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Abstract—Tuberculosis, caused by Mycobacterium tuberculo-
sis, remains a significant public health issue globally, exacerbated
by the growing prevalence of multidrug-resistant strains and
the lack of new therapeutic options. Despite extensive research
efforts, there remains a critical need to effectively harness the
vast amount of available data to drive new insights and treatment
strategies. Currently, over 200,000 genomes of Mycobacterium
tuberculosis are publicly available, and there are more than
100,000 scientific articles on PubMed concerning this bacterium.
The potential for breakthroughs is immense if we can sys-
tematically study these two corpora in conjunction. However,
the scale of these datasets necessitates the development of new
tools based on big data analytics, artificial intelligence, and
large language models (LLMs). This paper presents a study
on the application of information retrieval (IR) techniques for
performing Retrieval-Augmented Generation (RAG) to facilitate
access to current knowledge about Mycobacterium tuberculosis.
The approach integrates IR and response generation to provide
relevant and contextually appropriate answers to user queries,
leveraging scientific documents and genomic data.

Index Terms—Mycobacterium tuberculosis; Vector Stores; In-
formation Retrieval; Retrieval-Augmented Generation; Genomic
Analysis

I. INTRODUCTION

Tuberculosis (TB), caused by Mycobacterium tuberculosis,
remains a formidable global health challenge despite decades
of intensive research and public health efforts [29]. The disease
continues to afflict millions worldwide, with the World Health
Organization reporting approximately 10 million new cases
and 1.5 million deaths annually [25]. Alarmingly, the rise
of multidrug-resistant (MDR) and extensively drug-resistant
(XDR) strains of M. tuberculosis has exacerbated the situation,
rendering standard treatment regimens ineffective and com-
plicating disease management [19]. This worrying evolution
underscores the urgent need for novel strategies to understand,
prevent, and treat TB.

The advent of high-throughput genomic sequencing and the
exponential growth of scientific publications have resulted in
an unprecedented accumulation of data related to M. tuber-
culosis [19]. Over 200,000 bacterial genomes are publicly
available [15], providing a rich resource for genomic analysis
and epidemiological studies. Additionally, more than 100,000

scientific articles on PubMed discuss various aspects of this
pathogen. While this wealth of data holds immense potential
for breakthroughs in TB research, it also presents significant
challenges. The sheer volume and complexity make it difficult
for researchers to stay current, extract relevant information,
and synthesize insights across disparate data sources.

Emerging artificial intelligence (AI) technologies, particu-
larly large language models (LLMs), offer promising solutions
to navigate and interpret vast datasets [20]. Techniques such as
Information Retrieval (IR) and Retrieval-Augmented Genera-
tion (RAG, see Figure 1) enable the extraction of pertinent
information and the generation of contextually appropriate
responses to user queries [20]. These tools can potentially
revolutionize how researchers access and integrate knowledge
from genomic data and scientific literature, facilitating more
efficient discovery and innovation in TB research.

However, leveraging these AI-based tools effectively is
not without challenges. A purely semantic IR approach may
overlook novel findings that are documented in only a few
recent publications, such as the discovery of a new lineage
like lineage 10 of M. tuberculosis [12]. Consequently, if a
researcher queries the number of known lineages, the system
might erroneously report a maximum of nine, ignoring the
latest developments. Additionally, scientific knowledge about
M. tuberculosis evolves over time due to advancements in
techniques – from phenotypic characterizations to spoligo-
typing, MIRU-VNTR, and increasingly precise SNP-based
definitions as more genomes are sequenced [1], [4], [14], [28].
Older, superseded information may persist in the literature,
leading to potential inaccuracies if not properly contextu-
alized. Moreover, the credibility of sources varies; findings
from highly cited, reputable authors may carry more weight
than those from less established researchers, especially when
presenting surprising or groundbreaking results.

