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A B S T R A C T

We demonstrate that centroid-based clustering of normalized intensity profiles is able to successfully isolate 
different classes of pulses associated with physically distinct regimes of nonlinear and dispersive propagation in 
optical fiber. Remarkable for its simplicity, this approach shows how analysis of only the temporal intensity 
profiles of propagating pulses, even at relatively limited sampling resolution, reveal sufficient similarities to 
allow physical classification of different classes of propagation behavior.

1. Introduction

Machine learning techniques have seen rapid and impressive devel-
opment in the field of ultrafast photonics in the last 5 years [1–3]. A 
particular area that has especially benefited from this work is the study 
of nonlinear dynamics in optical waveguides, where different machine 
learning techniques have been applied to the study of output waveform 
properties [4–7], supercontinuum evolution maps [8,9], extreme event 
emergence [10] and the dynamics of four-wave mixing [11,12]. The 
methods used in this work have been varied, including simple feedfor-
ward neural network architectures [4,10–12], recurrent neural net-
works [8] convolutional networks [5] and more complex combinations 
of different deep learning algorithms [5,7]. Other work has used 
physics-informed methods to solve the underlying propagation equa-
tions [13], inverse-problem methods for prediction [4,6,12], sparse 
regression to discover dynamical models from data [14,15], and 
dominant-balance methods to automate detection of dominant physics 
during nonlinear evolution [16–18].

In this paper, we report a further application of machine learning 
methods in nonlinear fiber optics, using simple clustering techniques to 
analyze and classify intensity profiles resulting from a range of propa-
gation scenarios. Specifically, we show that simple centroid-based 
clustering, such as the widely used K-means algorithm [19,20], can 
successfully reveal patterns during higher-order soliton and wave 
breaking evolution dynamics, and can also distinguish normal and 

anomalous dispersion-regime dynamics in specific regimes of propaga-
tion. These results reveal that clustering provides a complementary tool 
to existing analytical and numerical methods to automatically highlight 
patterns and similarities between different regimes of evolution, 
potentially yielding new insights into the underlying physics. Moreover, 
although motivated by the study of dynamics in optical fiber propaga-
tion, our analysis is based on an ideal nonlinear Schrödinger equation 
model, so that our results can be readily extended to other fields such as 
atom optics, hydrodynamics and plasma physics.

2. Propagation model and methods

We consider propagation in optical fiber described by the dimen-
sional nonlinear Schrödinger equation (NLSE) [21]: 

i
∂ψ
∂z

−
β2

2
∂2ψ
∂t2 + γ |ψ |2 ψ = 0 (1) 

where ψ(t, z) is the complex pulse envelope, γ and β2 are respectively the 
nonlinear and dispersion coefficients,z and t are respectively the prop-
agation distance and comoving time. We define nonlinear and dispersive 
lengths as LNL = 1/γP0 and LD = T2

0/|β2| respectively, where P0 and T0 

are the peak power and temporal width of a hyperbolic secant input 
pulse ψ(t,0) =

̅̅̅̅̅
P0

√
sech(t /T0). Loss and noise are neglected. The NLSE 

in normalized form is then given by: 
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i
∂u
∂ξ

−
sgn(β2)

2
∂2u
∂τ2 + N2 |u|2 u = 0 (2) 

where ξ = z/LD, τ = t/T0, and N2 = LD/LNL defines the soliton number 
N. The normalized input pulse is u(τ,ξ) = sech(τ).

Our aim here is to use centroid-based clustering to differentiate 
different regimes of nonlinear and dispersive pulse propagation, based 
solely on analyzing temporal intensity profiles I(τ, ξ) = |u(τ, ξ)|2. We 
stress that this is a severe constraint because we have no access to the 
temporal phase of the pulse or any spectral information. To generate 
large data sets of intensity profiles, we perform numerical simulations to 
solve the NLSE [21] for different initial conditions by randomly scan-
ning N over the range 1–5 (continuously i.e. not only integer values), 
and at different propagation distances by extracting I(τ, ξ) at distances ξ 
over the range 0.0–2.5. We generated two ensembles of data consisting 
of 20,000 independent numerical simulations for each case of normal 
(β2 > 0) and anomalous (β2 < 0) dispersion regime propagation. Given 
the temporal symmetry of our initial conditions and the fact we are in an 
ideal NLSE model, the temporal intensity profiles are always symmetric, 
and so we can restrict ourselves to performing clustering for only 
positive-valued τ i.e. for I(τ> 0, ξ). We also introduce a normalized in-
tensity profile In(τ, ξ) = I(τ, ξ)/Imax(ξ) with Imax is the maximum in-
tensity at a given ξ. Considering the intensity profile in this way allows 
us to characterize the structure of the intensity profiles in terms of their 
computed kurtosis as we describe below. Our NLSE simulations used 213 

