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ABSTRACT

Many  recent  research  works  in  bioinformatics  demonstrated  that 
clustering  is  a  very  efficient  technique  for  sequence  analysis.  Spectral 
clustering  is  particularly  efficient  for  highly  divergent  sequences1 and 
GMMs (Gaussian Mixture Models) are often able to cluster overlapping 
groups given an adequately designed embedding. In the present paper, we 
use  spectral  embedding  and  Mixture  Models  for  clustering  potentially 
divergent  biological  sequences.  Our  approach  results  in  a  pipeline 
consisting of the following steps: i- sequence alignment, ii- pairwise affinity 
computation of the sequences, iii- Laplacian Eigenmap embedding of the 
data, and iv- GMM-based clustering. Improving the quality of the generated 
clustering and the performance of this approach is directly related to the 
enhancement of each one of these four steps.

Our  main  contribution  is  proposing  four  GMM-based  algorithms  for 
automatically selecting the optimal number of clusters and optimizing the 
clustering  quality.  A  clustering  quality  assessment  method,  based  on 
phylogenetic trees, is also proposed. Moreover, a performance study and 
analysis have been conducted while testing different clustering methods and 
GMM implementations. Experimental results demonstrated the superiority 
of using the BIC (Bayesian Information Criterion) for selecting the optimal 
GMM configuration.

Keywords: Biological  sequence  clustering,  Clustering  quality  analysis, 
Spectral clustering, Gaussian Mixture Model, Eigenmap, Affinity matrices.

1. INTRODUCTION

In the last two decades, the cost of sequencing a genome has decreased 
at a dramatic rate from 100 million dollars at the end of the 20 th century to 
less  than $1000 nowadays.  This  led  to  an explosion in  the  number  of 
sequenced genomes and proteins. The large number of newly discovered 
biological sequences allows the researchers in bioinformatics to study the 
relationships between the different sequenced species and to reconstruct 

1 Having an intra-cluster similarity of 85% or lower 1.
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their phylogenetic tree and ancestors. Many tools were developed to analyze 
the sequenced data. In particular, clustering packages were implemented to 
compare a set of sequences and regroup them into clusters according to their 
similarity. Howerver, it is worth emphasizing that mutations can lead to 
similarities  lower  than  85% between  sequences  belonging  to  the  same 
cluster 1.

The clustering of biological sequences is currently playing a paramount 
role in linking the huge number of newly discovered sequences to their 
variants and ancestors. However, current methods can only partially tackle 
this problem due to its scale and complexity. Many research works [2-4] 
have concluded that spectral clustering may represent an efficient tool for 
biological sequence clustering and, to our knowledge, only one of them has 
been publicly released  4. In 4 the relevance of using  GMMs (Gaussian 
Mixture Models) for unsupervised clustering of biological sequences was 
demonstrated through various numerical validation experiments. Contrarily 
to most of the widely used clustering tools, GMM-based approaches require 
no user intervention and are well adapted to clustering divergent sequences 
as well. The targeted sequences could be mutations from a same gene (or 
genome), or even cross-species divergent but homologous sequences or 
fragments.

The difficulty in studying newly discovered biological sequences lies 
primarily in their unknown degree of divergence when compared to each 
other or to other known sequences. Therefore, neither the accurate selection 
of the similarity threshold, nor the selection of the clusters’ centroids is 
trivial  for  a  traditional  clustering  tool.  In  such  cases,  traditional  tools, 
requiring a user-defined similarity threshold, cannot be considered reliable. 
On the other hand, GMM-based alternatives which do not require any a 
priori  knowledge  of  an  arbitrary  similarity  threshold,  seem to  be  well 
adapted  to  efficiently  tackle  such  problems.  GMM  showed  good 
classification performances in several applications where clusters overlap, 
such as biological sequence clustering 4, age and gender recognition 5, real-
time segmentation of HD video  6, etc.  GMMs and other similarly finite 
mixture models  7 are usually calibrated using an Expectation Maximum 
(EM) algorithm [8-10] or one of its accelerations [11-13]. However, the use 
of EM-type algorithms requires expertise due to the well-known drawbacks 
[14, 15] and computational issues for large and high dimensional data 16. 
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Therefore, users should rely on packages that carefully address these subtle 
technical issues.

The  tool  presented  in  4 implements  the  following  operations  for 
clustering  a  set  of  biological  sequences:  i-  sequences’  alignment,  ii- 
pairwise affinity computation of the sequences, iii- Laplacian Eigenmap 
embedding of the data, and iv- GMM-based clustering. The quality of the 
generated clustering, and the performance of this approach, are often greatly 
impacted by the tool or the algorithm used at each stage. These tools or  
algorithms affect the alignment quality, the pairwise similarity computation 
between  sequences,  and  the  GMM  performance.  The  present  work 
investigates how the use of different techniques and their implementations 
at the clustering stage contribute to accelerating the clustering or improving 
its  quality. Our  contributions  include  suggesting  a  significantly  faster 
substitute to the GMM that was used in 4 while proposing new GMM-based 
algorithms for enhancing the quality of the clustering.  The experimented 
features, methods, and algorithms were integrated into a clustering package 
published on a public online repository2.