The goal of this paper is to address these complexities by
sharing our experiences and proposing strategies to enhance
the relevance and accuracy of AI-assisted tools in TB research.
We aim to explore methods for improving IR and RAG
systems to account for the temporal evolution of knowledge,
the significance of author reputation, and the need to highlight



Fig. 1. Retrieval-Augmented Generation (RAG): a language model (LLM)
queries a collection of PDFs to retrieve relevant text snippets. The LLM uses
these snippets to generate a more accurate answer to the user’s question by
grounding its response in external information.

recent, yet crucial, scientific discoveries. By tackling these
challenges, we aspire to provide valuable insights and practical
solutions that will assist researchers in effectively harness-
ing the vast genomic and literature data on Mycobacterium
tuberculosis, ultimately contributing to more informed and
impactful advancements in the fight against tuberculosis.

The remainder of this article is as follows. The next section
is a state of the art related to information retrieval and
its application in the bioinformatics field. In Section III,
the final objecives and its associated scientific challenges
are introduced. Avenues for solutions are then proposed in
Section IV. This article ends by a conclusion section, in which
the contributions are summarized and intended future work is
outlined.

II. STATE OF THE ART

A. Information Retrieval

Information Retrieval (IR) has long been a pivotal field in
computer science, dedicated to the organization and retrieval of
information from large datasets, such as collections of research
articles. Early IR systems primarily relied on keyword-based
methods, utilizing statistical techniques like Term Frequency-
Inverse Document Frequency (TF-IDF) to rank documents
based on the occurrence of query terms [27]. While effective to
an extent, these models faced limitations in understanding the
semantic relationships between words, often struggling with
issues like synonymy and polysemy.

The introduction of Latent Semantic Analysis (LSA)
marked a significant advancement by capturing underlying
semantic structures in text data [8]. LSA reduced the di-
mensionality of term-document matrices, uncovering latent
relationships between terms and documents. However, these
models still lacked the ability to handle context dynamically.
The emergence of word embeddings, such as Word2Vec [23]
and GloVe [26], revolutionized IR by representing words
in continuous vector spaces where semantic similarities are
encoded geometrically. This advancement allowed IR systems
to understand context and semantic nuances better, improving
the retrieval of relevant documents.

The advent of transformer architectures [30] brought about
a paradigm shift in natural language processing (NLP) and,
by extension, IR. Transformers leveraged self-attention mech-
anisms to capture long-range dependencies in text, enabling
models to understand context more effectively than previous
recurrent architectures. Building on transformers, large lan-
guage models (LLMs) like BERT [9] provided deep bidi-
rectional representations of text, significantly enhancing the
performance of IR systems, especially in handling complex
queries typical in academic research. Furthermore, the in-
tegration of IR with generative models in approaches like
Retrieval-Augmented Generation (RAG [21]) has enabled the
development of systems that can retrieve relevant informa-
tion and generate contextually appropriate responses, offering
substantial benefits for researchers navigating vast amounts of
literature.

B. Large Language Models

The advent of Large Language Models (LLMs) has signifi-
cantly impacted medical research, offering advanced tools for
data analysis, knowledge extraction, and decision support. In
the field of microbiology, LLMs have been instrumental in pro-
cessing and interpreting vast amounts of textual data, such as
scientific literature, clinical reports, and genomic information.
For instance, models like BioBERT [20] and ClinicalBERT [2]
have been specifically fine-tuned for biomedical text mining,
enhancing tasks such as named entity recognition, relation
extraction, and question answering within medical texts.

In microbiology, LLMs have facilitated the rapid identifica-
tion and characterization of pathogens by extracting relevant
information from unstructured data sources. They have been
used to predict microbial gene functions and interactions by
analyzing scientific publications and genomic datasets [16].
Furthermore, LLMs contribute to antimicrobial resistance re-
search by identifying patterns and correlations in large-scale
genomic and clinical data, aiding in the prediction of resistance
mechanisms [3]. These applications not only accelerate the
pace of discovery but also improve the accuracy of microbio-
logical analyses.

The integration of LLMs into microbiological research
workflows holds great promise for accelerating discoveries
and improving public health outcomes. Ongoing research is
exploring the use of LLMs in conjunction with other AI
techniques, such as deep learning models for protein structure
prediction, exemplified by AlphaFold [17], and in the develop-
ment of intelligent systems for real-time pathogen surveillance
and outbreak detection [7]. As these models continue to
evolve, their applications are expected to expand, offering
more sophisticated tools for understanding complex microbial
behaviors and interactions.