temporal grid points over a temporal window of normalized τ-width 
100. We first present some general results in Fig. 1 (a), showing three 
typical examples of normalized intensity profiles under three different 
propagation conditions: (green) ξ = 0.8, N = 4.1, sgn(β2) = − 1; (red) 
ξ = 2, N = 4.5, sgn(β2) = +1 ; (blue) ξ = 1.5, N = 2.9, sgn(β2) = −

1. The profiles are plotted for positive times (τ > 0) and illustrate the 
large qualitative differences between pulse profiles arising from propa-
gation under different conditions, with shapes ranging from highly 
compressed pulses with subpulses associated with soliton evolution 
(green), to highly flattened and significantly broadened pulse envelopes 
associated with high power normal dispersion propagation dynamics 
(red) [21,22]. For improved clustering performance, we downsample 
the 4096 positive time points to 2L points, with L ranging between 4 and 
8, using a nonuniform sampling procedure in order to ensure that we 
capture both broad envelope and short compressed features in the in-
tensity profiles. Specifically, we resampled our data on a 
logarithmically-spaced grid covering the normalized temporal interval 
[0 25] with 2L samples. Examples of the resulting data obtained for L =
8, 6 and 4 are provided in panels (b) of Fig. 1 where we notice that even a 
reduced number of only 16 samples is still able to reproduce the general 
features of the pulse profile after propagation.

We used L = 7 except in the last section of this work where we discuss 
the influence of L. The two ensembles of 2 × 104 temporal intensity 
profiles after logarithmic resampling serve as unlabeled data of the 
clustering algorithm in order to have a dense and visually quasi- 
continuous cover of the 

(
N2, ξ

)
space. We have however checked that 

qualitatively similar clustering could be achieved with ensemble sizes 
down to ~200.

We have also calculated, from the intensity profiles before resam-
pling, the temporal moments of order two and four to characterize the 
intensity profile through its root mean square (rms) temporal width σ 
and its kurtosis κ [23] respectively. These are defined for a symmetric 
waveform as: 

σ2 =

∫

τ2 I(τ) dτ
/ ∫

I(τ) dτ (3) 

κ =

∫
τ4 I(τ) dτ

/ ∫
I(τ) dτ

σ4 , (4) 

where we note that the rms duration and the kurtosis of a hyperbolic 

secant pulse are σ = 0.907 and κ = 4.2 respectively. We evaluate in 
Fig. 1 (c) the impact of the number of resampled points on the average 
relative error in σ and κ, using as reference our initial intensity profiles 
which were densely sampled in τ. We see from the figure that for L > 6 
(i.e. 64 temporal points), the moments are evaluated with a very low 
average error below 1% over the two data ensembles (normal and 
anomalous dispersion regime) of 4 × 104 profiles. However, when L 
decreases below 6, the error rapidly increases, which can be understood 
since the integrals in Eqs (3) and (4) are numerically approximated by 
the trapezoidal rule. To avoid any sampling-induced errors of this kind, 
in what follows, we evaluate σ and κ from the initial intensity profiles 
before resampling.

The clustering method we use here is the K-means (or Lloyd-Forgy) 
algorithm, which is one of the most widely adopted algorithms in data 
science and which has been extensively studied for many years [19,24]. 
Although there are certainly other clustering methods that could be 
considered, our motivation here was to consider how even the simplest 
approaches to clustering can be used to add physical insights based only 
on the analysis of pulse intensity profiles. In particular, we have not 
attempted here to include any comparison or benchmarking with other 
methods, but this could naturally form the basis of future work.