The remainder of this article is organized as follows. In Section 2, the 
clustering of biological sequences is introduced and different clustering 
techniques are detailed. The sequences’ alignment, the affinity computation 
methods, and some existing GMM implementations are also presented in 
this section. In Section 3, four approaches to automatically choose the most 
relevant clustering based on given criteria are presented. The experimental 
protocol  is  detailed  in  Section  4.  The  results  of  the  experiments  are 
presented and discussed in Section 5. Finally, Section 6 recapitulates our 
findings and presents some future prospects for our project.

2. State of the art

2.1. Clustering biological sequences

Many research works were conducted to efficiently cluster biological 
sequences. However, most of the proposed approaches are highly sensitive 
to  user-defined  parameters,  i.e.  the  similarity  or  identity  threshold. 
Moreover, they are designed to quickly cluster highly similar sequences. 
Indeed, the lowest possible similarity threshold is usually larger than 75% 

2 https://github.com/johnymatar/SpCLUST-V2/tree/master/src/code
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(e.g., in tools like CD-HIT-EST), and most of the experiments conducted in 
the studies introducing these tools, only consider similarities larger than 
85%. These tools are not able to accurately detect communities among 
potentially divergent sequences. To sum up, existing clustering packages 
can be broadly divided into two categories, based on their objectives:

• packages and tools  suitable  for  fast  clustering of  highly similar 
sequences but requiring a user-defined threshold;

• intervention-free tools that can even cluster potentially divergent 
sequences.

The  most  popular  algorithms  and  tools  from  both  categories  are 
presented in the next subsections. 

2.1.1. Fast clustering of highly similar sequences

High-speed  clustering  of  highly  similar  sequences  mostly  relies  on 
greedy, hierarchical, Dirichlet Process means (DP-means) 17, or mean shift  
18 algorithms. It requires some user-defined parameters, such as a similarity 
or  identity  threshold and,  optionally,  the  centroids  of  the  clusters.  The 
sequences are then grouped into clusters based on the provided parameters. 
Following this scheme, several tools are publicly available, such as CD-HIT 
19, UCLUST 20, DNACLUST 21, HPC-CLUST 22, and DACE 23. Most 
of these tools group the sequences around the clusters’ representatives, or 
centroids, based on a user-provided similarity threshold, but they differ in 
the way they choose these representatives.

CD-HIT  and  DNACLUST  order  the  sequences  according  to  their 
length. Each sequence is either added to a previously created cluster, if its 
similarity  with a  previously chosen centroid does not  exceed the user-
provided threshold, or it is considered as a new centroid for a new cluster. In 
contrast, UCLUST performs the classification without prior sorting of the 
input sequences, thus the input order might impact the resulting clustering.

In order to achieve better clustering speed, various approaches were 
adopted by the aforementioned tools. CD-HIT avoids the costly pairwise 
sequences’ alignment by using word counting for computing similarities. 
HPC-CLUST takes an already aligned set of sequences as input and it uses a 
distributed hierarchical algorithm that clusters subsets of the sequences and 
finally merges the closest  clusters.  DACE uses parallel  computation to 
rapidly cluster large datasets. After an iterative partitioning of the input 

4



sequences  into  non-intersecting  subsets,  DACE  uses  the  DP-means 
algorithm to cluster the sequences in parallel.

The type of supported input sequences represents another distinction 
between the clustering tools. The CD-HIT package offers CD-HIT-EST for 
nucleotide  sequences  clustering  and  CD-HIT-PROTEIN  for  protein 
sequences clustering, while UCLUST and DACE can cluster both types of 
sequences. Conversely, DNACLUST and HPC-CLUST are not designed to 
handle protein sequences.

2.1.2. Intervention-free clustering of potentially divergent sequences

The  mutations  in  biological  sequences  occur  in  variable  and 
unpredictable degrees which turns the choice of the identity or similarity 
threshold into a challenging dilemma when clustering a set of sequences 
without a priori knowledge. Only a few recent studies tackled this problem 
and were successful in clustering potentially divergent sequences [4, 24]. 
Their solutions rely on mixture models and perform the clustering based on 
a probability distribution 25. Contrary to the tools targeting highly similar 
sequences  mentioned  above,  these  packages  do  not  need  any  user 
intervention, especially for the choice of the identity or similarity threshold.

The authors in 24 proposed an original Python-based clustering package 
that uses an unsupervised learning approach, namely the Gaussian Mixture 
Model  clustering  applied  after  a  Laplacian  Eigenmap  dimensionality 
reduction. We note that the Gaussian Mixture Model 26 is a probabilistic 
model  for  detecting sub-communities  within  a  certain  community.  The 
objective  of  this  package  is  accurate  clustering  even  for  divergent 
sequences. The number of clusters is determined using statistical criteria, 
such  as  the  Bayesian  information  criterion  (BIC)  27.  The  use  of  this 
statistical criterion leads to an autonomous process that does not rely on 
neither  user-chosen  clusters'  centroids,  nor  identity  thresholds.  This 
clustering package consists of four main stages.

1. Sequence  alignment:  this  stage  relies  on  the  third-party  module 
MUSCLE 28, to align the sequences.

2. Similarity matrix calculation: an NxN square matrix, where N is the 
number of input sequences and each (i,j) element is the pairwise similarity 
index between sequences  i and j. Similarity indices are derived from the 
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pairwise  distances  between  sequences  that  are  computed  with  the 
EDNAFULL scoring matrix.

