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Abstract: High-order solitons exhibit fascinating dynamics during their propagation in 
anomalous dispersion media. High-order soliton dynamics have been intensively exploited for 
extreme pulse compression and coherent ultra-broadband spectrum generation. Despite recent 
advances, most previous studies have been restricted to soliton propagation external to a laser 
cavity, leaving the intracavity generation and evolution of high-order solitons less explored. 
Here we numerically demonstrate that by carefully optimizing the cavity parameters, intracavity 
coherent supercontinuum could be generated via high-order soliton dynamics in a dissipative 
soliton fiber laser. In particular, a positively chirped dissipative soliton is formed in normal 
dispersion gain fiber, which acts as a robust nonlinear attractor. After dechirping, a high (~8.5) 
order soliton was formed in a 1.1 m highly nonlinear fiber, which subsequently experienced 
significant intracavity temporal self-compression and spectral broadening. The shortest pulse 
duration was ~14 fs corresponding to ~2.7 optical cycles at 1551 nm, with the spectrum 
spanning over 600 nm at the -30 dB level. The generated supercontinuum maintains high 
coherence under quantum noise injection. In addition, the supercontinuum bandwidths were 
further optimized via a genetic algorithm, demonstrating the great promise of machine learning 
tools in optimizing complicated nonlinear systems. This work opens new possibilities for 
constructing compact and highly coherent supercontinuum light sources. Additionally, it 
provides valuable insights into the self-consistent evolution dynamics of high-order solitons 
within a fiber laser cavity.  

1. Introduction 
Supercontinuum light sources have found important applications in a variety of fields including 
optical frequency metrology [1], optical coherence tomography [2], bio-imaging [3], and 
sensing [4]. Despite the great success that has been achieved in supercontinuum generation by 
pumping a nonlinear medium outside a laser cavity [5-7], directly generating supercontinuum 
light from laser oscillators has arisen increasing research interest in recent years, because such 
systems have advantages in terms of stability, compactness, and cost. Furthermore, the 
supercontinuum generation process usually involves quite rich nonlinear dynamics. Exploring 
supercontinuum generation within a laser cavity, which naturally involves feedback, is crucial 
for advancing our understanding in nonlinear science.  

By incorporating a highly nonlinear fiber (HNLF) into the laser cavity, supercontinuum was 
generated in fiber lasers that operated in the Q-switched operation regimes [8-11]. However, 
these Q-switched regimes often suffer from large pulse energy fluctuations. In contrast, 
intracavity supercontinuum has also been achieved in noise-like pulse (NLP) mode-locking 
regimes [12-14]. Recent real-time measurements using dispersive Fourier transform and time-
lens techniques revealed that both the spectral and temporal profiles of such generated 
supercontinuum also exhibit fluctuations from roundtrip to roundtrip [15]. While incoherent 
supercontinuum generated from such systems has found important applications in tomography 
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and material processing [16-18], other applications such as precise frequency metrology [19] 
and coherent imaging [6] prefer a coherent supercontinuum with minimum fluctuations from 
shot to shot. However, generating highly coherent supercontinuum light directly from a mode-
locked fiber oscillator remains a big challenge. The difficulty primarily stems from the 
excessive nonlinear phase accumulation required for supercontinuum generation, which 
complicates the self-consistent pulse evolution within the laser cavity. Recently, Ma et al. 
demonstrated an ultrabroad spectrum of ~400 nm (-20 dB level) directly output from a 
Mamyshev fiber oscillator with a HNLF [20]. In contrast to supercontinuum generated in the 
NLP regime, where the pulse envelope is incompressible [21] and typically with a duration of 
hundreds of ps [14,15], Ma et al. achieved a ~17 fs ultrashort pulse centered at ~1040 nm after 
dechirping the broadband pulse. Despite the significant bandwidth improvement achieved, they 
focused on supercontinuum generation only in the normal dispersion regime. Note that high-
order soliton dynamics in anomalous dispersion fibers have been used in propagation 
experiments external to laser cavities for producing ultra-broadband spectra [5,22] and 
ultrashort temporal profiles [23,24]. However, although classic wave-packet structures such as 
average soliton [25-27] and similaritons [28-30] have been intensively investigated in fiber 
lasers, the question of whether high-order soliton could coherently evolve within each roundtrip 
in a laser cavity remains. Although some earlier studies in bulk oscillators have attributed 
unstable pulsation dynamics over multiple roundtrips to higher-order soliton effects [31,32], we 
focus here on fibre-laser systems where the circulating pulse precisely replicates its intensity 
profile after each roundtrip. 

