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Université de Bourgogne Franche-Comté
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Abstract—Many techniques are being used for biological
sequence analysis. Among them, the efficiency of Clustering
techniques has emerged in many recent research works. Spectral
clustering in general, and Gaussian Mixture Models (GMMs) in
particular, have a demonstrated efficiency in clustering biological
sequences having unknown similarity ratios. The pipeline of a
tool, implementing the spectral clustering technique, consists of
the following steps: i- sequence alignment, ii- pairwise affinity
computation of the sequences, iii- Laplacian Eigenmap embed-
ding of the data and GMM-based clustering. The choice of
a certain tool or method, for two initial steps, can affect the
quality of the resulting clustering. In the present paper, we
assess the effect of using different sequence alignment tools
and applying different affinity matrix types on the accuracy of
the results. Inputting heterogeneous sequences, or ones that are
subjected to Horizontal Gene Transfers (HGTs), a natural factor
that can lead to high divergence between related sequences, is
also experimented with. Our main contribution is showing the
most appropriate use cases for different alignment tools and
affinity matrices. Moreover, the ability of the spectral clustering
technique to handle heterogeneous sequences and HGTs has been
demonstrated.

Index Terms—Biological sequence clustering, Clustering qual-
ity analysis, Spectral clustering, Gaussian Mixture Model, Se-
quences alignment, Affinity matrices, Horizontal Gene Transfer.

I. INTRODUCTION

The huge number of newly sequenced genes or genomes
allows researchers and practitioners, in the bioinformatics
field, to study the relationships between the newly discovered
ones. Many tools were developed to analyze the sequenced
data. In particular, clustering packages were implemented to
compare a set of sequences and regroup them into clusters
according to their similarity.

Linking the large number of sequences, that get discovered
on a daily basis, to their ancestors and variants is a challenging
and paramount target. This target requires robust clustering
tools to achieve an accurate linkage especially when the
similarity index between a newly discovered sequence and

its ancestors is unknown. Indeed, predicting such similarity
is challenging due to the significant difference in mutation
rates [1], [2] among different species. Moreover, Horizontal
Gene Transfer [3], a phenomenon where two organisms could
exchange parts of their DNA, adds an extra layer of complexity
to the predictability of the similarities. However, the mostly
used clustering tools [4], which use hierarchical algorithms,
heavily rely on user input of the challenging similarity or
identity parameter to deliver their result.

New tools that use a spectral clustering algorithm, instead
of a hierarchical one, may prove a better efficiency based
on recent works [5]–[8]. Indeed, some methods, adopting
spectral clustering techniques for biological sequences, started
emerging [8]–[10] in the last few years. In [8], [10], [11],
various numerical validation experiments demonstrated the
relevance of using Gaussian Mixture Models for clustering of
biological sequences having an unknown inter-cluster index
of similarity. To our knowledge, a single spectral clustering-
based tool, which implements the methods in [8], [10], [11],
is publicly released.

Since the sequence alignment and the pairwise affinity
calculation represent two core steps for applying spectral clus-
tering to biological sequences, studying the different options
for these steps improves the performance of spectral clustering
in this field. In addition, the proven efficiency of spectral
clustering in handling unpredictable levels of inter-cluster
similarity could make it a potential solution for handling
sequences that were subject to HGTs. The contributions in
this work include the impact assessment of using different se-
quence alignment tools and different affinity matrix types with
spectral clustering. It extends to a study of the performance
of the spectral clustering in handling HGTs.

The remainder of this paper is organized as follows. A
set of widely used sequence alignment tools, in addition
to the different affinity types, are presented in Section II.
Section III details our experimental protocol. The results of



our experiments are presented in Section IV. Finally, Section V
concludes this work and states our future perspectives.

II. LITERATURE REVIEW

A. Sequence Alignment Tools

One of the methods for computing the distance between
a pair of sequences requires obtaining their alignment first.
Comparing two aligned sequences allows easy visualization
of the dissimilarities by disclosing the occurrences of muta-
tions, insertions, and deletions that differentiate the sequences.
Therefore, many efficient algorithms were proposed for align-
ing the sequences and computing the pairwise distances, such
as Needleman-Wunsch, Sankoff and Sellers [12]. Indeed, many
alignment tools, that rely on such algorithms, are publically
available, and the following are a few examples of the mostly
used ones:

• MUSCLE [13] uses kmer counting in its fast dis-
tance estimation. It then progressively aligns the se-
quences before refining the initial alignment by using
tree-dependent restricted partitioning. As stated in [13],
MUSCLE promises a superior quality alignment when
compared to its rivals. Conversely, its implementation
does not provide a multi-threading or a multi-processing
option to accelerate its computations.

