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Impact of high-order interactions on the fundamental dynamics of four-wave mixing
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We extend the truncated three-wave theory used to describe degenerate four-wave mixing in optical fibers
to take into account the impact of higher-order harmonic sidebands. Using second-order perturbation theory
combined with adiabatic elimination, our extended theory preserves the initial framework of the three-wave
description. This allows the subsequent discussion of the origin of the nonpreservation of the Fermi-Pasta-
Ulam-Tsingou recurrence that is observed in optical fibers. Our analytical results are supported by numerical
simulations and experimental observations.
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I. INTRODUCTION

The wave dynamics in a dispersive medium subject to an
intensity-dependent refractive index is governed by the non-
linear Schrödinger equation (NLSE) [1], which is one of the
seminal equations in science. It can be applied to numerous
different domains, including hydrodynamics, plasma physics,
Bose-Einstein condensates, and the propagation of light in
optical fibers [2–4].

One of the most important NLSE processes at the core of
numerous fundamental discoveries and practical applications
is the modulation instability (MI) [5,6] which manifests in
a form of spontaneous or seeded amplification of spectral
harmonics [7,8]. The initial stage of the MI can be described
in terms of four-wave mixing (FWM) events which change
the relative phase and redistribute the optical energy among
the individual harmonics [9–11]. The understanding of this
fundamental process improved after the development of an
analytical truncated three-wave model operating in terms of
conjugate variables [12–14]. It revealed the existence of dif-
ferent types of energy-conversion processes depending on the
optical phase, as well as recursive dynamics patterns referring
to the celebrated Fermi-Pasta-Ulam-Tsingou (FPUT) recur-
rence [15,16]. Indeed, the nonlinear Schrödinger equation that
governs the evolution of a frequency comb composed of dis-
crete optical lines in an optical fiber has the same form as
the seminal FPUT equation after canonical transformation
[17]. Considering the fundamental importance of modula-
tion instability in nonlinear optics, this analogy has attracted
strong interest from the fiber-optics community. Owing to
the difficulty of investigating and controlling large systems,
experimental works have focused on cases dealing with only
a few lines rather than the seminal 32 lines of the numerical
FPUT model. Still, optical breathers exhibiting a complex
recurrence dynamics were observed. It is worth noting that
the FPUT recurrence in fiber optics can be demonstrated only
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under specific conditions excluding the impact of linear
losses, third-order chromatic dispersion, and noise which
would ultimately lead to recurrence breaking [18–21]. Nev-
ertheless, there have been successful experimental demon-
strations and studies of FPUT dynamics; for instance, in
[22–24] the authors observed quasirecurrence over several
cycles, while in other cases, the breathing solutions were
demonstrated [8,25–27].

That said, real optical systems deviate from the ideal NLSE
paradigm because they are subject to perturbations, such as
the presence of higher-order harmonics and propagation loss.
As a result, they undergo qualitative changes in their dynamics
[20,28]. In particular, it was demonstrated that linear losses in
optical fibers can cause dissipation, which results in the break-
ing of the recurrence cycles. More recently, we developed an
experimental setup allowing us to limit wave interactions to
only three spectral lines, but with complete control of both the
optical amplitude and phase, which is determinant to demon-
strate experimentally the fundamental FWM process [29] and
the minimal example of FPUT recurrence in optical fibers.
In that work we successfully reproduced typical features of
the truncated model under various initial conditions. However,
we also observed certain deviations from the ideal dynamics
in the form of slight disturbances in the FPUT-like cycles
over long propagation lengths. Moreover, the characteristic
invariants of the underlying Hamiltonian dynamics are not
preserved either. In [30], we revealed that changes in the comb
asymmetry originate from the impact of residual second-order
sidebands. Following experimental demonstrations evidenc-
ing systematic deviation from the ideal three-wave mixing,
even in the situation where extra sidebands and any other
deviation from the nominal NLSE system are negligible, we
now would like to discuss more globally the origins of the
disturbance that appears in any truncated system and of the
nonconservation of its associated Hamiltonian.

We are not aware of other works that extend the truncated
FWM equations to include higher-order interactions while
preserving the structure of the model. When discussing analyt-
ical models governing such systems, most of the studies focus
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on per-harmonic differential equations without connections to
Hamiltonian dynamics [9–11]. In [13], the same authors who
developed the truncated model for FWM with a degenerate
pump extended it to the nondegenerate case. However, this
study was still limited to describing the interaction of only
four spectral lines.

In this article, we improve the accuracy of the model while
still retaining the nominal truncated three-wave description
of the dynamics. It now encompasses the effects of higher-
order sidebands. It serves, then, as an aid to discussing the
onset of cascaded four-wave mixing and how the underlying
Hamiltonian dynamics is actually perturbed by the presence
of additional nonlinear mixing processes, which were not
considered in the initial truncated system.