In particular, we propose a different approach for the intracavity coherent supercontinuum 
generation, where high-order soliton dynamics were exploited to achieve significant intracavity 
spectral broadening. A section of HNLF of anomalous dispersion is used, which facilitates high-
order soliton evolution. We numerically demonstrate that a coherent supercontinuum spanning 
over 600 nm (at -30 dB level) with a pulse duration of ~14.1 fs (only 2.7 optical cycles) could 
be directly generated from a fiber oscillator. Furthermore, due to the complicated dynamics 
involved in such a highly nonlinear system with feedback, a genetic algorithm was employed 
to optimize the supercontinuum bandwidth. 

2. Laser cavity configuration and Numerical model 
2.1 Cavity configuration 

The schematic of the fiber laser cavity is depicted in Fig. 1. The laser is a unidirectional ring 
cavity. We adopt a two-stage amplification in the cavity to provide a high enough gain for the 
pulse obtained after filtering the supercontinuum [33,34]. Although solutions could also be 
found with only a single piece of gain fiber, the two-stage amplification configuration typically 
makes finding a coherent supercontinuum solution easier. The parameters of the fibers are based 
on the realistic ones available in experiments. The pre-amplifier (EDF1, segment AB) consists 
of a 1.5 m Erbium highly doped fiber (LIEKKITM Er80-8/125) [27]. The main amplifier 
(EDF2, segment BC) consists of a 10.5 m Er-doped fiber (Nufern EDFC-980-HP) with normal 
dispersion which allows for a dissipative soliton to be developed [29,30]. A dispersion delay 
line (DDL) which can be constructed from bulk grating pairs or fiber Bragg gratings [20,35] 
was used to dechirp the pulse output from the gain fibers. The DDL significantly shortens the 
width and increases the peak power of the pulse [20]. A lumped loss, which includes both the 
splicing loss and the coupling loss, is implemented after the DDL with an equivalent 
transmittance 𝜌𝜌. A saturable absorber which can be realized with the nonlinear polarization 
rotation technique [15,27,29] ensures mode-locking. A 1.1 m HNLF (YOFC, NL1550-POS) of 
anomalous dispersion was used for intracavity supercontinuum generation. The splicing loss 
between the HNLF and an SMF pigtail is typically 0.75 dB per splicing, and it was equivalently 
considered in the transmittance 𝜌𝜌. To keep the model conceptually simple, output coupling is 
included as part of the lumped loss control parameter after the DDL, but it is straightforward to 
adapt the model to include output coupling at any particular point in the cavity. For example, 
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the generated supercontinuum can be easily coupled out after the HNLF with a coupler [15], 
and provided the coupling is relatively small (<10%) the same qualitative laser behavior is 
obtained with convergence to the same stable solution. A narrowband spectral filter controls the 
bandwidth of the pulse reinjected into the EDF1, which is crucial for the self-consistent 
evolution of the mode-locked pulse. Note that a filter is commonly used in dissipative soliton 
lasers [29,30,36,37], with this bandwidth control found to be critical to stabilize the pulse 
shaping and for self-consistent evolution after a round trip [36]. In particular, here the evolution 
of the pulse in the main amplifier (EDF2) is similar to a similariton with its spectrum notably 
broadened, and then the spectral bandwidth further dramatically increases in the HNLF due to 
high-order soliton dynamics. The spectral filtering is necessary since self-consistent oscillation 
requires bandwidth reduction before pulse reinjection into the amplifier. Note that we only 
consider key components in the cavity, leaving unnecessary fiber pigtails neglected to keep the 
model simple and clear. However, we have checked that similar results could still be obtained 
with a more realistic but cumbersome configuration that contains all fiber pigtails. 

 

 
Fig. 1 Schematic of the laser cavity. EDF: erbium-doped fiber; DDL: dispersion delay line; 
HNLF: highly nonlinear fiber; SA: saturable absorber. Parameters for all cavity elements are 
given in the text.  

 

2.2 Numerical model 

The pulse propagation in each fiber segment is modeled by a modified scalar generalized 
nonlinear Schrödinger equation (GNLSE) [5,38,39]  
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where  𝐴𝐴(𝑧𝑧, 𝜏𝜏) denotes the complex envelope of the electric field, 𝑧𝑧 is the propagation 
coordinate, 𝜏𝜏 is the co-moving time in the pulse frame, β2 and β3 are the second and third-order 
dispersion coefficients, 𝑖𝑖 is the nonlinearity parameter,  𝜔𝜔0 = 2𝜋𝜋𝜋𝜋/𝜆𝜆0  is the central angular 
frequency corresponding to 1550 nm. The nonlinear response function 𝑅𝑅(𝑡𝑡) = (1 − 𝑓𝑓R)𝛿𝛿(𝑡𝑡) +
𝑓𝑓Rℎ𝑅𝑅(𝑡𝑡), where 𝑓𝑓R = 0.18 represents the fractional contribution of the Raman effect, and the 