• MAFFT [14] is another multiple sequence alignment tool
that applies a pipeline of five steps: i- performing a
pairwise alignment, ii- calculating a pairwise distance
matrix, iii- constructing a guide tree, iv- progressively
aligning from the leaves to the root, and v- refining the
results by iterating over the previous steps. MAFFT also
supports multi-threading for further acceleration.

• DECIPHER [15] is an R language package. Its modules
are written in both C and R languages. DECIPHER
accelerates the sequence alignment by using secondary
structure prediction algorithms. The accuracy of these
algorithms increases as more sequences are used in the
prediction.

• CLUSTALX [16] has in its algorithm a few common
steps with its rivals. It implements the following three
steps: i- performing pairwise alignment using the pro-
gressive alignment method, ii- creating a guide tree or
using a user-provided one, and iii- computing the multiple
sequence alignment by using the created guided tree.
CLUSTALX does not support multi-threading or multi-
processing.

The alignment speed and accuracy represent two major
differentiating aspects between these tools that might influence
the clustering quality. Therefore, it is crucial to investigate the
effects of the alignment on the spectral clustering technique
in order to enhance the quality of the produced clustering.

B. Affinity matrix types

Following the alignment, the pairwise affinity is computed
in two steps: i- computing a pairwise similarity matrix from

the pairwise distance1 between each couple of sequences, ii-
Applying a certain mathematical transformation to the distance
matrix to obtain the affinity matrix. In [17] and [8], the
affinity matrix was computed as a Random Walk Normalized
Laplacian and it proved to be relevant for the clustering of
biological sequences. Nevertheless, various alternative matri-
ces have been proposed for spectral clustering [18]–[21], such
as the Non-normalized Laplacian, Modularity [19] and the
Bethe Hessian (Deformed Laplacian) [22]. These matrices are
defined as follows:

• Non-normalized Laplacian:

L = D −A,

where A is the adjacency matrix between the sequences
and D is its diagonal matrix of degrees.

• Random Walk Normalized Laplacian:

Lrw = D−1L,

where D is the degrees matrix of the adjacency matrix
and L is the Non-normalized Laplacian matrix. The
Laplacian matrix is symmetric and positive semidefinite.

• Modularity:

M =
1

K

(
A− 1

K
kkT

)
,

where A is the adjacency matrix, k is the degrees vector
of A, and K is the total degree of A. High values for this
quality function reveal the possible existence of strong
communities.

• Bethe Hessian:

Hr = (r2 − 1)I +D − rA

where I is the identity matrix, D is the degrees matrix of
the adjacency matrix A, and the constant r is the square
root of the average degree of the graph, as suggested
in [20].

III. EXPERIMENTAL PROTOCOL

A. The data sets

Twelve different biological sequence datasets, containing
either real sequences or simulated ones, were assembled to
conduct our experiments:

• A first set of HIV − 1 type B virus2 sequences, com-
prising 78 complete genomes.

• A second set of NADH dehydrogenase 3 (ND3) mito-
chondrial gene, containing 100 sequences.

• A third set from the A/H1N1 strain of the Influenza
virus3, containing 24 different nucleoprotein (NP) se-
quences.

1using a metric such as the Needleman-Wunsch distance, the similarity
equlas 1-(distance/length of the shorter sequence).

2downloaded from https://www.hiv.lanl.gov/components/sequence/HIV/
search/search.html

3downloaded from https://www.ncbi.nlm.nih.gov/genomes/FLU/Database/
nph-select.cgi



The resulting clustering for the first three datasets will be
assessed based on a reference clustering that will be gener-
ated via a novel and dynamic method described in citem-
atar2021spclustv2. This method relies on phylogenetic trees
where well-formed clusters should contain children, siblings,
or parents from the same branch of the tree. A description of
these datasets is presented in Table I.

