
Introduction to XQuery and XPath Full Text∗

Jean-Michel HUFFLEN
LIFC (EA CNRS 6942)
University of Franche-Comté
16, route de Gray
25030 BESANÇON CEDEX
FRANCE
jmhufflen@lifc.univ-fcomte.fr
http://lifc.univ-fcomte.fr/home/~jmhufflen

Abstract

We show how XQuery and XPath Full Text extends XQuery’s basis and eases some
applications related to advanced search of a text. Most examples we give yield
LATEX source texts.
Keywords xml, XQuery (1.0 & 1.1), XPath 2.0, full text search, substring
search, generating (LA)TEX source texts.

Streszczenie

Pokażemy, jak „XQuery and XPath Full Text“ rozszerzają XQuery ułatwiając re-
alizację pewnych zadań związanych z zaawansowanym przeszukiwaniem tekstów.
Większość pokazanych przykładów generuje LATEXowe teksty źródłowe.
Słowa kluczowe xml, XQuery (1.0 & 1.1), XPath 2.0, wyszukiwanie pełnotek-
stowe, wyszukiwanie według podłańcucha, generowanie tekstów źródłowych dla
TEXa i LATEXa.

0 Introduction

This present article follows the general introduction
to XQuery given at the BachoTEX 2009 conference
[4]. Let us recall that this language is a query lan-
guage for data stored using xml1 form. XQuery ex-
tends the most recent version of XPath (2.0) [9]—
the language used to address parts of an xml doc-
ument—and can be used to search such documents
and arrange the result, as an xml structure or a sim-
ple text (possibly suitable for a TEX engine). ‘Search
of such documents’ often reads ‘substring search’, so
in a first section, we explain why full-text search is
different from substring search. Then we describe
the main features of XQuery and XPath Full Text in
Section 2. Last, more examples show that full-text
search may be useful when source texts for (LA)TEX
are derived. Reading this article only requires basic
knowledge about XQuery, that is, about the features
introduced in [4]. Of course, this article does not aim
to replace the reference document of the w3c2 [15].

∗ Title in Polish: Wprowadzenie do „XQuery i XPath Full
Text“.

1 eXtensible Markup Language. Readers interested in an
introductory book to this formalism can refer to [8].

2 Word Wide Web Consortium.

The processor we use for the demonstration at the
BachoTEX 2010 conference is BaseX [1]. Another in-
teresting implementation is GalaTeX [2], but it uses
old syntax for full-text selection3.

1 Full-text search vs substring search

As sketched in [16, pp. 285–286], a full-text search
performs a search for tokens4 and phrases rather
than substrings. For example, a ‘classical’ substring
search for items that contain the string "lease" will
return, in particular, an item containing the string:

"\TeX\ Live 2009 has been released"

A full-text search for the token "lease" will not.
On the contrary, a full-text search should be sup-
port language-based searches including tokens with

3 This syntax is described in [13]. It is still accepted by
the BaseX processor but only for sake of compatibility with
previous versions.

4 Informally, tokenisation breaks a character string into
a sequence of tokens, units of punctuation, and spaces. W.r.t.
the terminology used within reference documents about
XQuery and XPath Full Text, a token is a non-empty se-
quence of characters returned by a tokeniser as a basic unit
to be searched; a phrase is an ordered sequence of any num-
ber of tokens. [15] makes precise that these notions should
be implementation-defined. See [15, § 4.1] for more details.

TUGboat, Volume 0 (2060), No. 0—Proceedings of the 2060 Annual Meeting 1001

Jean-Michel HUFFLEN

<?xml version="1.0" encoding="ISO-8859-1"?>

<books>
<omnibus series="Doc Savage">

<author>
<name><personname><first>Kenneth</first><last>Robeson</last></personname></name>

</author>
<booktitle>Doc Savage Omnibus #9</booktitle>
<year>1989</year>
<story><title>The Invisible-Box Murders</title><year>1941</year></story>
<story><title>Birds of Death</title><year>1941</year></story>
<story><title>The Wee Ones</title><year>1945</year></story>
<story><title>Terror Takes 7</title><year>1945</year></story>