Raman response function ℎ𝑅𝑅(𝑡𝑡) = (𝜏𝜏1−2 + 𝜏𝜏2−2)𝜏𝜏1 exp �− 𝑡𝑡
𝜏𝜏2
� sin( 𝑡𝑡

𝜏𝜏1
)  with 𝜏𝜏1 = 12.2  fs and 

𝜏𝜏2 = 32 fs [5,40]. The GNLSE is valid for a single-mode operation. Although strictly speaking 
the scalar GNLSE model is only ensured in a full-PM setup, it has been widely used to model 
the laser dynamics involving polarization evolution which usually results in good qualitive 
agreement with the experiment [20,29,30]. Note that although the mode field area dispersion 
effect may have impact on the achievable bandwidths [41], we have not included this higher-
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order effect in our model. Nonetheless, the frequency-dependence which is present in the 
definition of the nonlinear coefficient 𝑖𝑖 which decreases the effective nonlinear strength for 
longer wavelengths has been included via the “self-steepening” term in the GNLSE. The 
parameters of the fibers are: 𝛽𝛽2

(EDF1) = −20 × 10−3 ps2/m, 𝑖𝑖(EDF1) = 1.3 × 10−3  W-1m-1,  
𝛽𝛽2

(EDF2) = +20 × 10−3  ps2/m, 𝑖𝑖(EDF2) = 3.3 × 10−3  W-1m-1, 𝛽𝛽2
(HNLF) = −1.5 × 10−3 ps2/m, 

𝛽𝛽3
(HNLF) = +30.1 × 10−6ps3/m, 𝑖𝑖(HNLF) = 9.3 × 10−3 W-1m-1, where third-order dispersion in 

the EDF is neglected [15]. The zero-dispersion wavelength (ZDW) of the HNLF is ~1489 nm. 
The gain term 𝑔𝑔�𝑖𝑖(𝜔𝜔) is non-zero only for the gain fibers and is modeled by [29,42], 

 𝑔𝑔�𝑚𝑚(Ω) = 𝑔𝑔0,𝑚𝑚
1+𝐸𝐸/𝐸𝐸sat+Ω2/Ω𝑔𝑔2

 ,  (2) 

where the index 𝑚𝑚 = 1, 2 denote corresponding parameters for EDF1 and EDF2, respectively. 
𝑔𝑔0,1 = 2.3 m-1 and 𝑔𝑔0,2 = 0.55 m-1 denote the small signal gains. 𝐸𝐸 = ∫ |𝐴𝐴(𝜏𝜏)|2𝑑𝑑𝜏𝜏 denote the 
pulse energy, and Ω = 𝜔𝜔 −𝜔𝜔0 is the detuned angular frequency. The same gain bandwidth 
Ω𝑔𝑔 (corresponds to 25 nm half-width) and gain saturation energy 𝐸𝐸sat were used for both gain 
fibers. The DDL is modeled via an operator 𝐷𝐷�DDL , which is implemented in the frequency 
domain by  𝐷𝐷�DDL  �̃�𝐴in(Ω) = �̃�𝐴in(Ω)exp( 𝑖𝑖

2
𝐷𝐷Ω2), where D= +0.2 ps2 denotes the net dispersion 

provided by the DDL. The saturable absorber transmittance is modeled by the transfer function 
[29,39]， 

 𝑇𝑇(𝜏𝜏) = 1 − 𝑞𝑞0
1+𝑃𝑃(𝜏𝜏)/𝑃𝑃sat

,  (3) 

where 𝑞𝑞0 = 0.9 is the modulation depth, P(𝜏𝜏) is the instantaneous pulse power, and Psat =
150 W is the saturation power. In the simulation, the gain saturation energy 𝐸𝐸sat which models 
the pump strength, the equivalent transmittance 𝜌𝜌 after the DDL, the filter wavelength detuning 
𝛿𝛿𝜆𝜆0,𝐹𝐹 = 𝜆𝜆0,𝐹𝐹 − 𝜆𝜆0 (where 𝜆𝜆0,𝐹𝐹  denotes the central wavelength of the filter), and the filter 
bandwidth ΔλF are varied to find supercontinuum solutions in different cases as shown below. 
We used 215 grid points with a 100 ps time window. The simulation of the laser was based on a 
standard piecewise roundtrip model [29,30,37]. Specifically, the initial field is iteratively 
propagated through each component within the cavity over many round trips until it converges 
to a steady state. To define a convergence of the laser, the relative error of the pulse energy 𝜖𝜖 
between each two consecutive roundtrips is calculated. Then a convergence of the laser is 
considered to be satisfied if 𝜖𝜖  is below 10-6 for 300 roundtrips [43]. The simulations were 
initiated from the input to the EDF1 (point A) with a 300 fs Gaussian pulse with a peak power 
of 0.1 W to accelerate the convergence. Note that we have also checked a range of initial 
conditions, including a CW with random phase noise, and random intensity noise or a Gaussian 
pulse profile with random noise background. These different conditions can lead to the same 
high-order soliton solution with ultrabroad bandwidth, though for some noise seeds the laser 
can also converge to multiple-pulse state with much narrower bandwidth. It is because that 
multiple attractors could coexist in a highly nonlinear system [43]. Here we only focus on the 
ultra-broadband supercontinuum solution.  