Dataset Seqs count Max length Avg length Min similarity % Max similarity % Avg similarity %

HIV 78 8272 8167 86 99.4 89.6

NADH 100 369 341 46.2 99.7 62.8

Influenza 24 498 498 97.4 99.8 98.8

TABLE I
STATISTICAL DESCRIPTION OF THE REAL DATASETS.

Moreover, supplementary datasets were taken into account
to assess the capability of the spectral clustering technique
in accurately handling the heterogeneous datasets and the
HGT.To achieve these objectives, a complete genome of
SARS-CoV, along with the entire set of segments associ-
ated with the genomes of Influenza A and D strains, was
obtained from viruSITE4. Subsequently, five more SARS-
COV genomes were generated through the simulation of a
2% mutation of the original genome along with randomly
introducing a comparable proportion of gaps and insertions.
Likewise, nine supplementary genomes were derived from
each complete genome of Influenza A and Influenza D,
utilizing the assembled segments that were retrieved.

The process of simulating horizontal gene transfer was
conducted in the following manner: i- two gene segments were
randomly extracted from an HIV genome retrieved from the
first dataset, ii- two genomes each of Influenza A, Influenza
D, and SARS-COV were chosen from the previously created
ones, specifically the root sequence along with one of its
direct descendants, iii- the first HIV gene segment was inserted
between segments 1 and 2, while the second was placed
between segments 6 and 7 in the selected Influenza A and
Influenza D genomes, iv- both HIV gene segments were
also added at two random positions in the chosen SARS-
COV sequences. The six newly created genomes replaced
the original genomes within the Influenza and SARS-COV
datasets. Although it is unlikely for this exact gene transfer to
happen in-vivo, it remains theoretically possible in-vitro. For
example the research in [23], has demonstrated that a human
HeLa cell is capable of concurrently incubating and producing
both Influenza and HIV-1 viruses.

The 26 genomes generated from the prior simulations,
comprising 10 Influenza A, 10 Influenza D, and 6 SARS-
CoV genomes, along with 9 HIV genomes randomly chosen
from the first dataset, have been utilized to create four distinct
biological datasets, each incorporating a diverse assortment of
genomes:

• A fourth set of 20 complete genomes, comprising 10
genomes of Influenza A and 10 genomes of Influenza
D.

4http://www.virusite.org/archive/2021.1/genomes.fasta.zip

• A fifth set comprising 26 genomes has been assembled,
which includes the 20 Influenza genomes from the pre-
ceding set along with 6 SARS-CoV genomes. Both this
set and the fourth set encompass pathogens that target the
same body region.

• A sixth collection comprising 29 genomes has been
assembled, which includes the 20 Influenza genomes
from the fourth set and 9 HIV genomes selected randomly
from the first set.

• A seventh set consisting of 35 genomes that encompasses
all the genomes from the two preceding collections. Both
this seventh set and the sixth one comprise pathogens that
exhibit distinct zones of infection.

Furthermore, to validate the spectral clustering technique on
larger datasets, five sets were generated via simulated muta-
tions and starting from 6 variants of a chloroplast gene. These
sequences have a minimum pairwise similarity of 60.6%, a
maximum of 84%, and an average of 70.99%. Each one of
the simulated datasets typically contains 6 clusters (mutations
produced from each one of the 6 source sequences). Table II
shows the detailed properties of the last five datasets.

TABLE II
STATISTICAL DESCRIPTION OF THE SIMULATED DATASETS.

Dataset # Seqs count Min inter-cluster similarity % Avg inter-cluster similarity %

8 300 66.5 81.27

9 600 63.7 81.23

10 900 62.6 78.37

11 1200 64.8 81.45

12 1500 64 81.08

All these assembled datasets are publically hosted on an
online repository5.

B. The experiments

The primary objective of the initial series of experiments
is to evaluate the effectiveness of the alignment tool by
substituting MUSCLE with other widely used software. This
evaluation includes an analysis of both the quality of clustering
and the efficiency of the resultant pipeline. The experiments
were carried out in the following manner:

1) The first three sets of sequences are aligned using the
following packages: MUSCLE, MAFFT [14], DECI-
PHER [15], and CLUSTALX [16].