III. FINAL OBJECTIVE AND SCIENTIFIC CHALLENGES

For an LLM-based tool to be genuinely useful to a re-
searcher working in a highly specific and specialized field
(e.g., the phylogeny of M. tuberculosis), the foundational
knowledge of an LLM is vastly insufficient [13]. Even LLMs



specifically trained on medical corpora remain far too gener-
alist, and only RAG approaches utilizing the most compre-
hensive corpus on M. tuberculosis can lead to an LLM-based
copilot truly beneficial for the researcher.

Building such a corpus is a challenge in itself, as it must
encompass the entire scientific literature on this bacterium –
a corpus that is difficult to assemble – and also incorporate
newly published articles daily. Moreover, it should not focus
solely on the species level but adopt a broader perspective:
encompassing literature on the entire Mycobacterium genus
(for questions about the origin of the species or its distinction
from close relatives), as well as relevant insights from micro-
biology, bioinformatics, statistics, and even population history
(e.g., migration patterns). This initial difficulty is indeed a
major challenge but lies outside the scope of this paper,
which assumes that such a knowledge base has already been
established (cf. [13]).

The next challenge, given a researcher’s query, is to extract
scientific text snippets with the highest likelihood of contain-
ing the answer. Currently, the effectiveness of the tool hinges
on the precision of this information retrieval step: in practice,
today’s best ”generalist” LLMs are fully capable of providing
highly relevant answers that meet a researcher’s expectations,
provided they are given the right text excerpts. However –
and this is a key point – while it is clear that older keyword-
based or TF-IDF approaches are inadequate for this task, it
is equally true that a purely semantic approach is insufficient.
The solution lies in an iterative hybrid approach, as presented
in the next section.

Indeed, while semantic search in vector stores has sig-
nificantly improved information retrieval, relying solely on
semantic similarity can be insufficient for specialized research
domains like microbiology. A hybrid search approach that
combines semantic understanding with explicit identification
of specific entities such as strain identifiers or single nucleotide
polymorphisms (SNPs) is essential for effective Retrieval-
Augmented Generation (RAG) in this context.

For instance, consider the study of the virulence of My-
cobacterium tuberculosis lineage 4.6.2 in Nigeria. This lineage
was previously known as the ”Cameroon” lineage, a term that
refers not to the country but to a specific bacterial lineage
initially identified there [11]. Over time, taxonomic revisions
by researchers such as Freschi and Napier have updated
this nomenclature [10], [24]. The dynamic nature of lineage
definitions means that purely semantic searches might miss
relevant literature if they do not account for historical naming
conventions and taxonomic changes. A hybrid approach that
includes explicit lineage identifiers ensures comprehensive re-
trieval of all pertinent information, regardless of nomenclatural
evolution.

Furthermore, constructing a database of bacterial strains
linked to their antibiotic resistances – a critical resource
for developing machine learning models to predict resistance
based on genetic mutations – requires precise extraction of
strain-specific data [22]. Antibiotic resistances are often re-
ported using various abbreviations and terminologies across

different studies. Identifying explicit mentions of strains and
standardizing the extraction of resistance profiles necessitates
more than semantic similarity; it requires pattern recognition
and entity extraction capabilities that can handle domain-
specific jargon and notation.

Additionally, valuable information resides outside tradi-
tional scientific articles. Repositories like the NCBI database
provide metadata for submitted strains, including isolation
dates and geographic locations [5]. Databases such as My-
coBrowser offer detailed gene-specific information [18]. In-
tegrating these heterogeneous data sources into the retrieval
process demands a hybrid approach that can navigate struc-
tured databases and unstructured text, combining semantic
understanding with precise entity recognition.

These examples highlight the necessity of a hybrid informa-
tion retrieval strategy that supplements semantic search with
explicit entity identification and handling of domain-specific
knowledge. Such an approach enhances the effectiveness of
RAG systems, enabling researchers to access comprehensive
and accurate information crucial for advancing microbiological
research, as summarized in Table I.