3. Results 

3.1 Intracavity coherent supercontinuum generation via high-order soliton dynamics 

The intracavity evolution of a typical solution is shown in Fig. 2. It was obtained with a 
parameter set {Esat = 0.278 nJ, 𝛿𝛿𝜆𝜆0,𝐹𝐹 = 9.38 nm, ΔλF = 6.60 nm, 𝜌𝜌 = 0.260}. For the pulse 
energy convergence curve and the corresponding temporal and spectral evolution versus 
roundtrips, see Supplementary Fig. 1. The temporal and spectral evolutions versus the 
propagation distance over one cavity roundtrip are shown in Fig. 2(a), (b), respectively. The 
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labels A–E refer to the different points in the cavity shown in Fig. 1. The pulse was pre-
amplified in EDF1 (segment AB) with anomalous dispersion and then amplified in EDF2 
(segment BC) with normal dispersion. Notable variations can be observed in both the temporal 
pulse duration and the spectral bandwidth. The temporal and spectral profiles at points A, B and 
C are shown in Fig. 2(c). Panels (i)-(iii) in Fig. 2(c) presents the corresponding temporal 
intensity profiles and chirp of the pulse. The pulse duration (FWHM, full width at half 
maximum) decreases slightly in the EDF1, which are 0.64 ps and 0.59 ps at the input and output 
end of EDF1, respectively. The pulse is nearly unchirped at the input to the EDF1, while gains 
a slight positive chirp after output from EDF1 due to the self-phase modulation effect which 
overwhelms the negative chirp induced by the anomalous dispersion. While it broadens to 4.9 
ps after output from EDF2 as shown in panel (iii) of Fig. 2(c), which exhibits a significant 
positive chirp induced by the large normal dispersion in EDF2. The pulse profile after the DDL 
was also shown in this panel, where the peak power increased over 11 times. The corresponding 
spectral profiles at points A, B and C are depicted in panel (iv) of Fig. 2(c). The spectral 
bandwidth in EDF1 has only a slight change, which remains ~5 nm. In contrast, the spectral 
bandwidth increases to 33 nm in EDF2 with a profile similar to the similariton [29]. Then after 
a lump loss after the DDL, the dechirped pulse was launched into the HNLF, where more 
dramatic evolutions happen for both the temporal and spectral profiles. The inset in Fig. 2(a) 
provides an expanded view of the temporal evolution within the HNLF (DE segment).  

 

 
Fig.2 Typical intracavity pulse evolution. (a)Temporal evolution (linear color scale) along the 
cavity distance. The inset denotes an expanded view of the temporal evolution in the HNLF (DE 
segment). (b)The evolution of the spectrum on a logarithmic color scale. The labels A–E 
correspond to the cavity positions in Fig. 1. (c) The pulse chirp (right axis) and temporal intensity 
profiles (blue) at the (i) input to EDF1, (ii) input to EDF2, (iii) output from EDF2 and DDL. (iv) 
The corresponding spectrum at points A, B and C.  

 
The spectral and temporal evolutions in the HNLF (segment DE in Fig. 2(a), (b)) are shown 

in Fig. 3(a), (b), respectively. Note the distance axis is offset such that the input end of the 
HNLF corresponds to the origin in Fig. 3. Clearly, high-order soliton dynamics dominate the 