We also note here that, although K-means clustering has been pre-
viously implemented in the context of optical telecommunication to 

Fig. 1. (a) Examples of three normalized intensity profiles used as inputs for 
clustering. These profiles result from the propagation of a hyperbolic secant 
pulse under the following conditions: (green) ξ = 0.8, N = 4.1, sgn(β2) = −

1; (red) ξ = 2, N = 4.5, sgn(β2) = +1 ; (blue) ξ = 1.5, N = 2.9, sgn(β2) = −

1. The profiles are plotted over a temporal window of normalized width 25 
representing 2048 linearly spaced points. (b) The same temporal intensity 
profiles but after non-uniform resampling with 256, 64 and 16 samples (L = 8, 6 
and 2 plotted on panels b1, b2 and b3, respectively). (c) Influence of the 
number of logarithmically spaced samples on the average relative error made 
on the numerical evaluation of the rms duration (blue circles) and kurtosis 
parameter (red diamonds).
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mitigate non-linear distortions of phase-coherent transmissions [25,26], 
to the best of our knowledge it has never been exploited to get insights 
on the nonlinear dynamics. K-means is a centroid-based algorithm 
where the user must first define the desired number of clusters in which 
to partition the data. In our case, we choose between 2–5 clusters as we 
describe below. Centroids are then randomly created based on the 
number of clusters and the distance between data points, and each 
centroid is calculated so that each data point can be assigned to the 
nearest centroid. The metric to evaluate “distance” here is an important 
parameter, and different distance metrics can be defined in addition to 
the simple Euclidean distance. For this study, we used the cosine dis-
tance based on a cosine similarity calculation, as this is known to yield 
better clustering results in the presence of complex non-spherical cluster 
shapes [24]. The mean of the centroid is recalculated based on all the 
assigned data points, and this will then modifies the position of the 
centroid. This process is iterated until it converges when each data is 
linked to a single cluster. In order to avoid local minima and obtain 
reproducible output, we run the algorithm multiple times (typically 
between 10–15) and keep the results leading to the lowest total sum of 
distances.

3. Clustering for anomalous dispersion regime dynamics

We begin by considering the clustering behavior for intensity profiles 
generated from soliton dynamics in the fiber anomalous dispersion 
regime. We consider 20,000 intensity profiles obtained by scanning N 
over the range 1–5 and ξ over the range 0.0–2.5, and these profiles are 
then used as input to the K-means algorithm. To illustrate how simple 
clustering can identify different dynamical characteristics, we first 
present results when partitioning into only 2 clusters and considering as 
input the non-normalized profiles I(τ). Fig. 2 (a1) displays these results 
by plotting the 

(
N2, ξ

)
pair associated with each profile, but assigning a 

different color depending on the cluster into which the profile is sorted. 

This clearly shows a periodic band structure in the 
(
N2, ξ

)
plane, but to 

gain more insight, we plot in Fig. 2 (a2) a three-dimensional plot where 
the clustered profiles are plotted in terms of their root-mean-squared 
(rms) duration σ, their kurtosis κ and their peak intensity Imax. It is 
clear from this plot that the main separation between the clusters arises 
from the difference in profile intensities, allowing us to conclude that the 
bands in Fig. 2 (a1) are identifying different stages of periodic temporal 
expansion and compression (yellow and blue bands respectively).

To consider how clustering can identify more general pulse shape 
characteristics in addition to peak intensity, Fig. 2 (b1) and Fig. 2 (b2) 
show results using normalized intensity profiles In(τ)as input. We see 
that Fig. 2 (b1) shows an identical band structure in the 

(
N2, ξ

)
plane, 

stressing that the knowledge of the peak-power does not provide major 
new insights. The clusters can be readily attributed to different stages of 
pulse evolution, with the yellow cluster linked to stages of noticeable 
compression [27,28] and significant deviation from the input profile, 
and the blue color to stages where there is only moderate change with 
respect to the input profile. This is particularly the case for short prop-
agation distances where the dominance of the nonlinear regime (self--
phase modulation) does not affect the temporal intensity profile [18]. 
Similarly, the blue regime dominates for areas with low nonlinearity and 
for values of N ∼ 1 where the pulse preserves its shape or can even be 
stationary in the case of the fundamental soliton [21,28]. We also 
recognize the special conditions corresponding to integers values of N 
and propagation distances of ξ = π/2 (the black crosses in the 

(
N2, ξ

)

plane) associated with perfect soliton recurrence to its initial state [29]. 
Fig. 2 (b2) separates the previously obtained clusters in terms of 
computed temporal duration and kurtosis, with the projection in the 
rms/kurtosis (σ, κ) plane showing that the different regions strongly 
overlap. This highlights how an approach using the normalized profile is 
not equivalent for the anomalous dispersion regime of propagation to an 
approach considering only the temporal moments of the pulses, a point 
that we will further discuss in Figs. 3 and 4.