3. Dimensionality reduction: the Laplacian Eigenmap of a transformed 
version of the similarity matrix, called the affinity matrix, is computed, 
leading to a size reduction of the matrix.

4. Sequence clustering: in this last stage, the Gaussian Mixture Model 
is applied to the results obtained in step 3 to cluster the sequences.

This  model  exhibited  competitive  results,  especially  in  the  case  of 
highly  divergent  sequences.  However,  its  speed  significantly  degraded 
when applied to large datasets.

Since the similarity matrix calculation stage represents  an intensive 
computation step of the order of O((N2-N)/2), the authors in 4 proposed an 
optimized  hybrid  C++  /Python  package  where  the  second  stage  is 
implemented in C++ and computed in parallel to reduce its execution time. 
Based  on  the  experimental  results  published  in  4,  the  hybrid  package 
delivers up to 126X speed-up, when compared to the original package. In 
addition, its capabilities were extended to cluster protein sequences, by 
introducing  two  additional  scoring  matrices,  namely  BLOSUM62  and 
PAM250 29.

Despite  the  advantageous  intervention-free  property  of  the  latter 
algorithm and its performance improvement, it is still not expected to scale 
well for large datasets. This is due to the alignment required in its first stage. 
Conversely, further accuracy and speed improvements remain possible by 
enhancing each one of its stages. In the next three subsections, the possible 
improvements for each stage are discussed.

2.2. The sequences' alignment and similarity computation

One of the fundamental techniques for visualizing the dissimilarities 
and computing the distance between a pair of sequences is their alignment. 
This technique discloses the mutations, insertions, and deletions phenomena 
that differentiate the sequences. Therefore, many efficient algorithms were 
proposed for aligning the sequences and computing the pairwise distances, 
such as Needleman-Wunsch, Sankoff and Sellers 30. MUSCLE 28, MAFFT 
31, DECIPHER 32, and CLUSTALX 33 are a few examples of alignment 
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tools. The alignment speed and accuracy represent two major differentiating 
aspects  between these tools  that  might influence the clustering quality. 
Therefore, it is crucial to investigate the effects of the alignment on the 
spectral clustering technique in order to enhance the quality of the produced 
clustering.

2.3. The affinity matrix computation

Following the alignment, the pairwise distance is computed using a string 
metric, such as the Needleman-Wunsch distance. Then, the similarity is 
inferred from the pairwise distance. For instance, in  21, the similarity is 
equal to:

1−  distance 
 length of the shorter sequence 

The distance choice and the similarity definition vary from package to 
package, which might produce different clusterings, even when considering 
the same similarity threshold.

In  24 and  4,  the affinity  matrix  was  computed  as  a  Random  Walk 
Normalized Laplacian and it proved to be relevant for the clustering of 
biological  sequences.  However,  other  interesting  matrices  have  been 
proposed  for  spectral  clustering  [34-37],  such  as  the  Non-normalized 
Laplacian, Modularity 35, and the Bethe Hessian (Deformed Laplacian) 38
. These matrices are defined as follows:

 Non-normalized Laplacian:

L=D−A

where  A is  the  adjacency  matrix  between  the  sequences  and  D is  its 
diagonal matrix of degrees.

 Random Walk Normalized Laplacian:

Lrw=D−1L ,

where  D is  the  degrees  matrix  of  the  adjacency  matrix  and  L is  the 
Nonnormalized Laplacian matrix. The Laplacian matrix is symmetric and 
positive semidefinite.
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 Modularity:

M= 1
K (A− 1

K
k kT )

where A is the adjacency matrix, k  is the degrees vector of A, and K  is the 
total degree of A. High values for this quality function reveal the possible 
existence of strong communities.

 Bethe Hessian:

H r=(r2−1 ) I+D−rA

where I  is the identity matrix, D is the degrees matrix of the adjacency 
matrix A, and the constant r is the square root of the average degree of the 
graph, as suggested in 36.

2.4. The GMM implementations

The last stage of this spectral clustering tool uses the GMM. Various 
implementations  of  this  mixture  model  are  publicly  available,  like  the 
GaussianMixture()  39 and  spectral_embedding()  40 functions  from 
Python's scikit-learn library 41. Moreover, there are also free and standalon
e3 C++ implementations of the GMM, such as the paperrune  42 and our 
implementation4 43.  The  GMMs  implemented  with  a  lower-level 
programming language (C++ vs Python) are expected to compute faster and 
enhance the speed and the scalability of this heavy-computational approach.

Most  of  these implementations of  the GMM take an  m×n features 
matrix5 as input, where m is the number of features and n is the number of 
samples. Conversely, spectral_embedding() 40 merges the dimensionality r
eduction and the sequence clustering phases and takes an  n×n pairwise 
similarity  matrix  as  input,  where  n is  the  number  of  samples.  The 
(normalized  or  not)  Laplacian  matrix  computation  is  embedded  in  the 
spectral_embedding() function. The dimension of the projection subspace, 

3 which uses standard libraries and does not require any additional software to work.
4 whose methods are inspired from Python’s GaussianMixture().
5 This matrix is formed by the most significant Eigenvectors computed from the affinity 
matrix.
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reflecting the number of resulting clusters can be specified; by default, this 
parameter is set to 8.