2) The resulting aligned sets are clustered using the EM-
GMM spectral clustering technique; specifically, the
implementation of the ”BestBIC” algorithm proposed
in [10].

The second series of experiments aims to assess the quality
of clustering by utilizing various types of affinity matri-
ces. A comparative analysis will be performed between the
Non-normalized Laplacian, Modularity, and Bethe Hessian,
alongside the Normalized Laplacian previously employed in

5https://github.com/johnymatar/SpCLUST-V2/tree/master/src/datasets



SpCLUST. This experimental framework will also be applied
to the three previously utilized datasets.

The third set of experiments aims to evaluate the capability
of the spectral clustering technique in handling sets of different
pathogens and HGTs. These experiments will be conducted
over the fourth, fifth, sixth, and seventh datasets.

Finally, the last series of experiments aims to demonstrate
the scalability of this spectral clustering technique and its abil-
ity to handle larger datasets. The last five simulated datasets
will be used for these experiments.

IV. EXPERIMENTS RESULTS

A. Impact of the alignment tools

This section examines the possible impact of the sequence
alignment technique on the resulting clustering. The sequences
under consideration were aligned utilizing four advanced
alignment tools: ClustalX, Biostarts Decipher, MAFFT, and
MUSCLE. Subsequently, the aligned sequences were sub-
jected to clustering through the application of the ”BestBIC”
algorithm proposed in [10]. Table III displays the ARI for
each clustering, along with the number of obtained clusters
compared to the one in the reference clustering.

TABLE III
EXTERNAL CLUSTERING VALIDATION WITH REGARDS TO THE

ALIGNMENT TOOLS.

HIV NADH Influenza

Nb. Clusters Nb. Clusters Nb. Clusters

ref. gen. ARI ref. gen. ARI ref. gen. ARI

CLUSTALX 4 3 0.690 4 3 0.955 2 2 1

DECIPHER 3 3 0.759 4 3 0.982 2 2 0.833

MAFFT 1 2 - 2 2 0.960 2 2 1

MUSCLE 3 3 0.828 4 3 0.839 2 2 1

MUSCLE achieved the highest average ARI of 0.889,
followed closely by ClustalX at 0.881, Decipher at 0.858, and
MAFFT at 0.653. Notably, MAFFT generated a smaller num-
ber of clusters within the HIV and NADH datasets, whereas
Decipher was responsible for the most parsimonious cluster-
ing of the Influenza nucleoproteins. Consequently, MUSCLE
consistently demonstrates superior performance compared to
its counterparts. An examination of the alignment within the
Influenza proteins dataset, where all sequences are of uniform
length, reveals that DECIPHER failed to identify SNPs, mis-
classifying the mutations between sequences as insertions and
deletions.

The speed of alignment is another important factor in
evaluating the efficacy of alignment tools. For the purpose
of examining this variable, the HIV dataset has been chosen
due to its substantial size compared to the previously analyzed
datasets. Table IV presents the recorded alignment times on
a system featuring a 3.4GHz Intel Core i7-6700 processor,
with 8GB of RAM. An attempt was made to assess these
tools using a larger dataset, specifically 7MB in size; however,
only Decipher successfully executed the alignment, whereas
the other tools necessitated a memory larger than 8GB.

TABLE IV
ALIGNMENT DURATION FOR HIV SEQUENCES USING I7-6700 3.4GHZ

PROCESSOR.

Alignment tool MUSCLE CLUSTALX MAFFT @ 1 thread MAFFT @ 4 threads DECIPHER

Time (seconds) 844 8027 1753 735 115

The results of the experiment indicate that Decipher is the
most efficient alignment tool in terms of speed. It is succeeded
by MAFFT when utilizing four threads, along with MUSCLE.
In contrast, ClustalX emerged as the slowest alignment tool in
the study. In conclusion, while Decipher demonstrates superior
speed, its application remains problematic because:

1) the clusters generated result in a lower average ARI
compared to the other methods;

2) it consists of a function in a library of R-language, i.e.,
not an easily integrable standalone executable for other
packages.