We now discuss how this clustering behavior changes when the 
number of clusters for partitioning is increased to 3. Results of this new 
clustering for the normalized profiles In(τ) are shown in Fig. 3 (a1). We 
again see a band structure in the 

(
N2, ξ

)
plane, with the blue regions 

again corresponding to intensity profiles that have experienced little 
variation with propagation. This cluster region is similar to that in the 2 
cluster results in Fig. 2 (b1). However, when selecting 3 clusters, the 
single cluster in Fig. 2 (b1) (corresponding to pulses that underwent 
significant evolution in their intensity profiles) now splits into two 
subsets. And we see in Fig. 3 (a2) that in the rms/kurtosis (σ, κ) plane, 
these clusters are superimposed to a large degree so that clustering in 
terms of these features is insufficient to separate the different behaviors.

To better understand the physical characteristics that are being 
selected and associated with these different clusters, Fig. 3 (b1) and (b2) 
plots the longitudinal evolution of the intensity profile of pulses of sol-
iton order N = 4 and N = 5, respectively, accompanied by the variations 
of the rms duration and kurtosis in panels (c1) and (c2) respectively. For 
solitons with integer values of N, using the inverse scattering transform 
[30], it is possible to interpret the longitudinal evolution as the result of 
the interaction of N distinct solitons with different powers that interfere 
with each other leading to increasingly complex temporal patterns [31]. 
Depending on the phase difference between these elementary soliton 
components, the output pulse exhibits temporal compression [27], 
splitting into two or more subpulses [28], or revival back towards its 
initial state [29]. We now see that the yellow bands in the 

(
N2, ξ

)
plane 

in Fig. 3 (b1) correspond to the zones undergoing maximum temporal 
compression, while the green bands correspond to the zone where the 
pulse has temporally split into several subpulses with an intensity at τ =

0 approaching zero. This is confirmed by also showing on panel (a1) 
with the dashed curve, the empirical equation giving the distance ξc 
leading to the maximum compression as a function of the soliton number 
[32,33]: 

Fig. 2. . Clustering into two sets of temporal intensity profiles generated for 
propagation in the anomalous dispersion regime. Panels (a) and (b) show re-
sults using non-normalized profiles I(τ) and normalized profiles 
In(τ)respectively. Panels a1 and b1 display clusters according to normalized 
propagation distance ξ and the soliton numberN. The crosses indicate the pa-
rameters leading to ideal periodic recovery of the initial intensity profile. Panels 
a2 and b2 display clusters according to their rms duration σ and kurtosis κ as 
well as their peak power Imax for the non-normalized dataset. The black dashed 
line in (b2) is a visual guideline for the properties of the input pulse.
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ξc ∼ 1/N (5) 

Using the recurrence conditions and the longitudinal symmetry of 
the evolution achieved for integer values of N, we see that the corre-
sponding points (black triangles) are well contained within the second 
cluster. The variations with propagation distance in the rms duration 
and kurtosis (panels (c)) highlight how these two parameters are not 
suitable to unambiguously characterize the output properties when the 
pulse is affected by splitting and sidelobes. Indeed, as an example, when 
considering the evolution of the 4th order soliton between distance 0.5 
and 1, we observe only slight variations of σ and κ even though the 
output pulse goes through very different behavior such as pronounced 
compression or pulse splitting. Therefore, clustering in the anomalous 
regime based on σ and κ as shown in Fig. 4 (a) leads to a result that 
significantly differs from Fig. 3 (a). Even though the clusters plotted in 
the (σ,κ) plane are now well-separated, clustering is unable catch the 
stage of pulse splitting.