spectral broadening process. The soliton order  N =�𝛾𝛾𝑃𝑃0𝑇𝑇0
2

|𝛽𝛽2|
  of the input pulse was calculated to 

be ~8.4, where 𝑃𝑃0 = 797 W, and T0 = 120 fs was obtained from a  �𝑃𝑃0sech(𝑡𝑡/𝑇𝑇0)  fitting of the 
main pulse. Since the nonlinear length  𝐿𝐿N = 1 𝑖𝑖𝑃𝑃0⁄ =  0.135 m is much shorter than the 
dispersion length  𝐿𝐿D = 𝑇𝑇02 |𝛽𝛽2| ⁄ = 9.6 m, the nonlinear effect dominates the initial propagation 
stage. Specifically, the self-phase modulation (SPM) effect gradually broadens the spectrum 
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from z = 0 m to z = 0.6 m in the HNLF. As the spectral bandwidth increases, the anomalous 
dispersion plays a more significant role which induces a negative chirp that compensates for the 
positive chirp caused by the SPM. This leads to a compression of the pulse duration and an 
increase in the peak power. As a result, the increased SPM effect further broadens the spectrum. 
Such a process continues during the pulse propagation, which eventually leads to a significant 
self-compression of the pulse after z = 0.9 m in the HNLF as shown in Fig. 3(b). The inset on 
the right of Fig. 3(b) represents a close-up view of the compressed pulse over a 200 fs time 
window. The maximum compression was reached at ~1.01 m in the HNLF with a peak power 
of 3871 W and a FWHM duration of 14.1fs. Notably, this corresponds to only ~2.7 optical 
cycles at its central wavelength (~1551 nm). The spectrogram [5,15] of the pulse at the 
maximum compression point is shown in Fig. 3(c). The corresponding temporal and spectral 
profiles are plotted on the top and right of the spectrogram, respectively. To obtain the 
spectrogram, we used an 80 fs Gaussian gate window. The spectrogram presents additional 
information on the transient frequency distribution along the complicated temporal profile. In 
particular, it can be identified that the dispersive wave centered at ~1267 nm is located around 
~0.4 ps in the time window. In addition, the modulation in the spectrum around 1550 nm can 
also be explained by checking the spectrogram, where the same spectral components appear at 
different temporal locations, which leads to an interference in the spectrum. At the maximum 
compression point, the spectrum spans from 1224 nm to 1832 nm at -30 dB level, which extends 
over an octave (1125 nm to 2263 nm) at -60 dB level. 

 

 
Fig. 3 Simulated pulse propagation dynamics in HNLF. (a) The evolution of the spectrum on a 
logarithmic scale. (b) Temporal evolution on a linear scale. An expanded view around the most 
compressed region (white dashed box) is shown on the right. The horizontal white dashed lines 
in (a, b) indicate the distance (~1.01 m) at which the shortest pulse duration is achieved. (c) The 
spectrogram of the shortest pulse at 1.01 m is shown on a logarithmic scale. The corresponding 
temporal profile and the spectrum are shown on the top and right, respectively. 

 
To further investigate the coherence of the intracavity generated supercontinuum, we 

calculated the modulus of the complex degree of first-order coherence (DOC) |𝑔𝑔12
(1)| which is 

defined by [5,44] 

 �𝑔𝑔12
(1)� = � <𝐸𝐸�1

∗(𝜆𝜆)𝐸𝐸�2(𝜆𝜆)>
�<|𝐸𝐸�1(𝜆𝜆)|2><|𝐸𝐸�2(𝜆𝜆)|2>

�,  (4) 

where the angular brackets denote an ensemble average over independently generated pairs of 
spectra {𝐸𝐸�1(𝜆𝜆) , 𝐸𝐸�2(𝜆𝜆)}. Specifically, an ensemble of spectra was obtained by running 50 
realizations. In each realization, different (one photon per mode) quantum noise was added into 
the laser pulse at the input to the gain fiber in each roundtrip, and the output spectrum from the 
HNLF was recorded after the laser reached a steady state (after 100 roundtrips). The ensemble 
of supercontinuum spectra obtained was then used for the calculation of the degree of first-order 
coherence. The results are shown in Fig. 4, where the top panels represent the temporal profiles 
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at three typical distances within the HNLF obtained from a particular simulation [44]. The pulse 
experienced significant self-compression at z = 0.8 m compared to that at z = 0.2 m, and it 
further splits into several ultrashort pulses at the output of the HNLF (z = 1.1 m) due to the 
perturbations such as the third-order dispersion and Raman effect. The bottom panels represent 
the calculated degree of first-order coherence (upper, right axis) and the spectral characteristics 
of the ensembles (lower, left axis) at corresponding distances. The average spectra are denoted 
by the solid red curves, while the grey dots denote the spectra of all the ensembles. In contrast 
to the broadband noise-like-pulse regimes [15,38], here the fluctuations of the shot-to-shot 
spectra are quite small, which yields a rather high degree of coherence (>0.9) over the broad 
spectral ranges. 

 

 
Fig. 4 Pulse profiles and coherence at propagation distances of (a) 0.2 m, (b) 0.8 m and (c) 1.1 m 
within the HNLF. The top panels represent temporal profiles obtained from a particular 
simulation. The upper blue curves in the bottom panels show the degree of coherence (right axis) 
for an ensemble of 50 realizations, and the lower red curves represent the mean spectra (left axis). 
Note that the ensemble spectra are also plotted together with the mean spectra with grey dots, 
although they are essentially indistinguishable because of the high degree of coherence.   