These libraries do not exactly apply the same algorithms and therefore 
they do not give identical results. Moreover, these implementations do not 
offer the same features. For example, some of them include the computation 
of some information criteria that reflect the quality of the GMM 44 such as 
the  Log-Likelihood  implemented  in  42,  or  the  Bayesian  Information 
Criterion (BIC) implemented in 43 and 39. The BIC is defined as follows:

BIC=ln (n)k−2 ln (L)

where n is the data size, k  is the number of features for the model, and 
L is its likelihood. The spectral_embedding() function does not provide any 
method to compute statistical indices of quality. These statistical indexes 
can be exploited to improve the produced clustering.

These libraries could also take a seed as input that affects the initial 
random distribution, and might possibly affect the resulting clustering. If 
not  provided,  this  seed  is  randomly  generated.  Since,  the  C++ 
pseudorandom number generator, used to generate random seeds in the 
GMM  implementations,  is  not  cross-platform  consistent  (the  rand() 
function is not the same depending on the platform, and for the same seed, it 
might generate different numbers on different operating systems), a custom 
pseudorandom generator  was introduced in  43 in order to preserve the 
consistency  of  the  results.  It  is  based  on  Microsoft's  rand  formula: 
(a∗seed+c)%m where a=214013, c=2531011, and m=231. If no seed is 
provided by the user, the seed is equal by default to 0. In the next section, the 
main contributions of this work are presented.

3. Approaches and methods

3.1. Four approaches to fine-tuning the GMM

Given  the  promising  advantages  of  the  spectral  clustering  in  the 
aforementioned tools [4, 24], our approach is to exploit the parameters of 
the  state-of-the-art  GMM  implementations,  to  fine-tune  the  produced 
clusterings and improve their quality.  Four approaches to automatically 
choose the most relevant clustering based on given criteria are presented in 
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this  section.  The  first  algorithm  consists  of  maximizing  the  GMM 
likelihood. This is achieved by performing several iterations as illustrated in 
Figure 1. 

Figure 1: Choosing the best clustering based on maximum likelihood.

The given number of clusters is modified at each iteration, and it ranges 
between 1 and the number of sequences. The second approach is similar to 
the previous one. It simply substitutes the maximum likelihood with the 
lowest BIC. It is woth noting that additional implementations using the AIC 
(Akiake Information Criterion) and ICL (Integrated Complete Likelihood) 
were omitted because they resulted in the same output when compared to 
the implementation using BIC.

The third approach consists of executing the previous algorithm a user-
defined number of times, with a different random seed at each iteration. Let 
us recall that the random seed impacts the initial random distribution of the 
centroids, leading to a potentially different clustering for each seed. The 
clustering that scores the maximum number of occurrences is selected. The 
counting  procedure  of  the  occurrences  of  each  clustering  distinguishes 
between the same clustering with different labeling and different clustering. 
Figure 2 illustrates this method. 
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Figure 2: Choosing the best clustering based on the occurrence frequency.

Its computation time, compared to the previous one, is proportional to 
the chosen number of iterations. Moreover, this algorithm requires a larger 
amount  of  memory,  since  it  saves  the  labels  vector  for  the  resulting 
clustering at each iteration. Therefore, it requires a substantial amount of 
memory if the input dataset and the chosen number of iterations are both 
large.

The fourth algorithm shares some aspects of similarity with the third 
one. It successively clusters the sequences using different seeds, but just 
keeps in memory the designated best clustering (e.g., the one that scores the 
best BIC). Moreover, in order to reduce the execution time of this algorithm, 
an additional parameter can be defined to stop the iterative process before 
reaching  the  chosen  number  of  iterations.  For  example,  if  no  BIC 
improvement  is  detected  after  a  certain  number  noImp of  consecutive 
iterations. 
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Figure 3: Choosing the best clustering based on the best reached BIC.

Figure 3 illustrates this algorithm that requires less computation time 
than the previous one in the case where the stop condition is fulfilled prior to 
reaching  the  chosen  number  of  iterations.  The  detailed  inputs  and 
parameters, for the implementations that were used in these four algorithms, 
can be found in Tables 4 and 5 in Appendix 1. To evaluate the four methods 
on real datasets, where a clustering ground truth is unknown, an additional 
method  for  selecting  a  reference  clustering  is  proposed  in  the  next 
subsection.

3.2. Generating a reference clustering

When  the  properties  of  a  certain  set  of  sequences  are  unknown, 
establishing the  evolutionary relationship  between these  sequences  is  a 
challenging step. This relationship can be represented by a phylogenetic tree 
that helps in individually assessing each clustering of the dataset. Since it is 
possible in each clustering to identify valid subclusters, it is not fair to assess 
all the clusterings by using a single unified reference per dataset. Therefore, 
we define a custom algorithm for assigning a reference for each produced 
clustering. Primarily, this algorithm aims to define a reference clustering, 
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that is based on an existing clustering, and in which a certain acceptable 
cluster is supposed to fully cover a sub-branch in the phylogenetic tree. The 
algorithm takes as input the considered clustering and the phylogenetic tree 
and produces the reference clustering. It consists of the following steps:

1. From the given clustering, the elements of the phylogenetic tree 
are assigned labels as illustrated in Figure 4. The labels indicate to 
which cluster each sequence belongs in the given clustering. For 
example, in Figure 4 the clustering produced four clusters: clusters 1 
to 4 are represented by the labels *, #, -, and + respectively.