II. FUNDAMENTAL FOUR-WAVE MIXING
DYNAMICS AND ITS LIMITS

A. Truncated FWM model

Nonlinear propagation along an optical fiber obeys the
focusing nonlinear Schrödinger equation, which reads, in its
normalized form,

i
∂A(ξ, τ )

∂ξ
+ 1

2

∂2A(ξ, τ )

∂τ 2
+ |A(ξ, τ )|2A(ξ, τ ) = 0, (1)

where A(ξ, τ ) = ψ (z, t )/
√

P0 is the optical field normalized
to the average power P0, ξ = z/LNL is the normalized propa-
gation distance, τ = t/

√|β2|LNL is the normalized temporal
axis, and LNL = (γ P0)−1 is the nonlinear length. γ and β2

denote the nonlinear Kerr parameter and the second-order
dispersion, respectively.

We restrict Eq. (1) to only three spectral components
which are modeled by ideal delta functions and are equally
spaced by the normalized pulsation ωm = 2π fm

√|β2|/γ P0.
Then we can substitute the ansatz A(ξ, τ ) = A0(ξ ) +
A−1(ξ ) exp(iωmτ ) + A1(ξ ) exp(−iωmτ ) (with the carrier fre-
quency omitted) into the NLSE. Following the guidelines in
[12], the dynamics is now described by one coupled equa-
tion for each spectral harmonic. The phase and the amplitude
of each wave can be separated, Ai(ξ ) = ai(ξ ) exp[iϕi(ξ )], re-
sulting in a final set of six differential equations. Using the
canonical transformation η(ξ ) = |a0(ξ )|2/∑1

i=−1 |ai(ξ )|2 as
the relative spectral amplitude and φ(ξ ) = ϕ−1(ξ ) + ϕ1(ξ ) −
2ϕ0(ξ ) as the relative spectral phase, the set of coupled
equations can be further simplified into the evolution of a
one-dimensional nonlinear Hamiltonian oscillator [12],

dη

dξ
= ∂H (η, φ)

∂φ
= −2η(1 − η) sin φ, (2a)

dφ

dξ
= −∂H (η, φ)

∂η
= (κ − 1) + 3η − (2 − 4η) cos φ.

(2b)

η and φ form a set of conjugate variables, so H (η, φ) repre-
sents the Hamiltonian of the system:

H (η, φ) = 2η(1 − η) cos φ − (κ − 1)η − 3
2η2. (3)

It is quite remarkable that a truncated three-comb-line evo-
lution, corresponding to the minimal configuration to observe
FWM and MI, can be reduced to a one-dimensional nonlinear

FIG. 1. (a) Fundamental FWM dynamics according to Eq. (2)
over ξ = 16 at κ = −2, η0 = 0.80, and φ0 = 0 and π (red and
blue lines, respectively). The black dashed line indicates the po-
sition of the separatrix. Cyan dots indicate the position of the
constant solutions of Eq. (2). Only the solutions located at η = 0 and
(η = (3 − κ )/7, φ = 0) are stable. Note that because of the polar
representation, the solution η = 1 appears as the unit circle. (b) The
FWM dynamics in a numerical simulation replicating the experiment
demonstrates the spiraling dynamics [the simulation parameters are
the same as in (a)]. (c) Experimental concept in which the input
conditions are continuously updated after three waves propagate in
a small segment of fiber [29]. (d) Simulated changes in spectral
amplitudes during a few consecutive iterations.

oscillator. Since the FWM process depends strongly on the
phase-matching conditions between the spectral lines [31],
the dynamics is controlled by a single normalized nonlinear
mismatch parameter, κ = sgn(β2)(2π fm)2|β2|/γ P0. Maximal
MI gain is obtained for κ = −2 (it occurs for a reduced comb
spacing of ωm = √

2). Experimentally, the value of κ can
be easily tuned either by changing the frequency spacing fm

between the input comb lines or by varying the total optical
power P0. Note that in this paper we consider the sidebands at
±ωm to be symmetric, e.g., to have equal spectral amplitudes
and relative phases, which leads to simplified forms of Eqs. (2)
and (3) [12].

Using the description of the system in terms of its re-
duced variables (η, φ), one can display the dynamics on the
phase-space plane [20,32]. Here, we use a polar coordinate
representation, (η cos φ, η sin φ); a few typical trajectories
are displayed in Fig. 1(a). This representation allows to
conveniently distinguish the dynamics with bounded and
unbounded phases (red and blue lines, respectively). Four
stationary solutions exist, as indicated by cyan circles. The
solution located at η = 1 is unstable. One stationary and sta-
ble solution exists for each class of orbits. The two classes
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of trajectories are divided by the fourth unstable solution,
called the separatrix, that connects the points (η = 1, φ =
± cos−1[−(κ + 2)/2]). In the present paper we often refer to
these two types of dynamics as solutions belonging to the right
and left sides of the separatrix.

Such a system, where the dynamics is strictly limited to
three spectral lines, is considered to be ideal or fundamental
four-wave mixing (FWM) in its degenerate case. Variations
in amplitude and phase follow closed trajectories that are
completely defined by κ and the Hamiltonian energy (or,
equivalently, the initial conditions) [33]. The Hamiltonian
(namely, energy) value which is preserved during propagation
represents the conservation of the time-averaged energy of
the field. The two stable stationary solutions, which represent
waves propagating with no changes in either the relative phase
or the relative amplitude, are located at the extreme positions
of the Hamiltonian ( ∂H (η,φ)

∂φ
= 0,

∂H (η,φ)
∂η

= 0) [12].