IV. AVENUES FOR SOLUTIONS

A. Filling up the Vectorstore

After explaining why a hybrid approach to information
retrieval is necessary, the next question is how to implement
it. First and foremost, the choice of vectorstore is crucial.
There are many options available, but the one selected must
be capable of storing not only the text and its embedding
but also additional information such as the identifiers of
cited strains, the list of authors, cited drugs, and more. This
vectorstore must support semantic queries with filters (e.g.,
texts mentioning a specific drug and a particular country).
To meet these needs, we propose using Milvus [31], which
supports all these requirements and additionally allows for
querying across multiple vector columns simultaneously.

Populating this vectorstore does not present any specific
challenges, but it does require implementing customized post-
processing for each chunk. After parsing each PDF and
segmenting it into paragraphs (for instance), the additional
columns can be filled using ad hoc methods. These meth-
ods may include substring detection (for antibiotics), regular
expressions (e.g., strain identifiers in the format of E, S, or
D followed by RR and an integer), or similarity metrics like
Levenshtein distance based on a predefined list of locations
(countries, cities, etc.).

Bibliographic information (title, authors, journal name, etc.)
is also crucial to retrieve – first, to provide the user with the
sources used to answer their query, and second, to filter the
returned excerpts before providing them to the LLM, as we
will see below. However, retrieving the journal name from
the PDF can be challenging, primarily due to the variations in
style and layout across different scholarly journals. Identifying
author names is similarly difficult, as they may contain special
characters that complicate OCR processing. To address this
challenge, the approach involves first consolidating the title (by



TABLE I
COMPARISON OF INFORMATION RETRIEVAL APPROACHES

Approach Pros Cons
Embeddings/Semantic Search
Alone • Captures contextual and semantic meaning

of text.
• Handles synonymy and polysemy effec-

tively.
• Useful for general topic exploration.

• May miss specific domain entities like
strain identifiers or SNPs.

• Struggles with evolving terminology and
nomenclature changes.

• Recent, less frequent findings might be
overlooked.

Keyword-Based Search Alone
• Precise retrieval of documents containing

specific terms or identifiers.
• Effective for extracting explicit mentions

of strains or resistance profiles.
• Simple implementation and fast execution.

• Lacks understanding of context and se-
mantics.

• Unable to handle synonyms or related
concepts.

• High risk of missing relevant documents
due to terminology variations.

Hybrid Approach
• Combines semantic understanding with

precise entity recognition.
• Accounts for evolving terminology and

nomenclature changes.
• Enhances retrieval of recent and signifi-

cant findings.
• Integrates diverse data sources (articles,

databases, metadata).

• Increased complexity in system design and
implementation.

• Requires more computational resources.
• Needs careful tuning to balance semantic

and keyword components.

inspecting metadata, automatically searching for the closest
match on PubMed, etc.), and then automatically retrieving
the associated BibTeX entry, for instance, using the CrossRef
API [6].

Other types of information may be more challenging to
retrieve. Taking the case of lineages as an example, there has
been a shift from an early taxonomy based on names (which
can be confused with locations, such as Ghana, Haarlem,
Uganda, Cameroon, West African, or with mathematical sym-
bols, like X-type and X2 lineages) to a numerical nomenclature
(e.g., L4.1, L4.3.2...). In the first case, using an LLM with a
custom prompt can help determine, based on context, whether
these terms refer to lineages, locations, or something else
whenever one of these older terms is detected. In the second
case, the previously mentioned issue is that lineage schemes
evolve over time. Currently, there is no definitive taxonomy
(new lineages have been discovered recently), and there are
compatibility breaks between lineages. A different prompt
could be used to determine the taxonomic scheme based on
the full article content, followed by an ad hoc script to convert
it into an absolute taxonomy, thus removing ambiguity. The
complex case of articles using multiple taxonomic schemes,
for comparison purposes, would also need to be handled.
Properly managing lineage information is, as we can see,
complex to implement but feasible, and absolutely essential
to avoid returning incorrect information.

B. Filtering the Retrieved Information

When the vectorstore only contains a single column of
embeddings, information retrieval is quite limited: it simply
involves finding texts whose embeddings are close (e.g., using
cosine similarity or dot product) to the embedding of the user’s
query, potentially adding some diversity. Having multiple
columns in the vectorstore allows for querying in various

ways (e.g., filtering for texts that mention a specific country
or originate from recent articles), then extracting a sample
of texts from each query, which provides the LLM with a
potentially richer and more varied set of chunks. To further
enhance the number and relevance of the excerpts passed to
the LLM, prompt engineering can be applied by asking an
LLM to reformulate the query, generalize it, or split it into
more basic sub-queries, etc. Such approaches can be scaled
up, given the reduction in response time and cost when using
recent LLMs.