2. The depth of the phylogenetic tree (TD) is computed and a counter 
is initialized to TD−1. At each iteration, it is decremented by 1 till it 
reaches 0.

3. On each iteration, for each inner node that has a depth equal to the 
counter, the following cases are possible:

a) if all the first-level descendants of the node are leaves, a cluster 
consisting of these leaves is formed. The newly formed cluster 
is labeled according to the dominant label, the label that occurs 
the most among the cluster elements. If no dominant label was 
found,  i.e.  two  labels  have  the  same  high  number  of 
occurrences, the undefined label is attributed to the cluster.

b) if the first-level descendants of the node include a leaf and at 
least one already formed cluster, the leaf is added to the cluster 
that is the closest to it. The cluster is relabelled according to the 
dominant label between its elements.

c) if the first-level descendants of the node include at least two 
clusters and: a- two adjacent clusters have the same label, they 
are merged, b- one of the clusters is labelled as "undefined", it is 
merged with an adjacent cluster and the resulting cluster is 
relabelled  according  to  the  dominant  label  between  its 
elements,  c- two clusters have different labels,  they are not 
modified,  d -  one  of  these  clusters  is  small  (less  than  4 
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elements) and is surrounded by two larger clusters having the 
same label, the small cluster is merged with its surrounding 
clusters because it is considered to be just noise in the cluster.

4. After the final iteration, if there are still clusters with undefined 
labels, they are assigned new labels. If two or more clusters have the 
same label, they are also assigned new labels.

Figures  4  and  5  illustrate  how  a  reference  clustering  is  generated 
according to the algorithm described above. In the first sub-figure of Figure 
4, the elements of the phylogenetic tree are assigned labels ¿ or + ) which 
indicate to which cluster each sequence belongs in the given clustering. The 
depth of each node in the tree is also displayed. In this example, the depth of 
the tree (TD) is equal to 6. After this initialization step, the iterative process 
starts with the inner nodes at depth ¿ TD−1. The second subfigure of Figure 
4 illustrates the first iteration of the algorithm. In this example, there is only 
one inner node with a depth ¿5. It contains two leaves/sequences (Elt 11 and 
Elt 12). Both sequences belong to the third cluster. Therefore, a cluster 
containing both sequences is  formed and labeled as  "Cluster  3"  in  the 
reference clustering. This new cluster is represented by a red rectangle in 
Figure 4. Figure 5 illustrates the remaining iterations. 

Figure 4: Initial state and first iteration.
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Figure 5: Clusters identification and final state.

At the second iteration with inner nodes of depth ¿4, three new clusters 
are created. The first one consists of Elt 1 and Elt 2 and is labeled as "Cluster 
1" because both of its sequences belong to the first cluster. The second 
cluster is created in the same way as the previous one. The third new cluster 
consists of Elt 14 and Elt 15 which belong to different clusters and thus there 
is no dominant label in this cluster. For this reason, this cluster is labeled as 
"Undefined". It can also be noticed that Elt 3 was added to "Cluster 3" and 
since "Cluster 3" is still the dominant label in this cluster, its label was not  
changed. Figure 5 displays the next three iterations and then the iterative 
process stops at the root node ¿ depth ¿0¿. In this example, the resulting 
reference clustering consists of three clusters: the first two are homogeneous 
but the third one contains sequences belonging to three different clusters in 
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the given clustering. However, six of its nine sequences belong to the same 
cluster and thus their dominant label is assigned to this cluster.

4. Experimental protocol

4.1. The datasets

Three real biological sequence datasets have been considered to evaluate the 
proposed approaches in the spectral clustering pipeline:

 A first set of 78 complete genome sequences, belonging to HIV-1 
type B virus samples identified in Cyprus, and downloaded from the 
Los Alamos National Laboratory's website6.

 A second set of 100 genomic sequences, belonging to the NADH 
dehydrogenase 3 (ND3) mitochondrial gene, from a collection of 
Platyhelminthes and Nematoda species.

 A third set of 24 different nucleoprotein (NP) sequences, belonging 
to the strain A/H1N1 of the Influenza virus, and downloaded from 
NCBI's Influenza Virus database7.

Table  1  shows a  brief  description  of  the  first  three  datasets  which 
contain each a single type of sequences. The statistics on the sequences 
were retrieved from the output of MUSCLE 28. The pairwise similarity, 
between the sequences of each dataset, was computed using MatGAT 
45 which calculates the similarity after using the Myers and Miller 
global alignment algorithm 46.

Table 1: Statistical description of the real datasets.

Dataset
Seqs 
count

Max 
length

Avg 
length

Min 
similarity 

%

Max 
similarity 

%

Avg 
similarity 

%
HIV 78 8272 8167 86 99.4 89.6

NADH 100 369 341 46.2 99.7 62.8
Influenza 24 498 498 97.4 99.8 98.8

Since a clustering ground truth is not available for these three datasets, a 
phylogenetic  tree,  showing  the  evolutionary  relationship  among  the 

6 https://www.hiv.lanl.gov/components/sequence/HIV/search/search.html
7 https://www.ncbi.nlm.nih.gov/genomes/FLU/Database/nph-select.cgi
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sequences of each set, is used for producing individual reference clusterings 
later, based on the proposed method in Section 3 Indeed, there are many 
tools that, given an aligned set of sequences, can build the phylogenetic tree 
of these sequences. In this work, the tree for each set of data was built 
according to the following procedure:

1. MUSCLE 28 computed the sequences' alignment.

2. PhyML  3.0  47 generated  the  phylogenetic  tree.  The  automatic 
model  selection,  based  on  the  likelihood  criteria,  was  selected.  This 
selection,  provided  by  SMS  48,  was set  to  use  the  BIC  (Bayesian 
Information Criterion).