B. Principle of the experimental approach

Experimental demonstration of the fundamental FWM in
optical fibers is a rather challenging task. The effects of prop-
agation losses and the generation of higher-order sidebands
that naturally occur in the fiber cause a deviation from the
ideal model and break the FPUT recurrence [30,34]. This is a
fundamental difference that exists between the nominal FPUT
model and the nonlinear evolution of an optical frequency
comb obeying the NLSE equation. The number of oscillators
in the numerical FPUT model is fixed, while new comb lines
are always spontaneously created in an optical fiber, unless
specific mitigation measures are taken. In our previous works,
we constructed an experimental setup aiming to demonstrate
fundamental FWM [29]. The main idea of the experimental
approach [displayed in Fig. 1(c)] was to tailor the input sig-
nal’s parameters (ηi, φi ) with a programmable spectral filter
and then propagate it in a small segment of fiber �ξ . After
measuring the output parameters (ηi+1, φi+1), we update the
input conditions and iterate this process in a loop. This allows
us to reproduce the ideal FWM dynamics over long propaga-
tion distances: over 50 km, or ξ = 12, at κ = −2 in a 500-m
fiber with γ = 1.7 (W km)−1 and β2 = −8 ps2 km−1.

This method allows us to exclude the impact of propagation
losses and limits generation of the higher-order sidebands at
±pωm (p � 2). After each iteration, we update the parameters
of the three central harmonics (−ωm, 0, ωm), while others are
filtered out in the recycling process. Nevertheless, we cannot
completely exclude their generation as light propagates in the
fiber, and we observe the occurrence of second-order side-
bands with a level below 1% of the total spectral intensity.
Figure 1(d) showcases the gradual growth of spectral lines
at ±2ωm which are filtered after each iteration of �ξ , so the
process starts anew at updated values of (ηi+1, φi+1).

The impact of the second-order harmonics is not pro-
nounced over short propagation distances (<50 km), and
FPUT-like recurrences are observed. However, the accumu-
lation of these small perturbations results in the case of longer
propagation length in the deviation from the closed orbits.

This behavior is presented in Fig. 1(b), where signals with
the same initial conditions as in Fig. 1(a) propagate over
ξ = 16 in the numerical simulation, emulating experimental

conditions (segmented propagation according to the NLSE
with recycling of the three-wave parameters after each �ξ =
0.128). We observe that the trajectories indeed do not follow
the closed orbits anymore and begin to spiral inwards. Similar
behavior has been observed experimentally: Trajectories stay
within the same dynamics type (with bounded or unbounded
phase), but the FPUT recurrence is not perfectly preserved.

Considering that this systematic trend is slow and reveals
itself fully only during long propagation, we ruled out any
experimental artifact by setting up a numerical analog of the
experiment. In brief, we solve numerically the NLSE equa-
tion (1) over a distance �ξ for an optical input field composed
of three Dirac-like lines, corresponding to the input state
(ηin, φin). The NLSE is solved using the split-step method,
and the frequency grid is chosen to match a subharmonic
of the comb spacing in order to avoid any spectral leakage
(especially scalloping loss) when performing the successive
Fourier transforms. The output state (ηout , φout ) is extracted
from the output optical field and serves as the input conditions
for the next NLSE propagation of segment �ξ . Considering
that the numerical analog and the experimental evidence are
consistent, we will use the former for comparison with theo-
retical models because it provides a larger and more accurate
(i.e., artifact-free) dataset.

III. DEVELOPMENT OF A MODIFIED FWM MODEL

A. Impact of the second-order harmonics

As soon as their existence is permitted, second-order har-
monics are created and interact with the three central lines.
This corresponds to the opening of new mixing (i.e., nonlinear
scattering) paths for the photons. By adding these new mixing
possibilities to Eq. (2), the observed deviation from the ideal
dynamics must then be reproduced.

This would, however, complexify the theoretical model
from two coupled equations to five. That said, the amplitude
of the second-order harmonics remains small, and they im-
pact the dynamics only after a large propagation distance.
Therefore, the extended system can be understood as a Hamil-
tonian system (the three central lines) with weak interaction
with a coherent but dissipative reservoir (the second-order
harmonics). The equations for second-order harmonics can
be solved in terms of the reduced variables (η, φ), and their
effects can then be incorporated adiabatically in the nominal
system of Eq. (2). In contrast to previous derivations of FWM
in which the increase in accuracy was made at the cost of
simplicity (one more equation per extra sideband) [9–11,35],
the present demonstration retains the original simplicity of the
system.