 

3.2 Spectral bandwidth optimization with genetic algorithm 

Although the high-order soliton dynamics yield ultra-broadband supercontinuum generation in 
a mode-locked fiber laser cavity, the feasible region in the parameter space is much narrower 
than that of a moderate-bandwidth mode-locking [39]. This makes it quite challenging to find 
supercontinuum mode-locking solutions. Recently, machine learning is showing great 
advantages for intelligent control and optimization in the field of ultrafast photonics [45-47]. 
Here we leverage the genetic algorithm (GA), which has emerged as a powerful workhorse for 
global multi-parameter optimizations in mode-locked lasers [48-51], for the optimization of the 
bandwidth of the coherent supercontinuum solution in the mode-locked fiber laser.  

The schematic of the GA is shown in Fig. 5(a). The four-parameter set {Esat, 𝛿𝛿𝜆𝜆0,𝐹𝐹, ΔλF, 𝜌𝜌} 
was used as genes of an “individual”, which denote the gain saturation energy, the filter 
wavelength detuning, the filter bandwidth, and the equivalent transmittance after the DDL, 
respectively. We used standard genetic algorithm methods. Specifically, the algorithm starts 
with a population of 100 individuals with initial genes that are randomly selected. We select 5% 
as elite individuals that pass to the next generation unchanged, 70% for cross-over, and an 
adaptive mutation rate. The algorithm then optimizes the laser performance according to a 
compound fitness function, which includes the contributions from both the convergence of the 
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intracavity pulse iteration and the spectral bandwidth within the cavity. The fitness function 
𝐹𝐹merit is given by, 

  𝐹𝐹merit =  𝜉𝜉1𝑆𝑆conv + 𝜉𝜉2𝑆𝑆BW,  (5) 

where the first term on the r.h.s of Eq. (5) characterizes the convergence of the laser, with 𝑆𝑆conv 
given by, 

 𝑆𝑆conv = 𝜖𝜖𝑙𝑙Θ(𝜖𝜖𝑙𝑙 − 𝜖𝜖TH) + 𝜖𝜖THΘ(𝜖𝜖TH − 𝜖𝜖𝑙𝑙), (6) 

where 𝜖𝜖TH =  −5 denotes a threshold characterizing the convergence of the iteration of the laser 
pulse, 𝜖𝜖𝑙𝑙 = lg(𝜖𝜖)̅ with 𝜖𝜖 ̅denoting the mean of the relative error of the pulse energy between 
consecutive roundtrips, Θ(x) denotes the Heaviside step function. The second term on the r.h.s 
of Eq. (5) characterizes the intracavity spectral bandwidth with 𝑆𝑆BW denoting the maximum 
spectral bandwidth (in nm) at the −50 dB level within the HNLF. 
 

 
Fig. 5 (a) Schematic of the genetic algorithm. (b) Best score evolution with generations for five 
typical realizations initiated from different random seeds. (c) The best supercontinuum spectra 
generated in the HNLF found in each realization. Spectral bandwidths (at -30 dB) are indicated 
on the top right of each subplot. 

 
    The weight coefficients 𝜉𝜉1 = 1.0 and 𝜉𝜉2 = −0.005  in Eq. (5) denote the contributions of 
each term. Therefore, during the optimization, the first term in Eq. (5) guarantees obtaining a 
stable mode-locked solution, while the second term ensures obtaining a broadband solution. We 
have tested its performance over more than 20 runs. In practice, we found that a population of 
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100 individuals evolving over 20 generations typically was sufficient to give us coherent 
supercontinuum solutions. Within each generation, we iterated the laser pulse for 100 roundtrips 
for each individual.   

Typical results from the GA optimization are shown in Fig. 5(b). To test the reliability of the 
GA, we performed multiple runs of the GA with different initial population seeds. The 
evolutions of the best score as a function of evolving generation obtained from five typical 
realizations are shown in Fig. 5(b). The optimum (broadest) spectrum obtained from each 
realization is shown in Fig. 5(c). The corresponding spectral widths at the -30 dB level are also 
indicated on the top right corner. Although the high dimension of parameter space, and the 
sensitivity to initial conditions of the highly nonlinear laser system, make searching a 
supercontinuum mode-locked solution extremely difficult, the GA was usually able to find 
solutions with bandwidth larger than 600 nm (at -30 dB).  