</omnibus>
<omnibus series="Doc Savage">

<author>
<name><personname><first>Kenneth</first><last>Robeson</last></personname></name>

</author>
<booktitle>Doc Savage Omnibus #10</booktitle>
<year>1989</year>
<story><title>The Devil’s Black Rock</title><year>1942</year></story>
<story><title>Waves of Death</title><year>1943</year></story>
<story><title>The Too-Wise Owl</title><year>1942</year></story>
<story><title>Terror and the Lonely Widow</title><year>1945</year></story>

</omnibus>
</books>

Figure 1: Specification of some stories collected in omnibus volumes.

the same linguistic stem. For example, if we con-
sider the Polish declensions5, searching the tokens
with the same linguistic stem than ‘robot ’ (nomina-
tive singular) should find the other possible cases
of this word6, such as ‘roboty ’ (nominative plural)
and ‘robotów ’ (genitive plural, as in ‘Bajki robo-
tów ’). Another example is given by the English
language: finding the tokens with the same linguis-
tic stem as ‘mouse’ should resulting in looking for
‘mouse’ and ‘mice’. Last, full-text search may be
inexact, so there is a notion of score or relevance.
However, the reference document does not make pre-
cise this notion [15, § 2.3], so values used as scores—
decimal numbers belonging to the range [0, 1]—are
implementation-dependent.

2 XQuery and XPath Full Text’s features

Let us consider the xml text given in Fig. 1, al-
ready used in [4]. A ‘classical’ XPath 2.0 expression

5 . . . but unfortunately, no XQuery and XPath Full Text
processor provides support for the Polish language now, as
far as we know.

6 When a language uses declensions, a word’s function is
directly expressed within this word, most often by a suffix. As
examples, the nominative case marks the subject of a verb,
the genitive case marks a noun as modifying another noun,
most often as being its possessor.

returning the story elements whose title contains
the word ‘Terror’ is:
for $story-0 in

doc(...)/books/omnibus/
story[contains(data(title),"Terror")]

return $story-0

these story elements being:
<story>

<title>Terror Takes 7</title>
<year>1945</year>

</story>
<story>

<title>Terror and the Lonely Widow</title>
<year>1945</year>

</story>

The same result can be got by a full-text selection
extending XQuery capabilities as follows7:
for $story-0 as element(story) in

doc(...)/books/omnibus/story
where $story-0[title contains text "Terror"]
return ("\processstory{",$story-0,"}")

where \processstory is a (LA)TEX command able
to typeset a story element. If you would like a
case-insensitive search, just make precise:

7 According to the old syntax described in [13], the con-
straint is written ‘[title ftcontains "Terror"]’.

1002 TUGboat, Volume 0 (2060), No. 0—Proceedings of the 2060 Annual Meeting

Introduction to XQuery and XPath Full Text

for $story-0 in doc(...)/books/omnibus/story
where $story-0[title contains text "terror"

using case insensitive]
return ("\processstory{",$story-0,"}")

‘using case sensitive’ being the default. Several
full-text selections can be connected by means of
the keywords ftor or ftand, whose semantics are
respectively ‘logical and’ and ‘logical or’:
for $story-0 in doc(...)/books/omnibus/story
where $story-0[title contains text

"Terror" ftor "7"]
return ("\processstory{",$story-0,"}")

There also exists an unary operator ftnot, in which
case, matched texts do not satisfy the operand full-
text selection. Sets can also be used:
for $story-0 in doc(...)/books/omnibus/story
where $story-0[title contains text

{ "Terror", "7" }]
return ("\processstory{",$story-0,"}")

which is equivalent to:
for $story-0 in doc(...)/books/omnibus/story
where $story-0[title contains text

{ "Terror", "7" } any]
return ("\processstory{",$story-0,"}")

that is, at least one word must appeared in the title’s
contents of a selected story element. If you would
like all the words of a set to appear within such a
title’s contents, you can use:
for $story-0 in doc(...)/books/omnibus/story
where $story-0[title contains text