Finally, we investigated how the addition of a fourth cluster to the K- 
means search algorithm impacts the results. With three clusters, we saw 
that the algorithm was able to differentiate between the stage where the 
output pulse is similar to the input, as well as the stages where there is 
compression or splitting into two pulses. One interesting stage of evo-
lution that is not identified, however, is where the output pulse exhibits 

strong central compression but with the emergence of pronounced 
sidelobes, leading to a three-pulse profile as in Fig. 3 (b) around ξ ∼ 0.4 
for N = 5. It is natural to consider whether such a stage is clearly 
identified when increasing the number of clusters to 4 and we show the 
results in panel (b) of Fig. 4. Specifically, when partitioning into 4 
clusters, the main difference with the 3-cluster configuration is the 
splitting of the initial ‘yellow cluster’ attributed to compression into two 
new clusters now colored yellow and cyan. Although for some positions, 
the cyan cluster includes the 3 pulse profiles, this is not always the case, 
and it appears that the cyan cluster is mainly associated with the most 
compressed pulses, i.e. it has isolated the shortest profiles. So in this case 
we conclude that partitioning with 4 clusters does not add significant 
insight.

4. Clustering for normal dispersion regime dynamics

Pulse evolution in the normal dispersion regime differs drastically 
from the anomalous case. Instead of periodic evolution dynamics and 
temporal localization associated with soliton effects, the interaction 
between the Kerr nonlinearity and normal dispersion is marked by ef-
fects such as optical wave breaking, self-similar propagation, and tem-
poral broadening [34,35]. We study here the clustering of intensity 
profiles associated with normal dispersion propagation using the same 
approach as above, with 2 × 104 intensity profiles scanning N over the 
range 1–5 and ξ over the range 0.0–2.5, except that now we take 
sgn(β2) > 0, and the input parameter N is no longer interpreted as a 
soliton number.

Clustering into three clusters as shown in Fig. 5 (a1) leads to the 
isolation of three successive stages of dynamics associated with well- 
known characteristics of nonlinear and dispersive propagation [21]. 
The structure of the clusters is very different from the previous case, 
with each cluster here consisting of a single continuous block. The blue 
cluster, where the rms duration of the pulse does not vary significantly, 
corresponds to the initial propagation regime when the spectral broad-
ening and chirp induced by the nonlinearity has not yet translated into 
significant temporal broadening. However, the shape of the temporal 

Fig. 3. . Clustering into three sets of the normalized temporal intensity profiles 
generated upon propagation in the anomalous dispersion regime. (a1) Clusters 
according to the normalized propagation distance ξ and soliton number N. The 
dashed black line marks the positions of the compression stages approximated 
by Eq. (5) and the black triangles highlight the parameters leading to recur-
rence of the compression stage for an integer value of N. Dashed cyan and 
purple lines label N = 4 and 5, respectively. The cyan and purple triangles mark 
positions of the compressed pulses, while the cyan and purple diamonds – the 
split pulses’ positions. (a2) Clusters according to their rms duration σ and their 
kurtosis κ. The black dashed line is a visual guideline for the properties of the 
input pulse. (b) Longitudinal evolution of the normalized intensity profile for N 
= 4 and 5 (panels b1 and b2 respectively). (c) Longitudinal evolution of c1: the 
corresponding rms duration σ and c2:kurtosis κ.

Fig. 4. . (a) Clustering into three sets based on σ and κ properties. (a1) Clusters 
according to the normalized propagation distance ξ and the soliton number N. 
(a2) Clusters according to their rms duration σ and their kurtosis κ. (b) Clus-
tering into four sets of the normalized temporal intensity profiles. Clusters ac-
cording to the normalized propagation distance ξ and the soliton number N.
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profile does change in this regime, as can be observed in the significant 
drop of the kurtosis [36] apparent from Fig. 5 (a2). The boundary of the 
blue cluster can be associated with a known analytical result that esti-
mates the distance ξWB after which wave breaking occurs for a hyper-
bolic secant pulse [34,35] 

ξWB =

̅̅̅
3
2

√
1

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
N2 + 1

√ , (6) 

which is plotted as the solid line in Fig. 4 (a1). Although strictly speaking 
accurate only for largeN, the trend is nonetheless remarkably consistent 
with the results of the clustering. In the purple cluster that is associated 
with intermediate stage of evolution, the pulse undergoes both temporal 
broadening and change in shape, representing a transition stage before 
the pulse shape tends to evolve much less, with intensity profiles in the 
blue cluster showing little variation in kurtosis while still undergoing 
temporal broadening. This stage of evolution is well-understood, asso-
ciated with the temporal profile taking on the same shape as the pulse 
spectrum (the dispersive Fourier transform or “spectron” regime also 
known as the gain-free similariton [22,37–39]). If the number of clusters 
is increased up to 4, it will mainly result in the splitting of the inter-
mediate cluster into two subclusters of similar shape.