Regarding MAFFT, there is a standalone package available
for both Linux and Windows platforms. Additionally, the
clustering process was notably rapid. Nevertheless, the clusters
generated exhibited the lowest average ARI score, while MUS-
CLE scored the highest average ARI. Therefore, MUSCLE
was used in the next set of experiments. Finally, the following
conclusions can be deduced from the experiments:

• MUSCLE produces the most accurate results for small
datasets where it is deemed the best suited;

• A multi-threaded execution of MAFFT is recommended
for medium-sized datasets where it performs faster, but
it might produce fewer clusters than the other tools;

• Decipher requires significantly fewer resources and is
advised for large datasets.

B. Impact of the used affinity types

As introduced previously, Non-normalized Laplacian, Mod-
ularity, and Bethe Hessian are also relevant types of affinity
matrices. In this section, these affinity matrices are compared
while using the same implementation of the ”BestBIC” algo-
rithm that was used in the previous set of experiments. The
experiment’s results are presented in Table V. The computed
ARIs reveal that the Non-normalized Laplacian matrix pro-
duced poor clustering results for the HIV dataset, evidenced
by a notably low ARI of 0.057 and a limited number of
clusters. Conversely, the application of the Modularity and
Bethe Hessian matrices yielded the most effective clustering
for this dataset, achieving an ARI of 0.831. Additionally, the
Normalized Laplacian matrix also demonstrated commendable
clustering performance, attaining an ARI of 0.828.

In the NADH case, the usage of the Modularity and Bethe
Hessian matrices produced the best ARI of 0.968. The Normal-
ized Laplacian scored an ARI of 0.839, while a single cluster
was produced using the Non-normalized Laplacian. This last
clustering failed in detecting the different communities among
the highly divergent elements of this dataset. Therefore, this
matrix is not suitable for clustering highly divergent sequences.
Pure clusters (all the elements of a cluster have similar labels)



TABLE V
ADJUSTED RAND INDEX WITH REGARDS TO THE USED AFFINITY MATRIX.

HIV NADH Influenza

Nb. Clusters Nb. Clusters Nb. Clusters

ref. gen. ARI ref. gen. ARI ref. gen. ARI

Non-normalized Laplacian 7 2 0.057 1 1 - 2 2 1

Modularity 4 3 0.831 4 3 0.968 3 3 0.857

Bethe Hessian 4 3 0.831 4 3 0.968 2 2 1

Normalized Laplacian 3 3 0.828 4 3 0.839 2 2 1

are produced by using the Modularity or Bethe Hessian matrix
which outperforms the Normalized Laplacian.

Finally, the Modularity matrix yielded the lowest, yet still
satisfactory, ARI in the analysis of the Influenza nucle-
oprotein dataset. In contrast, the other matrices produced
clusterings that were nearly identical, achieving a perfect ARI
score. Notably, the clustering derived from the Modularity
matrix resulted in a greater number of clusters compared
to the others, with only one misclassified element, which
facilitated the identification of additional hidden communities.
On the other hand, the alternative matrices, while achieving a
perfect ARI, demonstrated lower sensitivity in detecting these
communities. Thus, the Modularity matrix proved to be more
effective in enhancing detection sensitivity when clustering
data that exhibit high similarity.

To summarize, it is acceptable to use the Non-normalized
Laplacian only for clustering highly similar sets. The other
matrices produce performed equally well on divergent data
sets. Moreover, the Modularity matrix allows the detection of
more clusters among highly similar sequences.

C. Clustering heterogeneous datasets

In the previous experiments, each of the three datasets
comprised distinct sequences of the same pathogen or gene.
This study aims to assess the effectiveness of the spectral
technique in clustering the last four heterogeneous datasets,
which include genomes from various pathogens that impact
either the same or different areas of the human body, while
also simulating scenarios involving horizontal gene transfer.
The implementation of the BestBIC algorithm was also used
in this experiment. According to the conclusions from the
previous experiments, MAFFT was used for the alignment
of the medium-sized genomes of the fifth and seventh sets.
This set of experiments involved the usage of the Normal-
ized Laplacian (NL), Bethe Hessian (BH), and Modularity
(Mod) affinity matrices. For the sake of comparison with this
approach, the clustering of these four datasets is attempted
by using state-of-the-art competitors, namely CD-HIT and
UCLUST. Table VI displays the expected number of clusters,
the generated number of clusters, and the calculated ARI for
each produced clustering.