In detail, to formulate the modified model, we take an
approach similar to that in our previous work in which we dis-
cussed the nonconservation of the asymmetry invariant in the
experimental dynamics [30]. First, the second-order sidebands
are growing from noise, and at low values of κ (< −1), the
modulation-instability-gain bandwidth does not include them.
As a result they are neither amplified nor generated efficiently.
In this context, we can therefore consider only stimulated pro-
cesses (see Fig. 6 in the Appendix) and neglect spontaneous
FWM. The mathematical derivation and the resulting final
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system of coupled equations for the waves’ amplitudes and
phases are described in the Appendix.

For a segment �ξ small enough with respect to the charac-
teristic evolution length of the unperturbed FPUT recurrence
(defined as the length required to observe one recurrence
cycle), the equations governing the evolution of the extra side-
bands [Eq. (A1)] can be integrated to result in the following
amplitude for the second-order sidebands:

a±2 = �ξ

4
√

η(1 − η)[sin(ϕ±2 − φ) + 2 sin ϕ±2]. (4)

Note that the transfer of energy to the ±2 sidebands is
a phase-dependent process. The maximal growth of the a±2

sidebands will actually happen if all the photons are scattered
into them constructively with the same phase, resulting in
a net coherent accumulation of energy. When (η, φ) vary
over a small �ξ , this situation corresponds mathematically
to dϕ±2

dξ
= 0, which thus gives

ϕ±2 = − tan−1

(
2 + cos φ

sin φ

)
+ πM. (5)

M = 1 if sin φ > 0, and M = 0 otherwise.
In the case in which spectral lines are amplified by noise

in an undepleted pump approximation and φ = 0, we recon-
struct the relative phase of ±π/2 from Eq. (5) [36–38]. In
other cases, this expression gives the correct approximation
of the second-order sidebands’ phase, which was verified in
our numerical simulation of the iterated NLSE propagation.

B. Complete modified model

After solving the equations in a the undepleted pump ap-
proximation, the second-order harmonics can be expressed
only as a function of the reduced variables. Equation (2) can
therefore be complemented by a corrective term involving
only the latter; hence, we obtain

dη

dξ
= −2η(1 − η) sin φ

+1

2
�ξη(1 − η)2[(1 + η) sin2(ϕ±2 − φ)

+4η sin ϕ±2 sin(ϕ±2 − φ) + 4(η − 1) sin2 ϕ±2], (6a)

dφ

dξ
= (κ − 1) + 3η − 2(1 − 2η) cos φ

+1

4
�ξ (1 − η)[sin(ϕ±2 − φ) + 2 sin ϕ±2]

×[4(3η − 1) cos ϕ±2 + (5η − 1) cos(ϕ±2 − φ)]. (6b)

Here, the first part of the equation is responsible for the funda-
mental FWM processes [Eq. (2)], which are also preserved in
the modified model. The second part appears only due to the
existence of additional stimulated photon-mixing processes
which lead to the energy exchange with the second-order
harmonics with the phase ϕ±2 given by Eq. (5). Such a simpli-
fication of the model is possible only by assuming perturbative
adiabatic growth of the ±2 spectral lines.

Note that Eq. (6) is valid for only short segment lengths
�ξ , as discussed previously. If �ξ is large, the assumptions
about small growth and constant phase are no longer valid,

FIG. 2. FWM dynamics according to numerical simulations
(solid lines) and the modified model Eq. (6) (colored points). The
inset shows the positions of each trajectory on the phase-space map
and solutions according to the ideal truncated model. Input param-
eters are (a1)–(c1) η0 = 0.90 and φ0 = 0, (a2)–(c2) η0 = 0.70 and
φ0 = π , and (a3)–(c3) η0 = 0.995 and φ0 = π at κ = −2 and �ξ =
0.128. (a)–(c) display evolution on the phase-space plane, changes
in the relative amplitude η, and phase φ with propagation distance,
respectively.

which would lead to discrepancies between the model and the
segmented NLSE propagation.

To verify our model, we numerically simulate the exper-
imental dynamics by using segmented propagation of the
NLSE. We choose a propagation length of ξ = 30 (216
segments of �ξ = 0.128), which allows us to observe a
significant spiraling and hence benchmark the solutions of
Eq. (6). The results are presented in Fig. 2 for initial con-
ditions η0 = 0.90 and φ0 = 0 [Figs. 2(a1)–2(c1)], η0 = 0.70
and φ0 = π [Figs. 2(a2)–2(c2)], and η0 = 0.995 and φ0 = π

[Figs. 2(a3)–2(c3)] at κ = −2, which implies the maximum
modulation instability gain for the ±1 sidebands.

We note very good agreement of the numerical results
and our modified model, especially in the early stages of
propagation. With further propagation, the dynamics starts to
deviate from numerical predictions, which can be ascribed to
(1) the accumulation of inaccuracies that arise from analytical
assumptions regarding ϕ±2 and the processes included and
(2) the fact that η tends to decrease with distance, which
means that the sidebands are becoming stronger and starting
to act as two pumps symmetrically located with respect to the
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central frequency, which ultimately leads to the development
of additional photon-exchange processes that are not included
in our model (this would correspond to the growth of third-
order harmonics and could be, to some extent, related to the
discussion in [13]). The accumulation of these effects can ul-
timately break the recurrence when the trajectory passes near
the unstable solution, which leads to the separatrix crossing
depicted in Figs. 2(a3)–2(c3).