Finally in this section, we note that in contrast to the case of 
anomalous dispersion regime propagation where the clusters are mixed 
in the (σ, κ) plane, the clusters are much better isolated for normal 
dispersion regime propagation, with no overlap between them. In this 
context, it is interesting to consider whether direct clustering according 
to the rms duration and kurtosis could reveal a similar picture. These 
results are plotted in panels (b) of Fig. 5, and we can see that they are 
close to identical to the clusters based on the normalized intensity alone. 
The kurtosis seems therefore a relevant parameter to describe the pulse 
properties for this case where the pulse does not experience breaking 
into substructures. We noted however that the kurtosis-based clustering 
was less robust than the one based on the intensity profile, and that other 
configurations could emerge from the K-means algorithm, requiring the 
algorithm to be run multiple times to ensure consistent results. Cases 
such as this can be compared more systematically using silhouette 

analysis [40], and whilst we have not performed this in detail for every 
result in this paper, for this particular case we find that σ/κ clustering is 
associated with a lower score (i.e. overlapping poorly separated clusters) 
than clustering based on normalized intensity.

5. Clustering profiles for both anomalous and normal dispersion 
regime dynamics

We now evaluate the performance of the clustering algorithm when 
input data combines intensity profiles arising from both anomalous and 
normal dispersion regime propagation. That is, we now input 40 × 103 

profiles into the algorithm combining intensity profiles arising from 
soliton dynamics as well as normal dispersion broadening and wave 
breaking. In Fig. 6 panels (a), (b), (c) and (d), we show results of this 
clustering into two, three, four and five clusters respectively.

We first consider the results in Fig. 6 (a1) where we plot how the two 
clusters (red and blue, plotted in the 

(
N2, ξ

)
plane) sort the intensity 

Fig. 5. Clustering into three sets for pulses generated during propagation in the 
normal dispersion regime. Fig. 5 (a) plots the clustering results in terms of the 
normalized intensity profile whilst Fig. 5 (b) plots the results in terms of σ and κ 
properties. Panels a1 and b1 plot the clusters according to the normalized 
propagation distance ξ and the number N. The black line marks the wave 
breaking condition (Eq. (6)). Panels a2 and b2 plot the clusters according to 
their rms duration σ and their kurtosis κ.

Fig. 6. Clustering of the temporal intensity profiles generated upon propaga-
tion in the normal and anomalous regimes of dispersion. Figs. 5(a), (b), (c) and 
(d) show results according to the different number of clusters: 2, 3, 4 and 5 
respectively. Panels a1,b1,c1, d1 are clusters displayed according to the 
normalized propagation distance ξ, the soliton number N and the dispersion 
regime (sign(β2)). The black line marks the wave breaking condition (Eq. (6)). 
Panels a2, b2, c2, d2 are the clusters plotted according to their rms duration σ 
and their kurtosis κ. The black dashed line is a visual guideline for the prop-
erties of the input pulse.
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profiles relative to the known values of dispersion sgn(β2) = ±1 in 
which they were generated. The classification shows that based only on 
the output normalized intensity profile, it is possible to infer to a large 
extent the dispersion regime in which pulse propagation took place. 
However, the classification is not perfect and for short propagation 
distances, some profiles known to arise from normal dispersion regime 
propagation are sorted into the same blue cluster associated primarily 
with soliton-like profiles in the anomalous dispersion regime. However, 
this can be readily understood because these are profiles associated with 
the initial stages of normal dispersion propagation (below the wave 
breaking distance) where the combination of dispersion and nonline-
arity is not yet sufficient to lead to major variation in the temporal pulse 
duration. In fact, we can see from Fig. 6 (a2) where the clusters are 
plotted in the (σ, κ) plane that the algorithm selects different charac-
teristics of the pulse profiles that follow distinct branches: one in which 
the duration changes little but the pulse kurtosis is significantly modi-
fied (blue); and another where the pulse shape changes little but its 
duration significantly changes (red).