4. Discussion and conclusion 
Despite that great advances have been made in the coherent supercontinuum generations outside 
laser cavities, the realization of intracavity coherent ultra-broadband spectrum generation only 
emerges. The advantages of the latter approach are as follows. Firstly, the high circulating 
power within the laser cavity enables significantly more energy-efficient nonlinear spectral 
broadening compared to external laser systems designed to produce the same output power as 
an intracavity laser field. This makes laser supercontinuum sources highly suitable for 
applications requiring broad bandwidths but not necessarily high power, offering the added 
advantage of integration into compact experimental platforms. Secondly, supercontinuum 
generation dynamics constrained by the boundary conditions of a dissipative soliton laser cavity 
can ensure lower noise [20] better temporal coherence and stability, which is especially useful 
for applications requiring high coherence and stability across broad spectral ranges. 
Additionally, this approach could potentially enable the generation of carrier-envelope phase 
stabilized outputs at multiple wavelengths, paving the way for further applications in ultrafast 
optics and precision metrology. In contrast to the previous work [20] where the intracavity ultra-
broadband spectrum was generated with normal dispersion, our approach leverages the high-
order soliton dynamics in anomalous dispersion. By carefully optimizing the cavity parameters, 
stable mode-locked solution with coherent supercontinuum spectrum could be generated via 
high-order soliton dynamics in a dissipative soliton fiber laser.  
    It is useful to briefly discuss the stability condition of the mode-locked supercontinuum 
solution. Although four control parameters {Esat, 𝛿𝛿𝜆𝜆0,𝐹𝐹 , ΔλF, 𝜌𝜌} were used in finding stable 
solutions, we have chosen two parameters, i.e., {Esat, 𝜌𝜌} to plot a stability map of a single-pulse 
operation, which is convenient for visualization (for details, see supplementary Fig. 2a). A full 
stability study over the whole four-dimensional parameter space would be an area of future 
study. A stable region was obtained when Esat varies within the interval [0.270 nJ, 0.292 nJ] and 
𝜌𝜌 within the interval [0.240, 0.275]. Interestingly, bifurcation solutions were found near the 
stability boundary (see supplementary Fig. 2c, 2d). Moreover, we have also investigated the 
impact of the second-order dispersion (GVD), third-order dispersion (TOD) and the Raman 
fraction fR on the stability of the solution. We studied the stability of the solution shown in Fig. 
2 by scaling each one of the three parameters (𝛽𝛽2

(HNLF),𝛽𝛽3
(HNLF), 𝑓𝑓R) with the other two fixed. 

The stability maintained when the GVD and TOD were scaled within [0.81, 1.02] and [0.90, 
3.69], respectively. The stability also maintained when the Raman fraction fR was varied within 
[0.172, 0.282].  
    Although the high-order soliton propagations may be more susceptible to perturbations, 
leading to narrower feasible (solution) regions in the parameter space, machine learning tools 
such as GA exhibit great promise in finding such challenging solutions. It is even reasonable to 
anticipate an experimental realization of the high-order soliton laser by use of machine learning-
based feedback algorithms [49,51,52] and a careful design of the HNLF dispersion and 
nonlinearity [53]. Furthermore, a more complete model that includes the mode area dispersion 
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effect [41], and the vector effect of the field [15] would be expected to be necessary in order to 
achieve full quantitative agreement with experiment. Moreover, we note that the noise model 
assumed in this work is a simplified approach, and more studies should be undertaken to 
investigate different noise sources, such as Gaussian noise within the EDFA bandwidth [54].  

In conclusion, we have demonstrated numerically, for the first time, coherent supercontinuum 
generation in a fiber laser via high-order soliton dynamics. By carefully optimizing the 
parameters of the laser cavity, which incorporates a DDL and a HNLF of anomalous dispersion, 
intracavity coherent supercontinuum was generated. A minimum duration as short as 14.1 fs 
corresponding to 2.7 optical cycles at 1551 nm was obtained directly in the laser cavity. The 
intracavity temporal and spectral evolution highlights the critical role of the high-order soliton 
self-compression dynamics in the supercontinuum generation. In addition, an optimization of 
the laser performance was realized with a GA, where solutions with bandwidth typically larger 
than 600 nm (at -30 dB) were found. These results provide a new approach for constructing 
coherent supercontinuum light sources and may trigger further interest in applications of 
intracavity high-order soliton dynamics.  
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Intracavity coherent supercontinuum 
generation via high-order soliton dynamics in 
a dissipative soliton fiber laser: supplemental 
document 
1. Implementation of the iterative map model for the laser 
The approach that we use to model the laser dynamics is the standard method for lasers 
operating as “dissipative soliton” systems where nonlinear and dispersive effects are present at 
the same time as gain, loss, spectral filtering and saturable absorption. Simulations using this 
approach have been performed for many years, and excellent reviews of the methodology 
appear in. Ref [1-3]. 
    To model the laser dynamics, we use the standard iterative map model (piecewise roundtrip 
model) [2,4]. The basic idea is to begin with an initial complex-valued field profile (e.g. a low 
amplitude background noise field, or a noisy Gaussian pulse) and propagate this field 
numerically through each element of the laser cavity, modifying its temporal and spectral 
properties through dispersive and nonlinear propagation, and modifying its pulse energy 
through gain and loss. Gain can be simulated in different ways, but a widely used method is to 
use a Lorentzian based model including gain saturation [2,4,5]. After one roundtrip through all 
the elements, the complex field is reinjected into the cavity and the process iterates. This 
approach allows the energy to dynamically evolve at the same time as the pulse properties are 
being modified by other elements. The energy is modified from roundtrip to roundtrip, but the 
effect of gain saturation is associated with convergence to a constant energy state, and usually 
an invariant pulse shape. We note, however, that such a model has also been shown to allow 
modelling of many instability regimes of dissipative soliton lasers, including soliton oscillations 
[4,6] and noise-like pulse behaviour [4,7].  
    While this approach to laser modelling might be considered a “conceptual” or “toy” model 
because of its relative simplicity, it has nonetheless been shown to reproduce observed 
experimental behaviour under a wide range of conditions. Moreover, whilst exact quantitative 
agreement with experiment may not be expected (primarily because of the simplified gain 
model used) the model still yields predictions for pulse energy and duration etc that are 
comparable to measurements.  