3. The  resulting  phylogenetic  tree  was  visualized  using  PRESTO 
(Phylogenetic tReE viSualisaTiOn8).

All  these  assembled  datasets  are  publically  hosted  on  an  online 
repository9.

4.2. The experiments

Our set of experiments aims to compare the GMM implementations 
presented in Section 2 and the GMM-based algorithms proposed in Section 
3. The three first datasets were used for this set of experiments. In this 
evaluation,  after  the  alignment  stage  using  MUSCLE,  the  similarity 
matrices and the Eigenmaps are calculated using the same algorithms used 
in SpCLUST. The clustering is then computed using one of the following 
methods:

 The  GaussianMixture() function,  from  the  scikit-learn 
library, that is embedded in SpCLUST.

 The  algorithm  introduced  in  Figure  1,  which  uses  the 
paperrune’s  C++  GMM  implementation  and  labeled 
"MaxLikelihood".

 The  spectral_embedding() function using the Normalized 
Laplacian matrix also from the scikit-learn library.

8 http://www.atgc-montpellier.fr/presto/
9 https://github.com/johnymatar/SpCLUST-V2/tree/master/src/datasets

17



 The remaining three algorithms, presented in Section 3, that 
use our C++ GMM implementation. The method described in Figure 
1 in which the maximum likelihood is replaced by the best BIC, is 
labelled "Fast". The one illustrated in Figure 2 is called "MostFreq", 
and it executes 500 iterations. Finally, the last algorithm outlined in 
Figure  3  is  named  "BestBIC".  It  executes  a  maximum  of  100 
iterations but stops earlier if no improvement is detected after 70 
consecutive iterations.

We recall that the computation of the Laplacian Eigenmap is embedded 
in  the  spectral_embedding() function.  Conversely,  for  the 
GaussianMixture() function,  the Eigenmap is computed using functions 
from  the  numpy  linear  algebra  library.  For  the  remaining  C++ 
implementations  of  the  GMM,  an  implementation10 of  Jacobi's  Eigen 
solving algorithm is used. The used datasets will be also clustered using 
UCLUST and CD-HIT, which are the best competitors to SpCLUST. Since 
the  spectral_embedding() function  does  not  include  any  method  that 
facilitates the choice of the adequate number of clusters, this number will be 
set similarly to the number of clusters produced by SpCLUST.

5. Experimental results

We  recall  that  in  our  set  of  experiments,  the  presented  GMM 
implementations  in  Section  2  and  the  proposed  algorithms  detailed  in 
Section 3 are evaluated. The datasets are also clustered using UCLUST and 
CD-HIT for comparison. In order to cover a wide range of similarities, the 
identity thresholds chosen for UCLUST and CD-HIT ranged between 0.5 
and 0.99, with a step of 0.1 in the [0.5,0.8[ interval, and a step of 0.01 in the  
¿ interval.  For any identity threshold lower than 0.8, CD-HIT failed to 
cluster the data. For the sake of comparison, only the produced clusterings 
having  a  number  of  clusters  close  to  the  ones  from  SpCLUST  were 
considered.

To evaluate  the  quality  of  each clustering,  the  degree  of  similarity 
between the clustering and the reference must be computed using a relevant 
metric. Many clustering quality metrics are available in the literature [49, 50
]. In this work, the Adjusted Rand Index (ARI) was selected to compute the 
degree of similarity, because it only requires the labels, and it is able to 

10 https://github.com/edwardlfh/testv2/tree/master/jacobi
18



compare clusterings with different number of clusters. This index computes 
a similarity measure between two clusterings by considering all pairs of 
samples  and  counting  pairs  that  are  assigned  in  the  same  or  different 
clusters. It ranges from 0 for two completely different clusterings to 1 for 
two identical ones.

Table 2 displays, for each dataset and each clustering returned from the 
considered methods, the number of clusters in both generated and reference 
clusterings, and the ARI between them. Note that ARI is omitted in the 
following three special cases:

1. when a clustering consists of only one cluster;
2. when the number of clusters, formed of singletons, is greater 

than half of the number of sequences (most of the sequences are 
clustered as one sequence per cluster);

3. when the labels of adjacent leaves on the phylogenetic tree 
are very heterogeneous and the resulting clustering does not reflect 
any correct grouping on the tree.

The clusterings, matching the first special case, will be discussed later 
according  to  the  properties  of  the  involved  dataset.  Conversely,  those 
matching  the  second  case  are  not  significant,  because  the  sequences 
belonging to a same dataset are a priori known to be related.

Table 2: External clustering validation using the Adjusted Rand Index.

HIV NADH Influenza

Nb. Clusters
ARI

Nb. Clusters
ARI

Nb. Clusters
ARI

ref. gen. ref. gen. ref. gen.