IV. STATISTICAL PROPERTIES AND DISSIPATION
OF HAMILTONIAN DYNAMICS

As demonstrated in the previous section, the system fol-
lows spiraling trajectories gradually, away from the initial
closed orbits. This behavior can be explained by the fact
that global attractors may exist on the phase-space plane and
that the dynamics is impaired by dissipation. Therefore, the
next question is to investigate the statistical properties of the
dynamics and redefine the Hamiltonian.

A. Statistical estimation of attraction regions

To define the attraction regions, we both run a numerical
simulation and solve the extended theoretical model over
a very long propagation distance, ξ = 255, for various ini-
tial conditions on a grid covering the full phase space. We
consider 112 trajectories, which allows us to make conclu-
sions about the number and loci of the attractors and their
respective basins of attraction characterized by the density pa-
rameter. It is defined by counting, for each phase-space map’s
grid point, how many time each trajectory passes through it.
Since one of the parameters controling the dynamics in our
system is the segment length, we repeat the simulation for
�ξ = 0.064, 0.128, 0.192, 0.255.

First, the data reveal that two well-defined attractors
exist, one on each side of the separatrix. Note that the
attractor located at η = 0 corresponds to the limit situa-
tion where the central pump is completely depleted and
only the two lateral sidebands remain. In this case, the
phase φ is actually illdefined, and dominant nonlinear mix-
ing paths now become spontaneous processes. This will be
characterized by the strong growth of extra sidebands, an
extreme situation not taken into account in our extended
model. In contrast, the attractor located at the right re-
mains well confined within the framework of our extended
theory. In Figs. 3(a) and 3(b) we display the two fam-
ilies of initial conditions which are attracted to the left-
and right-side attractors, respectively, depending on their
position on the phase-space map. The density parameter in-
dicates how fast a given input configuration will be attracted
(the lower the value is, the faster the attraction is). First, we
see that attraction is much stronger for large �ξ , but that does
not change the position of the new separatrix. Notably, the
new separatrix delimiting the right and left attractors differs
from the ideal case. In particular, the point η = 1 now belongs
exclusively to the right attractor.

With the data presented in Fig. 3, we can benchmark
the performance of our model by comparing the statisti-
cal properties of trajectories computed with the segmented
NLSE propagation [Figs. 3(a1) and 3(b1)] and with Eq. (6)

FIG. 3. Density of convergence towards (a) left- and (b) right-
side stationary solutions computed by (a1) and (b1) numerically
iterated NLSE propagation and (a2) and (b2) the modified FWM
model at κ = −2.

[Figs. 3(a2)–3(b2)]. We see that both methods provide simi-
lar results and the dependence of the trajectories’ density at
different segment lengths is reproduced correctly. When the
segment length is increased, the attraction region on the right
side decreases, which can be explained by the more rapid
change in parameters during each segment propagation so that
the spiraling does not appear as gradual.

Second, we mark in Fig. 4(a) the positions of the attractors
on the energy landscape defined by the system’s Hamiltonian.
We see that they are located in the vicinity of its extreme
values: the yellow square shows the exact fixed point (ηfp =
0.7143, φfp = 0) at κ = −2, while the green dot displays the

FIG. 4. (a) Attractors of the spiraling dynamics at different
segment lengths �ξ are displayed on the Hamiltonian profile at
κ = −2. The yellow square corresponds to the fixed point ηfp =
0.7143, φfp = 0; red, green, blue, and magenta circles correspond
to �ξ = {0.064, 0.128, 0.192, 0.255}, respectively. (b) Convergence
length for each initial condition on the phase-space map at κ = −2
and �ξ = 0.128. The black dashed line indicates the separatrix
position.
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attractor at �ξ = 0.128, which corresponds to the segment
length that was investigated experimentally [29]. The extreme
point on the left side at ηfp = 0 coincides perfectly with the
fixed point of the ideal three-wave mixing system.

The details of the right-side attractor also confirm the
importance of the stationary point. Even if the exact
location differs very slightly from ηfp, it remains in close
vicinity to the expected value. In more detail, the relative
amplitude and phase values of the attractor are found to be
ηa = {0.7159, 0.7143, 0.7144, 0.7144} and φa = {0.0156,

0.0312, 0.0469, 0.0625} rad for �ξ = {0.064, 0.128,

0.192, 0.255}, corresponding to the red, green, blue, and
magenta dots in Fig. 4(a), respectively. We may, however,
note a slightly more pronounced change in the relative phase
of the attractor that tends to increase with the segment length.

Depending on the starting point, each trajectory converges
to the attractors at a different rate; hence, different propaga-
tion distances are needed before the waves are transformed
to stationary solutions. The dependence of the convergence
length (defined as the length at which η is close to ηa and the
relative change after two consecutive iterations is smaller than
0.01) on the position on the phase-space plane is depicted in
Fig. 4(b).