When classifying into three and four clusters, it is essentially within 
the anomalous dispersion regime that we see additional cluster structure 
appear. Indeed, as can be seen in Fig. 6 (b1) and (b2), moving to three 
clusters leads to the identification of intensity profiles linked to periodic 
soliton compression dynamics, as discussed in section 3. For four clus-
ters as shown in Fig. 6 (c1) and (c2), it is once again in the anomalous 
dispersion regime that new structure emerges, which in this case cor-
responds to the typical splitting of the higher soliton pulse into multiple 
subpulses. Finally, when the number of clusters is increased to 5, the 
results for the normal dispersion regime exhibits an intermediate cluster 
as discussed in Section 4. Therefore, mixing profiles resulting from 
focusing (anomalous) and defocusing (normal) nonlinear propagation 
leads to results fully consistent with the clusters previously observed 
when the two propagation regimes of dispersion are investigated 
separately.

In this regard, it is also of interest to explicitly plot the centroids of 
the five clusters in Fig. 7 (a), and because the centroid does not actually 
result from any physical propagation, we also plot in Fig. 7 (b) the 
normalized intensity profiles of the pulse in the dataset that is the closest 
to each centroid. This provides additional insights into the “typical 
profiles” in each cluster, and confirms our physical discussion above. 
Cluster 1 is associated with profiles close to the initial pulse, typical of 
low propagation distances or parameters leading to a recurrence of the 
initial higher-order soliton condition. Cluster 2 corresponds to pulse 
evolution beyond the wave breaking distance where the pulse has 
experienced strong temporal broadening and reshaping towards a flat-
tened profile. Cluster 3 corresponds to significantly compressed profiles 
whereas the centroid of Cluster 4 is typical of the splitting of the higher 
order soliton into two subpulses with reduced intensity at τ = 0. The 
centroid of Cluster 5 is typical of the intensity profile observed slightly 

after the wave breaking point where the pulse exhibits a central para-
bolic like structure.

Finally, we have also studied the impact of the number of points 
considered after logarithmic resampling of the time grid. The clusters 
obtained for 2L points with L between 8 and 4 are thus compared in 
Fig. 8. Although we saw in Section 1 that reducing the number of tem-
poral samples can lead to a significant error in the evaluation of kurtosis 
for L < 6, this does not appear to be the case for the clustering results. 
Thus, even with only 16 points considered (panel d), the differences 
appearing are remarkably minor and only concern the anomalous 
regime which presents the most varied structures. Note that this number 
of temporal samples could even be further reduced if one only considers 
a single regime of propagation.

6. Conclusions

The major result of this work has been to show that centroid-based 
clustering of normalized intensity profiles can successfully isolate 
different classes of pulses associated with physically distinct regimes of 
nonlinear and dispersive fiber propagation. Remarkable for its 
simplicity, this approach shows how only temporal intensity profiles (i. 
e. without spectral intensity or phase information) with a very limited 

Fig. 7. (a) Centroids of the five clusters. (b) Normalized temporal intensity 
profiles in our dataset that are the closest to each centroid. The black curve is 
the input condition.

Fig. 8. Clustering of the temporal intensity profiles generated upon propaga-
tion in the anomalous and normal regimes of dispersion (panels 1 and 2, 
respectively). Fig. 8(a)–(d) show results for logarithmically spaced temporal 
grid with 2L samples for L = 8, 6, 5 and 4, respectively. The color code is the 
same as panel Fig. 6(d). The black line indicates the wave breaking condition 
(Eq. (6)).
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number of points nonetheless reveal sufficient similarities to allow 
physical classification of different propagation behavior. Extensions of 
this work could be in numerous directions, including for example the use 
of simultaneous spectral intensity profiles to generalize the technique to 
more difficult cases with initial chirp leading to effects such as spectral 
compression [41,42] which would be hard if not impossible to distin-
guish using temporal profile clustering only. Also, whilst we have 
considered background-free pulses in this analysis, it could be readily 
extended to nonlinear and dispersive pulse structures upon a continuous 
background, opening the possibility to obtain insights and empirical 
intuition into the properties and emergence of extreme rogue wave 
events. It is also possible that going beyond the simple NLSE and 
including additional higher order linear or non-linear terms will allow a 
useful cluster analysis of the highly complex process of supercontinuum 
generation. And in addition to NLSE-related problems, the process could 
readily be adapted to handle propagation in cavities typical of lasers or 
resonators supporting dissipative or cavity solitons. And of course, ex-
tensions of the clustering algorithm beyond the use of K-means may also 
prove useful [20], although this is beyond the scope of this present 
paper.
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