
SysML model-driven development for digital
twins

Kanza Ouari1, Malika Ioualalen1, and Ahmed Hammad2

1 MOVEP, USTHB University, Algiers, Algeria
{kouari, mioualalen}@usthb.dz

2 Franche-Comte, University of Bourgogne, Besançon, France
ahammad@femto-st.fr

Abstract. A Digital Twin is a virtual replica of a physical system that
is used to simulate its behavior, and provide services to improve its oper-
ation. However, their rigorous development is a difficult task and requires
considerable efforts especially for their design. In this paper, we intro-
duce a SysML model-driven development methodology for digital twins,
a way to design digital twins at a high level of abstraction, automati-
cally generate an essential part of their implementation, and verify their
fidelity to their physical counterpart. In this methodology, the architec-
ture followed is independent from application domains, implementation
technologies, and purposes of using DTs. The physical system behavior
is integrated to a SysML model in an operational language, and the fi-
delity verification is performed using a data lake. We explain with a case
study from the literature how to implement a prototype of the archi-
tecture in the open source tool Eclipse. The case study indicates that a
SysML model can facilitate the design of digital twins, improving thus
their development process.

Keywords: Digital twin · Architecture · Model-driven development ·
SysML · Simulation · Fidelity.

1 Introduction

A Digital Twin (DT) was first introduced by Michael Grieves [1] in a course
for product lifecycle management in 2003 as the “virtual digital representation
equivalent to physical products”. Today, the advancement of digital technologies
such as machine learning, cloud computing, IoT, and Big Data has led to wide
adoption of DT [2]. These technologies have enabled the creation of additional
services to the original system (the Physical Twin, PT) using DT such as: re-
mote PT monitoring, user alerts, self-adapting mechanisms, etc.
Currently, the development of Digital Twins (DTs) is a difficult task due to the
lack of a standard methodology for their development and their increasing com-
plexity, which stems from the complexity of their physical counterpart. Adding
to this, a DT must simulate the physical counterpart at a high level of fidelity.
According to [3], a DT must behave exactly like its PT. It is important to ensure



2 K. Ouari et al.

that the DT behaves like the PT before creating any additional service.
Model-Based Systems Engineering (MBSE) is a way to address this complexity.
Its visual diagrams allow a comprehensive understanding of a system, as well
as document its characteristics and enhance interdisciplinary communication
among stakeholders [4]. In addition, the automated transformation of models
into software implementation can improve productivity, reduce complexity, and
facilitate the testing of complex system [5]. The System Modeling Language
(SysML) [6] is a general-purpose modeling language used by MBSE. It enables
capturing requirements, defining system structure, and describing system be-
havior. In the context of DT, visual diagrams created with SysML can be easily
used for allowing a comprehensive understanding of DT, documenting its char-
acteristics, and enhancing interdisciplinary communication among stakeholders.
However, the automated transformation of SysML models into software imple-
mentation in general and DT implementation in particular is a challenge [7],
[4]. The authors in [8] refer to this utilization as ”the technical utilization” of
SysML models. Another challenge is to use MBSE, particularly SysML, for test-
ing purposes in a DT context [3]. In the context of DT, the DT’s behavior must
be faithful to the PT’s, i.e., the behavior of the DT must emulate with sufficient
precision the behavior of its PT [9]. This requirement must be taken into account
during the development of DTs and verified before exploitating DTs.
To the best of our knowledge, we are not aware of any comprehensive work on the
development of DTs by defining a general architecture, with a focus on the au-
tomatic transformation of SysML models into DT implementations and fidelity
verification before exploiting DTs. Previous works [7], [4], [10] have concentrated
on the automatic transformation of SysML models into DT implementations in
a specific context without addressing fidelity verification or proposed a standard
architecture using other modeling languages with an emphasis on fidelity ver-
ification. The combination of the automatic transformation of SysML models
into DT implementations with fidelity verification using a general architecture
is a new approach to addressing the challenge of developing DTs. The use of a
general architecture for the development of DTs has advantages in terms of mak-
ing the technology of DTs, which remains promising, easy to understand, and
adaptable to various contexts, regardless of application domains, implementa-
tion technologies, and purposes of using DTs. By combining the SysML language
and fidelity verification, it is possible to rigorously develop a DT by modeling
its characteristics, automatically generating its implementation, and ensuring its
fidelity to its physical counterpart.
In this paper, we propose a new methodology to facilitate the development of
DTs, structured in three steps: design, implementation, and verification. In the
design step, we use a general architecture based on a data lake to represent the
system components, and we use a SysML model to capture high-level informa-
tion about the structure and behavior of the DT. In the implementation step,
the automatic generation of usable code for the DT is possible in an operational
language by directly transforming the SysML model. The behavior of the DT is
integrated into the SysML model using the same operational language. In the