{ "Terror", "7" } all]
return ("\processstory{",$story-0,"}")

If you would like the words of a set to be in succes-
sion, use:
for $story-0 in doc(...)/books/omnibus/story
where $story-0[title contains text

{ "Terror", "and" } phrase]
return ("\processstory{",$story-0,"}")

which will yield the right answer whatever white-
space characters there are between these two words.
As mentioned in § 1, you can look for tokens that
have the same stem as the tokens and phrases writ-
ten within the query—these tokens and phrases are
supposed to be in Polish— :
for $s0 in ...
where $s0[. contains text "robot"

using language "po" using stemming]
return $s0

As mentioned in § 1, too, the relevance of a selection
can be measured by means of scores:
for $story-0 in doc(...)/books/omnibus/story
let score $s :=

$story-0[title contains text { "Birds", "of" }

return $s

As another interesting feature, diacritics can be ig-
nored:
for $s0 in ...
where $s0[. contains text contains "Krakow"

using diacritics insensitive]
return $s0

that is, we look for ‘Krakow’ as well as ‘Kraków’.
Stop words can be substituted by any token, for ex-
ample:
for $story-0 in doc(...)/books/omnibus/story
where $story-0[title contains text "in Death"

using stop words("in")]
return ("\processstory{",$story-0,"}")

selects the story elements whose titles are Birds of
Death and Waves of Death. In both cases, the stop
word ‘in’ is substituted by the word ‘of’.

XQuery and XPath Full Text 1.0 includes many
other features we do not describe in detail here: us-
ing regular expressions (wildcards), constraints on
the number of occurrences about a full-text selec-
tion, constraints on the distance—expressed by a
number of words—between two items of a full-text
selection. Note that these options —w.r.t. the ter-
minology used within [15]—may or may not be im-
plemented by XQuery and XPath Full Text proces-
sors. Last, let us mention that xml-like syntax ex-
ists: XQueryX for XQuery and XPath Full Text [15,
App. E].

3 Deriving (LA)TEX source texts

We show how to build source texts for (LA)TEX from
xml files by means of xslt8 in [3] and by means
of XQuery in [4]. A short comparison between these
two methods is sketched in [4] and a more general
synthesis is given in [5]. If you are interested in pro-
cessing textual contents of xml elements or values
associated with attributes, XPath 2.0 and xslt 2.0
only provide basic tools: the tokenize function of
XPath [6, pp. 434–436], and the analyze-string
element of xslt [7, pp. 178–184]. So the features
provided by XQuery and XPath Full Text are more
suitable. However, there are two drawbacks: first,
the character maps of xslt 2.0, that allow output
text to be written according to TEX’s syntax for
special characters, are implementation-dependent in
XQuery and many XQuery processors do not propose
them; second, XQuery and XPath Full Text’s present
version is built out of XQuery 1.0 [10], so the new
features of XQuery 1.1 [14]—especially the groups
of selected items—are unusable.

8 eXtensible Language Stylesheet Transformations [11].

TUGboat, Volume 0 (2060), No. 0—Proceedings of the 2060 Annual Meeting 1003

Jean-Michel HUFFLEN

We personally experienced XQuery and XPath
Full Text with a medium-sized example. At the Uni-
versity of Franche-Comté, we manage the projets
done by students in Computer Science. The mas-
ter file grouping the whole information related to
these projects—descriptions, supervisors, students’
grades, . . . — is written using xml-like syntax. Give
some topics, we are able to find projects matching
them, we can also know if these projects have suc-
ceeded.

4 Conclusion

The w3c proposes two extensions to XQuery. The
first, XQuery Update Facility [12], allows an xml
text to be changed and is obviously out of scope
of any interface with LATEX. The second, XQuery
and XPath Full Text, allows information structured
by xml elements and attributes to be searched by
means of ‘basic’ XQuery’s features. This second ex-
tension to basic features also allows textual infor-
mation to be searched efficiently by means of Full-
Text’s features. Then selected information can be
sent to a word processor. That is, XQuery, Full-Text
search, and (LA)TEX can co-operate nicely.