SpCLUST 4 5 0.777 5 4 0.957 4 5 0.932

Paperrune's GMM - MaxLikelihood 6 6 0.236 11 8 0.838 3 3 0.847

sklearn.manifold.spectral_embedding () 7 3 0.119 7 4 0.694 4 3 0.653

Fast 3 3 0.801 4 2 0.804 - 1 -

MostFreq 2 2 0.941 4 2 0.841 - 1 -

BestBIC 3 3 0.828 4 3 0.839 2 2 1

UCLUST (id 0.5 ) - 78 - 5 6 0.374 - 1 -

UCLUST (id 0.88 ) - 78 - - 83 - - 1 -

UCLUST (id 0.89−0.94 ) - 78 - - 86−95 - 2 2 1
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UCLUST (id 0.95−0.96 ) - 78 - - 97 - 3 3 1

CD-HIT (id 0.91) - 66 - - 90 - - 1 -

CD-HIT (id 0.92) - 69 - - 92 - 1 2 -

CD-HIT (id 0.93-94) - 71−72 - - 94-95 - 2 2 1

CD-HIT (id 0.95−0.97 ) - 73−75 - - 97−98 - 3 3 1

The MostFreq algorithm scored the best ARI in the case of clustering the 
HIV set  of  sequences.  The BestBIC version obtained the second rank, 
followed by the Fast algorithm. As expected, when the number of clusters in 
the  reference  clustering  and  the  generated  clustering  match,  the  latter 
obtains a good score. On the other hand, failing to produce the same number 
of  clusters  as  the  reference clustering,  might  penalize  the  score  of  the 
generated clustering. 

For example, SpCLUST produced one more cluster than the reference 
clustering, and spectral_embedding() produced three clusters less than the 
reference because in the reference clustering non-adjacent clusters on the 
tree were not merged. Finally, UCLUST and CD-HIT both failed to cluster 
this set, although its sequences show a minimum similarity of 86% (cf. 
Table  1).  Indeed,  CD-HIT  produced  5  clusters  when  the  similarity 
parameter was set to 0.8, but these clusters do not reflect any meaningful  
grouping and scored the lowest ARI.

SpCLUST  scored  the  highest  ARI  values  for  the  NADH  dataset, 
followed by our GMM implementation with the MostFreq and BestBIC 
approaches respectively. The MostFreq and Fast approaches produced two 
highly similar clusterings as indicated by their close ARI scores and the 
same number of clusters. The MaxLikelihood approach detected the largest 
number of accurate clusters, while MostFreq produced the most accurate 
clustering among our GMM implementations. As for the HIV set, UCLUST 
and CD-HIT both failed to cluster this divergent dataset: although UCLUST 
returned a reasonable number of 6 clusters when the identity parameter was 
set to 0.5, this clustering earned a very low ARI when compared to the other 
approaches.

The "Fast" method is similar to the one used in SpCLUST, except for the 
K-Means implementation and the random number generator, which leads to 
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small differences in the results. For the NADH dataset, the seed used in 
SpCLUST resulted in a better ARI score than BestBIC even though the 
opposite  was  expected.  This  case  might  occur  if  the  seed  of  the  Fast 
algorithm is not part of the ones considered in the BestBIC. This situation 
can be corrected by increasing the set of possible seeds in the BestBIC 
approach (Just 100 different seeds are considered by default). Indeed, three 
additional experiments using the BestBIC algorithm, and involving seeds 
from outside the scope of the initial experiment, scored an ARI of 0.957, 
similarly to SpCLUST.

In the Influenza nucleoprotein dataset where the sequences are highly 
similar, BestBIC scored a perfect ARI, similarly to UCLUST, and CD-HIT. 
UCLUST and CDHIT produced equally accurate clusterings, consisting of 
3 clusters, when the range of identity thresholds was set to 0.95 or higher. 
However,  the  BestBIC  approach  produced  a  more  balanced  clustering 
consisting of 2 clusters, which is similar to the one produced by UCLUST 
and CD-HIT for a range of thresholds lower than 0.95. Fast and MostFreq, 
for their parts, produced only a single cluster. This result is not absurd 
because the sequences in this dataset are considered very similar for a tool 
that targets clustering potentially divergent datasets. Applying UCLUST 
and  CD-HIT  on  this  dataset,  with  identities  inferior  to  0.88  and  0.91 
respectively, also produced a single cluster.

As shown in the previous experiments, traditional tools failed to cluster 
divergent sequences, while GMM-based approaches have been successful. 
For  instance,  even  though  CD-HIT  produced  a  reasonable  number  of 
clusters for the HIV dataset (5, with an identity threshold of 0.8 ), each 
cluster seems to contain random sequences with no logical grouping and 
thus a  reference clustering could not  be deduced to calculate the ARI. 
Conversely,  despite  the  fact  that  UCLUST and  CD-HIT  succeeded  in 
clustering  very  similar  sequences,  like  the  ones  of  the  Influenza 
nucleoprotein  set,  BestBIC  also  produced  a  good  quality  clustering. 
Therefore, GMM approaches can be considered in most cases, regardless of 
the dataset's degree of similarity.