We observe that the total propagation lengths required to
converge to each attractor differ significantly. Trajectories
on the right tend to have gradually decreasing convergence
length when located closer to the attractor, while on the left
side of the separatrix there is a region with short and almost
homogeneous convergence lengths surrounded by a ring with
much higher convergence lengths. In fact, this set of initial
conditions converges not to the left but to the right-side attrac-
tor by crossing the separatrix, as depicted in Fig. 3. In other
words, the convergence basins are not exclusively defined by
the separatrix. As demonstrated and discussed in [30], growth
of the second-order sidebands is not homogeneous on the
phase-space map and is more pronounced on the right side
of the separatrix. So when an initial condition corresponds
to high pump energy on the left side, the contribution of
the sidebands to the dynamics is minimal, so the trajectory
follows the separatrix closely to a position where the second-
order sidebands start to play a more significant role. Since
the separatrix is an unstable solution, this small perturbation
results in a change in the type of dynamics. So the trajectory
can now cross the separatrix and gradually converge to the
right-side attractor. This case is depicted in panels 3 of Fig. 2.

B. Dissipation and its impact on the FWM

As discussed in the previous section, the very existence
of additional paths of photon interaction, represented by the
higher-order harmonics, leads to deviation of the FWM dy-
namics from the ideal model. The developed model has shown
that the second-order sidebands act as perturbations disrupt-
ing the fundamental dynamics, which leads to changes in
the Hamiltonian profile. Equation (6) does not follow a pure
Hamiltonian dynamical system; however, we can consider
a general framework of a Hamiltonian system impaired by
dissipation.

In this case, by using the definition of the conju-
gate variables and splitting functions responsible for the

FIG. 5. (a) Distribution of the Hamiltonian dissipation accord-
ing to Eq. (9) at �ξ = 0.128. Thin white dashed and dotted lines
correspond to propagation of η0 = 0.90 and φ0 = π and φ0 = 0,
respectively, over ξ = 60. The thick white dashed line marks the
position of the separatrix. White dots denote positions of stationary
solutions. (b) and (c) Density of convergence towards the fixed point
at κ = −0.8 and different segment lengths �ξ .

fundamental dynamics, dη

dξ
= dH

dφ
= Hη and dφ

dξ
= − dH

dη
= Hφ ,

and the additional terms coming from the second-order har-
monics fδη,δφ , we obtain

dη

dξ
= Hη + fδη, (7a)

dφ

dξ
= Hφ + fδφ. (7b)

Then we take the total derivative of the Hamiltonian, which
reads

dH

dξ
= ∂H

∂ξ
+ ∂H

∂η

∂η

∂ξ
+ ∂H

∂φ

∂φ

∂ξ
. (8)

Now we can substitute the Hamiltonian derivatives by the
expressions from the ideal model and the derivatives of η

and φ by the modified expressions (7). Since the unperturbed
Hamiltonian does not change during propagation ∂H

∂ξ
= 0, the

dissipation of the Hamiltonian reads

dH

dξ
= Hη(Hφ + fδφ ) − Hφ (Hη + fδη ) = Hη fδφ − Hφ fδη.

(9)
This equation represents changes in the Hamiltonian under the
impact of perturbations induced by the second-order harmon-
ics. Figure 5(a) shows the dH/dξ portrait on the phase-space
map at different values of κ .

First, we observe on the left side of the separatrix that the
highest decay rate is located close to η = 0, explaining the
uneven spiraling rate that has been observed in this region
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[dashed white line in Fig. 5(a1)]. On the right side, the decay
rate is not as pronounced, and there is a region where the
Hamiltonian is actually recovering (dH/dξ positive), which
further slows down the global spiraling that is observed in this
region.

Second, in Figs. 5(a1)–5(a3), we see that the loci of regions
with growth or decay are more or less preserved and do not
depend much on either �ξ or the value of the nonlinearity κ .
This implies that the dissipation mechanism depends mainly
on the relation between the phases and amplitudes of the pump
and the sidebands but not on the type of dynamics (i.e., with
bounded and unbounded phases on the right and left sides of
the separatrix, respectively). With the growth of κ (e.g., with
higher nonlinearity), we observe that dissipation and changes
in the Hamiltonian become more significant. Consequently,
the nominal ideal dynamics can be modified significantly
enough during a single segment of propagation �ξ that it
crosses the separatrix [dotted white lines in Figs. 5(a2) and
5(a3)]. The existence of localized regions with high losses
also explains the rapid spiraling on the left side after just a
half orbit.

To verify the statistical properties of the systems with
higher nonlinearity, for instance, κ = −0.8, we performed a
few simulations similar to those in Fig. 4. The results are
presented in Figs. 5(b) and 5(c) for numerical simulation and
our modified model, respectively. We observe that the system
converges only to the fixed point ηfp = 0 on the left side of the
separatrix for any segment length. Even trajectories passing
close to the right-side fixed point (ηfp = 0.543, φfp = 0) con-
verge to the left side. This behavior denotes a complete change
in the dynamics (transition from two stable fixed points to only
one).