5 Acknowledgements

Many thanks to Jerzy B. Ludwichowski, who has
translated the abstract and keywords in Polish.

References

[1] BaseX. Processing and Visualizing xml with a
Native xml Database. 2010. http://www.inf.
uni-konstanz.de/dbis/basex/index.

[2] GalaTex: an xml Full-Text Search Engine.
August 2005. http://www.galaxquery.org/
galatex/index.html.

[3] Jean-Michel Hufflen: “xslt 2.0 vs xslt 1.0”.
In: Proc. BachoTEX 2008 Conference, pp. 67–
77. April 2008.

[4] Jean-Michel Hufflen: “Introduction to
XQuery”. In: Tomasz Przechlewski, Karl
Berry and Jerzy B. Ludwichowski, eds.,
Proc. BachoTEX 2009 Conference, pp. 17–25.
April 2009.

[5] Jean-Michel Hufflen: “Processing ‘Com-
puted’ Texts”. ArsTEXnica, Vol. 8, pp. 102–109.
In guit 2009 meeting. October 2009.

[6] Michael H. Kay: XPathTM 2.0 Programmer’s
Reference. Wiley Publishing, Inc. 2004.

[7] Michael H. Kay: xslt 2.0 Programmer’s Ref-
erence. 3rd edition. Wiley Publishing, Inc.
2004.

[8] Erik T. Ray: Learning xml. O’Reilly & Asso-
ciates, Inc. January 2001.

[9] W3C: xml Path Language (XPath) 2.0.
w3c Recommendation Draft. Edited by An-
ders Berglund, Scott Boag, Don Chamber-
lin, Mary F. Fernández, Michael H. Kay,
Jonathan Robie and Jérôme Siméon. Jan-
uary 2007. http://www.w3.org/TR/2007/
WD-xpath20-20070123.

[10] W3C: XQuery 1.0: an xml Query Lan-
guage. w3c Recommendation. Edited by Scott
Boag, Don Chamberlin, Mary F. Fernández,
Daniela Florescu, Jonathan Robie and Jérôme
Siméon. January 2007. http://www.w3.org/
TR/xquery.

[11] W3C: xsl Transformations (xslt). Ver-
sion 2.0. w3c Recommendation. Edited by
Michael H. Kay. January 2007. http://www.
w3.org/TR/2007/WD-xslt20-20070123.

[12] W3C: XQuery Update Facility 1.0. w3c
Candidate Recommendation. Edited by Don
Chamberlin, Daniela Florescu, Jim Melton,
Jonathan Robie, and Jérôme Siméon. Jan-
uary 2008. http://www.w3.org/TR/2008/
CR-xquery-update-10-20080801/.

[13] W3C: XQuery and XPath Full Text 1.0.
w3c Candidate Recommendation. Edited
by Sihem Amer-Yahia, Chavdar Botev,
Stephen Buxton, Pat Case, Jochen Do-
erre, Mary Holstege, Jim Melton, Michael
Rys, and Jayavel Shanmugasundaram.
May 2008. http://www.w3.org/TR/2008/
CR-xpath-full-text-10-20080516/.

[14] W3C: XQuery 1.1. w3c Working Draft.
Edited by Don Chamberlin and Jonathan
Siméon. December 2008. http://www.w3.org/
TR/xquery-11-20081203.

[15] W3C: XQuery and XPath Full Text 1.0.
w3c Candidate Recommendation. Edited by
S. Amer-Yahia, Ch. Botev, S. Buxton, P.
Case, J. Doerre, M. Holstege, J. Melton,
M. Rys, and J. Shanmugasundaram. Jan-
uary 2010. http://www.w3.org/TR/2008/
CR-xpath-full-text-10-20100128/.

[16] Priscilla Walmsley: XQuery. O’Reilly. April
2007.

1004 TUGboat, Volume 0 (2060), No. 0—Proceedings of the 2060 Annual Meeting