Regardless of the used affinity matrix, the spectral clustering
technique, using the bestBIC algorithm, accurately clustered
all the datasets. The genomes under consideration were catego-
rized into distinct clusters based on their respective pathogen

types. Utilizing CD-HIT, a minimum similarity threshold of
0.8 was supported, resulting in the division of pathogen
sequences into two separate clusters. UCLUST was assessed
using various identity thresholds, commencing with a thresh-
old of 0.9 and subsequently decreasing by 0.1 in each trial.
Notably, the most favorable outcomes were achieved with
identity thresholds ranging from 0.5 to 0.9, as illustrated in
Table VI. A successful grouping for the sequences of the
fourth and fifth datasets was also obtained by UCLUST at
this threshold range. In contrast, the HIV sequences identified
in the sixth and seventh sets were categorized as singletons.
Conversely, the Influenza sequences were inaccurately classi-
fied when thresholds below 0.5 were applied: specifically, at a
threshold of 0.4, three Influenza D sequences were erroneously
included in the Influenza A cluster, and at a threshold of 0.3,
all Influenza sequences were grouped into a single cluster,
with the exception of one sequence that was assigned to the
SARS-COV cluster. At higher identity thresholds (≥ 0.91) the
correct clusters were split.

Finally, Figure 1 illustrates the impact of simulated hori-
zontal gene transfer in the seventh dataset on the phylogenetic
signal.

For clearer legibility, the naming of the sequences is made
as follows: the names of the Influenza A sequences begin with
FA and, in a similar pattern, the names of the Influenza D,
SARS-COV, and HIV sequences start respectively with FD,
Co, and HIV . The ancestors or descendants of a sequence can
be identified by the numbers that follow the leading letters in
their names, and which are separated by hyphens. For example,
the sequence named FA1 3 is the ancestor of FA00 1 3 5,
that is, in its turn, the ancestor of FA0000 1 3 5 7, etc. In
addition, the sequences that received gene transfers are high-
lighted and marked with an additional M in the alphabetic part
leading their names. Since the transferred genes are identical,
the pairwise similarity between the affected sequences raised
and disrupted the phylogenetic signal. These sequences are
incorrectly positioned as leaves on a branch in the subtree
of their respective species. This phylogenetic tree is naturally
expected to contain four large subtrees that separate the four
involved species (HIV, SARS-COV, Influenza A, and Influenza
D), while the Influenza subtrees are expected to be adjacent
or share the same parent node. In contrast, the computed
phylogenetic tree shows the Influenza D sequences spread over
three distant subtrees. It also shows that the HIV, SARS-COV,
and Influenza A sequences share the same subtree, incorrectly
indicating that the Influenza A sequences are more related
to the HIV and SARS-COV sequences than to the Influenza
D sequences. Subsequently, an accurate visual identification
of the clusters on this tree became impossible. This further
highlights the superiority of the results obtained by using
the proposed algorithms which successfully handled the HGT
cases. Moreover, the clustering with the proposed algorithms
proved to be much faster than the computation of phylogenetic
trees.

This assessment demonstrated that the spectral clustering
technique is more capable than the state-of-the-art tools



TABLE VI
ADJUSTED RAND INDEX WITH REGARDS TO THE USED CLUSTERING TOOL.

dataset 4 dataset 5 dataset 6 dataset 7

Nb. Clusters Nb. Clusters Nb. Clusters Nb. Clusters

exp. gen. ARI exp. gen. ARI exp. gen. ARI exp. gen. ARI

BestBIC-NL 2 2 1 3 3 1 3 3 1 4 4 1

BestBIC-BH 2 2 1 3 3 1 3 3 1 4 4 1

BestBIC-Mod 2 2 1 3 3 1 3 3 1 4 4 1

CD-HIT (id=0.8) 2 4 0.479 3 6 0.570 3 6 0.587 4 8 0.627

UCLUST (id=0.5 till 0.9) 2 2 1 3 3 1 3 11 0.775 4 12 0.816

Fig. 1. Phylogenetic tree of the last hybrid set.

in clustering heterogeneous datasets. The experiments also
proved the relevancy of all the affinity matrices experimented,
in the spectral clustering pipeline of heterogeneous sequences
as well as those subjected to HGTs.