Fig. 2. Reranking approaches to consider in the Information Retrieval process.

However, despite the increase in allowed context sizes in
these modern LLMs, various experiments have shown that
providing a context of reasonable length, with few low-quality
texts in terms of relevance to the initial query, yields better
results. This is why a second stage of ranking and filtering the
initial results is typically implemented.

Effective reranking must be able to consider, based on a
fact contained within the chunk: the freshness of the fact (is
it recent information?), its relevance (in relation to the query),
its degree of support (other chunks corroborate it, with few
contradictory sources), and the reputation of the ”bearer” of
the fact (a well-established author, a reputable journal, or a
highly cited article), see Figure 2.



The recency of information can be determined simply by
consulting the publication date extracted from the BibTeX
entry. The relevance of an excerpt for answering the initial
query can be assessed by an LLM with a structured output,
using a prompt like: ”On a scale of 1 to 5, to what extent does
the following excerpt address the query...”. A similar, though
more challenging, approach can be used to gauge the degree of
support: an initial prompt can list conflicting trends within the
returned excerpts, followed by a second prompt that classifies
each excerpt according to its trend.

The reputation associated with the text’s producer can be
based on various metrics retrievable online via APIs: the
average H-index of the authors, the impact factor of the
journal, the article’s citations, etc. For the first and last authors
listed, it’s also possible to use LangChain’s PubMed retriever
to gather abstracts of the authors’ recent publications and see
if they have been actively producing work on topics related to
the initial query. This can be executed with agents (LLMs
equipped with ”tools”), as shown in Figure 3. While the
number of requests associated with such approaches currently
appears prohibitive – both in terms of execution time and cost
– the ongoing improvements in LLMs will make this feasible
very soon.

Fig. 3. Agentic approach for Information Retrieval.

V. CONCLUSION

The challenges and strategies associated with using vector
stores and information retrieval (IR) for analyzing literature
data on Mycobacterium tuberculosis (MTB) have been ex-
plored in this article. Given the vast volume of MTB-related
genomic and scientific data, traditional keyword-based IR is
insufficient for high specificity needs in such research. We
argued for a hybrid retrieval approach that combines semantic
search with explicit entity recognition (e.g., strain identifiers or
SNPs), essential for effectively supporting retrieval-augmented
generation (RAG) in microbiological research. By leveraging
big data analytics, AI, and large language models (LLMs), this
study aimed to enable more contextually relevant responses
to user queries, aiding researchers in quickly navigating a
complex and evolving knowledge landscape.

Future work in this domain could focus on enhancing
the precision and adaptability of the proposed information
retrieval system. One promising direction is the development
of dynamic taxonomic mapping that adapts in real-time to
updates in MTB lineages and nomenclature changes. This
approach would involve implementing a lineage tracking
mechanism that continuously integrates the latest taxonomic

insights, ensuring the retrieval system remains relevant and
comprehensive despite the evolving nature of scientific un-
derstanding in microbiology. Moreover, as LLM capabilities
advance, incorporating multi-step querying agents that can
reformulate complex queries, identify implicit connections
across articles, and weigh evidence from disparate sources will
be essential. These agents could refine search outcomes by
iteratively interacting with the vectorstore, aiming to retrieve
the most contextually relevant information.

In addition, expanding the hybrid retrieval framework to
include external structured datasets – such as antimicrobial
resistance databases or real-time epidemiological data – could
provide a richer, multidimensional perspective on MTB re-
search. Integrating these diverse data sources would not only
enhance the quality of RAG-based outputs but also enable pre-
dictive analytics, potentially allowing researchers to forecast
trends in drug resistance or identify emerging MTB strains.
Finally, future work could address the computational efficiency
of such advanced systems, with a particular focus on opti-
mizing response times and reducing costs, as computational
demands continue to increase with the scale and complexity
of integrated data.
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