Third, we can now justify why the system is spiraling to the
fixed points. From the distributions presented in Fig. 5(a), we
see that the fixed points (marked as white dots) are located
at zero-dissipation values and extremes of the Hamiltonian
energy. On the left side, the dissipation has a negative value,
and the fixed point is a minimum of the energy, hence forming
a stable attractor [as in Figs. 5(a1) and 5(a2)]. In contrast,
on the right side of the separatrix, the fixed point is located
between the growth and decay regions, hence forming a saddle
point. Therefore, this fixed point gradually becomes more and
more unstable as the nonlinearity (i.e., 1/|κ|) is increased [as
in Fig. 5(a3)].

V. DISCUSSION

In previous works, the differences between the evolution
of the idealized FWM model and the of a real fiber system
were attributed to gradual depletion of energy located inside
the three central harmonics, which is linked to the cascade
of the FWM events. In the present work, we can trace the
origin of the observed divergences to the very existence of the
second-order harmonics, which allows additional nonlinear
mixing possibilities. While they carry little energy, the result-
ing dynamics may differ significantly from the ideal model.

This study bridges the gap between the ideal system, in
which only three spectral lines participate in the dynam-
ics [12,14], and the full-spectrum wave mixing during the
MI dynamics [39]. The modified model Eq. (6) provides a

quantitative description of the cumulative impact of the
higher-order sidebands. It could be relevant for systems un-
dergoing parametric wave mixing [35,38] and for explaining
spontaneous FPUT recurrence breaking in optical fibers. Fur-
thermore, we discussed a method to include the higher-order
sidebands in intrinsically three-wave dynamics, which could
help us to describe the spatial Benjamin-Feir instability where
the second-order harmonics are linearly stable [40].

On the left side of the separatrix (or on both sides in the
case of high nonlinearity), we observe a full conversion of
the pump power to the sidebands at any initial condition. This
allows the potential implementation of the gain through losses
mechanism [41] in our experimental configuration. Indeed,
it has been demonstrated that by introducing wavelength-
dependent distributed losses [42] or a chain of filters [41], one
can induce an optical gain that results in a new type of MI [43]
or more efficient signal amplification during the FWM process
[44]. This type of instability is different from the parametric
gain occurring at special resonant conditions under the effects
of periodic variation of power [45] or dispersion [46–48].

VI. CONCLUSION

In the present work, we demonstrated that the very exis-
tence of photon-exchange paths with higher-order harmonics
can lead to the disturbance of the fundamental FWM dy-
namics. We investigated the nonconservation of the truncated
FWM dynamics under a perturbative impact of the second-
order sidebands. We developed a modified model in terms
of canonical pairs of Hamiltonian variables in which some
additional photon interaction paths are included, which al-
lows a more precise description of the experimental dynamics
observed in [29,30]. The discussion of the dissipation mech-
anisms impairing the nominal Hamiltonian dynamics allowed
us to unveil the origin of this peculiar dynamics that is
observed experimentally. The spiraling behavior of the trajec-
tories is, in particular, now fully explained. We demonstrated
especially that the impact of the second-order harmonics can
actually be considered a perturbation, which leads to the
appearance of coherent dissipation of either the positive or
negative sign. This approach could, in principle, be general-
ized to any system subject to perturbations.

Similar to nonlinear fiber optics, deepwater wave propa-
gation in hydrodynamics can be described by the NLSE, so
we can make a link between dissipation in these systems.
Waves propagating in a water tank are impaired by friction
and viscosity, which impacts the FPUT recurrence [49] and
can lead to a change in the dynamics type. In deepwater
approximations, the perturbations can be caused by the effects
of damping and forcing [50], which ultimately leads to the
crossing of the separatrix, and by a change in the dynamics
[20,28]. In our case, even though the dissipation has a different
nature, it can still be considered a finite (namely, three-wave)
system impaired by an external dissipation process, which is
here in the form of an exchange of energy with higher-order
harmonics. Therefore, such an approach can be applied to
other dynamics, which allows us to achieve a more accurate
description while retaining a simple analytical model.

Our approach relies on adiabatic elimination by assuming
a constant phase and an average spectral amplitude of the
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second-order harmonics over each fiber segment, which, on
the one hand, allows a simple analytical formulation of the
modified equation but, on the other hand, is valid only for
a short segment of fiber. A complementary approach for the
case of a longer fiber segment would be to identify the relevant
distributed model by means of data-driven techniques aiming
to identify nonlinear dynamics [51].

This work can also be used to gain an understanding and
develop new types of fiber-optic parametric amplifiers. In-
deed, filtering out the second-order harmonics at each iteration
allows conversion between states that are not located on the
same trajectory. Our work, which encompasses a complete
study of how the dynamics is affected by different initial
conditions and introduces the Hamiltonian analysis, could
improve the understanding of how such systems are affected
by asymmetric losses.
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APPENDIX: COMPLETE SET OF EQUATIONS
FOR SPECTRAL PHASES AND AMPLITUDES

In order to define the cumulative effect of the second-order
sidebands, we include the extra processes that involve genera-
tion of the respective spectral lines. Assuming a small level of
nonlinearity (κ < −1), we can include only photon-exchange
paths that involve the central lines and one of the sidebands,
as depicted in Fig. 6.