Our GMM implementation with the BestBIC algorithm obtained the 
highest  average  Adjusted  Rand  Index  for  the  clustering  of  the  three 
considered datasets, equal to 0.889. It was followed by SpCLUST (using 

21



GaussianMixture() from  Python's  scikit-learn  library)  and  Paperrune's 
GMM implementation with the MaxLikelihood algorithm that scored an 
average ARI equal to 0.888 and 0.640 respectively. Therefore, on average, 
the bestBIC approach outperforms the other evaluated tools, in terms of 
clustering quality, on the chosen datasets. In addition to its good results on 
potentially divergent datasets, it also performs as well as the traditional tools 
on  highly  similar  sequences.  For  all  these  reasons,  this  algorithm was 
adopted in the next sets of experiments.

After evaluating the quality of the produced clusterings with the three 
new approaches, a performance comparison between them and SpCLUST 
was conducted. The tests were applied to the datasets introduced in this 
article and the dataset of 1049 sequences used in 4 to profile  SpCLUST. 
This experiment was run three times over a machine equipped with an i7-
6700 3.4GHz processor. Table 3 shows the best recorded execution times 
(among the three runs) for clustering the four datasets with the four GMM 
implementations which include the computation time of the Eigenmap. 

Table 3: Clustering time using the different GMM implementations and 
algorithms.

GaussianMixture () Fast MostFreq BestBIC
HIV 2,025  ms ¿1  ms 4,039  ms 1,005  ms

NADH 5,046  ms 1  ms 6,063  ms 1,010  ms
Influenza 1,008  ms ¿1  ms 1,013  ms 3  ms

1049 sequences 2,280,816  ms 53,531  ms 82,837  ms 60,612  ms

The Fast approach achieved up to 42x speed up when compared to the G
aussianMixture() function from Python's scikit-learn library, on the large 
dataset of 1049 sequences. MostFreq and BestBIC also recorded impressive 
speedups  with  this  dataset,  when  compared  to  the  GaussianMixture() 
function. Moreover,  the Fast approach achieved higher speed-ups when 
applied  on  the  three  smaller  datasets  while  the  the  GaussianMixture() 
function performed closely to our most complex approach; the MostFreq. 
Therefore, it can be concluded that the proposed algorithms using our C++ 
GMM implementation outperform scikit-learn's GMM implementation.
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6. Conclusion and future directions

In this work, four GMM-based algorithms, for enhancing the accuracy 
and the performance of the intervention-free spectral clustering technique 
for both highly similar and divergent biological sequences, are proposed. 
The  implementation  of  these  algorithms  presents  major  performance 
enhancements  when  compared  to  SpCLUST.  It  relies  on  new  C++ 
implementations of the Gaussian Mixture Model (GMM). The use of these 
GMM implementations greatly enhances the performance of this technique, 
when compared with the previously used Python GMM implementation. A 
performance comparison for the clustering phase, between SpCLUST and 
the implementation of the new algorithms, shows a speed-up ranging from 
27x to 42x.

Moreover, four algorithms to improve the spectral clustering quality 
were proposed: i- a fast single random seed run with minimizing the BIC, ii- 
another fast single random seed run with maximizing the Likelihood, iii- the 
most frequent clustering over several iterations with different seeds, iv- the 
clustering scoring the best BIC from a user-defined number of iterations. 

A comparative study, between the proposed algorithms, SpCLUST 4, 
UCLUST 20, and CD-HIT 19, was conducted over three different datasets 
of real genomic and protein sequences. In contrast with most of the state-of-
the-art tools, the spectral clustering technique aims for an intervention-free 
and a reasonably fast clustering of datasets, regardless of their level of 
similarity. Although this technique is not yet expected to compete with 
traditional tools speed-wise and scalability-wise, the experiments revealed 
that  the  proposed  algorithms  produce  competitive  clusterings  for  both 
highly similar and highly divergent datasets. The validation of the obtained 
results was based on a novel algorithm for selecting the reference clustering, 
and  on  a  carefully  selected  external  clustering  validation  index;  the 
Adjusted Rand Index.

Possible  future  extensions  to  this  work  include  exploiting  more 
clustering techniques in the biological sequences clustering field, including 
deep  learning  ones.  Further  performance  improvement  is  possible,  by 
implementing  a  parallel  computation  algorithm  for  the  Eigenmap 
calculation  and  the  GMM.  Finally,  defining  a  novel  algorithm  for 
calculating the pairwise similarities without the need for aligned sequences, 
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can further enhance the speed and the scalability of the spectral clustering 
approach.
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APPENDIX 1: Models parameters

Table 4: Detailed parameters used for Paperrune's GMM implementation.

Number of mixture 
components

Chosen iteratively based on the Maximized 
Likelihood

Number of features
The number of the chosen Eigenvectors based on 

the elbow method
Covariance type Full

Maximum number of 
EM iterations

1000

Table 5: Detailed parameters used for our GMM implementation.

Number of mixture 
components

Chosen iteratively based on the best BIC

Number of features The number of the chosen Eigenvectors based on 
the elbow method

Covariance type Full
Convergence threshold 0.01

Covariance diagonal 
regularization

0.001

Maximum number of EM 
iterations

1000

Method for initializing the 
system

K-Means*,**

Random seed (Fast) 320
Random seed (MostFreq and 

BestBIC)
In between 1 and the number of chosen runs

* The same initialization parameters were used for the K-Means method and 
the GMM, including the random seed.

** The random numbers generator is customized to avoid any results 
inconsistencies under different operating systems.
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