The convergence of the laser model can be defined in a variety of ways, however the relative 
error of the pulse energy between each two consecutive roundtrips (𝜖𝜖) is commonly used. 
Specifically, the pulse energy in roundtrip m is denoted as Ep(m), and the corresponding relative 
error of the pulse energy is given by 𝜖𝜖(𝑚𝑚) = |𝐸𝐸p(𝑚𝑚)−𝐸𝐸p(𝑚𝑚−1)|

𝐸𝐸p(𝑚𝑚)
. Then the convergence of the laser 

can be considered achieved if 𝜖𝜖 is below a threshold (typically 10-4 to 10-6) for a certain number 
(300) of roundtrips.  

The convergence evolution of the supercontinuum solution in Fig. 2 in the main manuscript 
is shown in Fig. S1. The iterations were initiated from the input to the EDF1 (point A) in Fig. 1 
in the main manuscript with a 300 fs Gaussian pulse with a peak power of 0.1 W. Here the field 
after the HNLF is monitored. The evolution of the relative error of the pulse energy 𝜖𝜖 over 1000 
roundtrips are plotted in Fig. S1(a). The laser starts to converge after ~70 roundtrips with 𝜖𝜖 <
10−6. The corresponding temporal and spectral evolution over 1000 roundtrips are shown in 
Fig. S1(b) and Fig. S1(c), respectively. 
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Fig. S1 (a) Logarithm of the relative error of the pulse energy versus the roundtrip number. (b) 
Temporal and (c) spectral evolution of the field after the HNLF over 1000 roundtrips. 

 

2. Stability map of the mode-locked single-pulse supercontinuum operation 
In order to explore the stability boundary of the mode-locked supercontinuum solution, two of 
the system parameters, i.e., the gain saturation energy Esat and the equivalent transmittance after 
the DDL 𝜌𝜌 were scanned. The stability (convergence) map is shown in Fig. S2(a), where the 
logarithmic mean error of the pulse energy lg (𝜖𝜖)̅ is plotted as a function of Esat and 𝜌𝜌. The stable 
region corresponds to that shown in blue. We select six representative points (P1-P6) and the 
corresponding steady-state spectra are shown in Fig. S2(b). An unstable solution near the 
stability boundary is indicated by P7 in Fig. S2(a). It corresponds to a period-doubling 
bifurcation solution. The convergence curve over 200 roundtrips at P7 is shown in Fig. S2(c), 
and the inset presents the spectra after the HNLF for two consecutive roundtrips. The 
corresponding temporal and spectral evolutions are shown in Fig. S2(d), (e) respectively. 
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Fig. S2 (a) The stability (convergence) map as a function of the parameters Esat and 𝜌𝜌 with  
𝛿𝛿𝜆𝜆0,𝐹𝐹 = 9.38 nm, ΔλF = 6.60 nm. The parameters for P1-P6 are P1: {Esat = 0.272 nJ, 𝜌𝜌 = 0.267}; 
P2: {Esat = 0.281 nJ, 𝜌𝜌 = 0.257}; P3: {Esat = 0.291 nJ, 𝜌𝜌 = 0.249}; P4: {Esat = 0.278 nJ, 𝜌𝜌 = 
0.253}; P5: {Esat = 0.277 nJ, 𝜌𝜌 = 0.246}; and P6: {Esat = 0.273 nJ, 𝜌𝜌 = 0.256}. (b) Output 
spectra at P1-P6. (c) Convergence curve at P7 with {Esat = 0.290 nJ, 𝜌𝜌 = 0.252}. The inset 
denotes the spectra at two consecutive roundtrips (RT199 and RT200). (d) Temporal and (e) 
spectral evolution of the field after the HNLF over 1000 roundtrips at the parameter point P7. 
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