Considering only symmetric evolution (hence, the asym-
metry invariant equals zero [12,30]), which implies equal

Annihilated photons Created photons

Frequency

edutilp
malart cepS

− +0−2

equ
+2

y
− +0

yeq
−−2 +2

− +0

p S −2 +2 − +0−2 +2

− +0−2 +2 − +0−2 +2

(a) (b)

(c) (d)

(e) (f)

FIG. 6. [(a)–(f)] Possible processes of energy exchange between
the three central lines and the second-order sidebands. In (a) the
nominal three-wave formulation allows only one mixing process. All
the other processes indeed imply the transfer of energy to either the
+2 or −2 sideband. In (b) the spontaneous breaking of a pair of pump
photons into both +2 and −2 sidebands is negligible in comparison
to the others processes in (a) and (c)–(f), which are the stimulated
ones.

changes in phase and amplitude of the +nωm and −nωm

spectral lines, we can denote spectral amplitudes and phases
as a−n = a+n = a±n and ϕ−n = ϕ+n = ϕ±n (n = 1, 2), re-
spectively. Then the coupled equations presented in [12] are
modified as follows:

da0

dξ
= −2a2

±1a0 sin(2ϕ±1 − 2ϕ0) − 4a±2a2
±1 sin(ϕ±2 − ϕ0) − 2a2

±1a±2 sin(2ϕ±1 − ϕ±2 − ϕ0),

da±1

dξ
= −a2

0a±1 sin(2ϕ0 − 2ϕ±1) − 2a±2a±1a0 sin(ϕ±2 + ϕ0 − 2ϕ±1),

da±2

dξ
= −a2

±1a0 sin(2ϕ±1 − ϕ0 − ϕ±2) − 2a0a2
±1 sin(ϕ0 − ϕ±2), (A1)

dϕ0

dξ
= a2

0 + 4a2
±1 + 4a2

±2 + 2a2
±1 cos φ + 4a±2a2

±1

a0
cos(ϕ±2 − ϕ0) + a±2a2

±1

a0
cos(ϕ±2 + ϕ0 − 2ϕ±1),

dϕ±1

dξ
= 1

2
κ + 2a2

0 + 3a2
±1 + 4a2

±2 + a2
0 cos φ + 4a0a±2 cos(ϕ±2 − ϕ0) + 2a0a±2 cos(ϕ±2 + ϕ0 − 2ϕ±1),

dϕ±2

dξ
= 2κ + 2a2

0 + 4a2
±1 + 3a2

±2 + a2
±1a0

a±2
cos(ϕ±2 + ϕ0 − 2ϕ±1) + 2a2

±1a0

a±2
cos(ϕ±2 + ϕ0). (A2)

Since the energy of three lines is conserved in the first approximation and the accumulated energy in the second-order sidebands
remains small, we can denote a±1 = √

(1 − η)/2. Substituting this simplification in Eqs. (A1) and (A2) and using the definition
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a0 = √
η result in

da0

dξ
= −(1 − η)

√
η sin(2ϕ±1 − 2ϕ0) − 2a±2(1 − η) sin(ϕ±2 − ϕ0) − (1 − η)a±2 sin(2ϕ±1 − ϕ±2 − ϕ0),

da±1

dξ
= −η

√
(1 − η)/2 sin(2ϕ0 − 2ϕ±1) − a±2

√
2(1 − η)

√
η sin(ϕ±2 + ϕ0 − 2ϕ±1),

da±2

dξ
= −(1 − η)/2

√
η sin(2ϕ±1 − ϕ0 − ϕ±2) − √

η(1 − η) sin(ϕ0 − ϕ±2), (A3)

dϕ0

dξ
= 2 − η + 4a2

±2 + (1 − η) cos φ + 2a±2(1 − η)√
η

cos(ϕ±2 − ϕ0) + a±2(1 − η)

2
√

η
cos(ϕ±2 + ϕ0 − 2ϕ±1),

dϕ±1

dξ
= 1

2
κ + 2η + 3(1 − η)/2 + 4a2

±2 + η cos φ + 4
√

ηa±2 cos(ϕ±2 − ϕ0) + 2
√

ηa±2 cos(ϕ±2 + ϕ0 − 2ϕ±1),

dϕ±2

dξ
= 2κ + 2η + 2(1 − η) + 3a2

±2 + (1 − η)
√

η

2a±2
cos(ϕ±2 + ϕ0 − 2ϕ±1) + (1 − η)

√
η

a±2
cos(ϕ±2 + ϕ0). (A4)

Integrating Eq. (A3) over a short segment of fiber �ξ results in Eq. (4). The stationary phase condition for the second-order
harmonics dϕ±2

dξ
= 0 applied to Eq. (A4) results in Eq. (5).
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