D. Clustering larger datasets of divergent sequences

The previous capabilities of the spectral technique were
experimented on datasets smaller than 100 sequences. In this
experiment, we will scale the size of our datasets to several
hundred in order to discover the efficiency of the spectral tech-
nique over larger datasets of divergent sequences. We recall
that the inter-cluster similarity scored as low as 62.6% for
these last sets of data. Moreover, the pairwise similarity scored
as high as 84% between their source sequences. Therefore, it
can be deduced that the resulting clusters are overlapping as
well. Table VII shows the number of generated clusters and the
Adjusted Rand Index calculated for each produced clustering.

The spectral technique, using the implementation of the
BestBIC algorithm, accurately clustered the eighth and ninth
datasets, by using both the Normalized Laplacian and the
Modularity matrices. It also produced the best clustering for
the tenth dataset by using the Modularity matrix. Conversely,
the clustering quality drastically degraded for the last two
datasets containing over 1000 sequences. Indeed, when a
nearly similar inter-cluster similarity is maintained, and com-
bined with a higher number of elements, the overlapping parts
among the clusters become more dense. Therefore, accurately
clustering the overlapping regions becomes harder and the
spectral clustering technique starts merging some clusters. This
fact is clearly reflected by the diminishing number of the
produced clusters, in addition to the single-cluster result for the
1500-sequence dataset when the Normalized Laplacian was
used.

Although UCLUST failed to produce any accurate cluster-
ing in this experiment, it scored a fairly good ARI for its
results on the last two datasets where the spectral clustering
failed. A closer look on the clusterings shows that UCLUST
produced at least four clusters out of six which were highly
pure6. The two remaining clusters randomly grouped the
remaining elements. These highly pure clusters contributed to
the good ARI scores for UCLUST. However, in order to reach
these results, the identity threshold had to be carefully selected

6The large majority of the elements form a sub-group of a same cluster
from the ground truth.



TABLE VII
ADJUSTED RAND INDEX FOR THE CLUSTERING OF THE SIMULATED DATASETS.

dataset 8 dataset 9 dataset 10 dataset 11 dataset 12

Nb. Clusters ARI Nb. Clusters ARI Nb. Clusters ARI Nb. Clusters ARI Nb. Clusters ARI

BestBIC-NL 6 1 6 1 6 0.681 5 0.369 1 -

BestBIC-BH 5 0.772 6 1 4 0.426 4 0.410 4 0.314

BestBIC-Mod 6 1 6 1 7 0.948 4 0.269 2 0.014

UCLUST (0.54<id<0.59 - carefully selected) 7 0.810 7 0.901 8 0.768 6 0.864 6 0.711

CD-HIT (id=0.8 - the minimum supported) 20 - 28 - 39 - 36 - 49 -

for each dataset with a strict precision of 0.1. Conversely, CD-
HIT which supports the lowest identity threshold of 0.8, failed
to produce any clustering close to the ground truth.

This last assessment demonstrated that the spectral clus-
tering technique proves superior in clustering highly divergent
sequences. Its success might be limited to a maximum of a few
hundred sequences. It also does not require careful, sometimes
uncertain, and variable parameter selection compared to the
threshold selection of the traditional tools.

V. CONCLUSION AND FUTURE PERSPECTIVES

In this work, the effects of using four different alignment
tools, in the initial stage of the spectral clustering pipeline,
were discussed in terms of accuracy, speed, and capacity to
handle large sequences. The relevance of using three additional
affinity matrices was studied. In contrast with some state-of-
the-art tools, the efficiency of the spectral clustering technique,
in handling datasets containing different types of sequences,
including sequences subjected to Horizontal Genes Transfers,
was also proved. Finally, an additional validation of the
spectral technique was performed by using larger datasets.

Finally, some possible future extensions to this work include
comparing the efficiency of the spectral clustering techniques
with the emerging deep learning techniques that are being
introduced in the field of clustering biological sequences.
Moreover, finding more efficient algorithms that can handle
both highly divergent and large data sets can tackle the
highlighted drawback of the GMMs. Furthermore, exploring
the capabilities of the GMMs on different types of data input,
such as network datagrams, could lead to interesting results.
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