution. 2017;34(9):2422–2424.
https://doi.org/10.1093/molbev/msx149

49.Wagner S, Wagner D. Comparing clusterings: an overview:
Universität Karlsruhe, Fakultät für Informatik Karlsruhe; 2007.

50.Guyeux C, Chrétien S, Bou Tayeh G, Demerjian J, Bahi J. Introducing
and Comparing Recent Clustering Methods for Massive Data
Management in the Internet of Things. Journal of Sensor and Actuator
Networks. 2019;8:56. https://doi.org/10.3390/jsan8040056

x

30

APPENDIX 1: Models parameters

Table 4: Detailed parameters used for Paperrune's GMM implementation.

Number of mixture
components

Chosen iteratively based on the Maximized
Likelihood

Number of features
The number of the chosen Eigenvectors based on

the elbow method
Covariance type Full

Maximum number of
EM iterations

1000

Table 5: Detailed parameters used for our GMM implementation.

Number of mixture
components

Chosen iteratively based on the best BIC

Number of features The number of the chosen Eigenvectors based on
the elbow method

Covariance type Full
Convergence threshold 0.01

Covariance diagonal
regularization

0.001

Maximum number of EM
iterations

1000

Method for initializing the
system

K-Means*,**

Random seed (Fast) 320
Random seed (MostFreq and

BestBIC)
In between 1 and the number of chosen runs

* The same initialization parameters were used for the K-Means method and
the GMM, including the random seed.

** The random numbers generator is customized to avoid any results
inconsistencies under different operating systems.

31

	Optimized spectral clustering methods for potentially divergent biological sequences
	ABSTRACT
	1. INTRODUCTION
	2. State of the art
	2.1. Clustering biological sequences
	2.1.1. Fast clustering of highly similar sequences
	2.1.2. Intervention-free clustering of potentially divergent sequences

	2.2. The sequences' alignment and similarity computation
	2.3. The affinity matrix computation
	2.4. The GMM implementations

	3. Approaches and methods
	3.1. Four approaches to fine-tuning the GMM
	3.2. Generating a reference clustering

	4. Experimental protocol
	4.1. The datasets
	4.2. The experiments

	5. Experimental results
	6. Conclusion and future directions
	REFERENCES
	APPENDIX 1: Models parameters