SysML model-driven development for digital twins 3

verification step, the methodology verifies that the DT faithfully simulates the
PT by exploiting the potential of the data lake. Figure 1 presents the steps of
our methodology.

Fig. 1. Steps of the SysML model-driven development methodology.

The rest of this paper is structured as follows. After this introduction, Section 2
describes the background of our work. Next, Section 3 explicates the proposed
DTs development methodology, and Section 4 explains the case study of a PT
taken from the literature, use of the SysML model as a DT, creation of the
data lake, and global implementation in Eclipse. Finally, Section 5 provides the
related works and Section 6 presents the conclusion and an overview of future
works.

2 Context

2.1 Digital Twin (DT)

A DT is a virtual copy that represents a physical system (its PT) and includes
its characteristics. The virtual copy simulates the behavior of the PT through
models and data. These models can be engineering models (e.g. CAD, Simulink)
or software models (e.g. UML, SysML, MontiArc) [11]. The two twins are con-
nected in a bidirectional way: the DT collects data from the PT and transfers it
into services, and at the same time allows to interact with the PT and influence
it.
Using a DT can offer many services for improving the PT operation [12]. For
example, performing monitoring via real-time data collection to make better de-
cisions and control the PT. A DT can also improve security and resilience by
detecting malicious actions on a system. DT can predict future behaviors of the
system and improve the process productivity using machine learning techniques.
DT can also provide a testing platform for testing different scenarios to detect
the most efficient one and to improve the system performances.
Additionally, the authors in [10] assert that DTs are software artifacts and,
as such, require software engineering methods and practices, including rigorous



4 K. Ouari et al.

processes to enhance their quality and ensure their proper functioning. An im-
portant example of a test in this context is the fidelity test, which verifies that
the traces produced by the two twins are similar [13], [9].
Although the meaning of DT may seem clear initially, the precise definition of a
DT has been a topic of ongoing discussion and disagreement. Presently, there is
no widely accepted and standardized definition for the term ”DT”. In our work,
we consider a DT as a virtual representation that simulates the behavior of its
PT. Simulation in our work represents the ability of DT to behave like its PT
without providing any additional service. We define formally a concept of DT
system as follows: ”A system consisting of a DT connected in a bidirectional
manner with its deployed PT. The purpose of this connection is to provide spe-
cific services for improving the operation of the PT. The entities involved in
the system as software artifacts require specific tests to ensure that they be-
have as expected”. In the design step of our methodology, we have defined an
architecture that reflects our definition of a DT system. We consider the fidelity
verification as a test to be performed on the behavior of the two twins, the ob-
jective is to have indications about the level of similarity between the behavior
of the PT and the simulation of the DT.

2.2 System Modeling Language (SysML)

SysML is a general-purpose modeling language for systems engineering, based
on UML. SysML reuses a subset of UML diagrams and extends it with new
ones to model aspects of complex systems. It distinguishes three categories of
diagrams: four structure diagrams (block definition diagram, internal block di-
agram, parametric diagram, package diagram), four behavior diagrams (state
machine diagram, activity diagram, sequence diagram, use case diagram), and
requirement diagram. Over these diagrams, in our work, we are interested in the
block definition and package diagrams.
In the design phase of our methodology, we are interested in the Block Defi-
nition Diagram (BDD). The BDD is a structural diagram. It goes beyond the
UML class diagram, which primarily focuses on classes and associations in an
object-oriented context, by providing a more comprehensive structural represen-
tation. The BDD structures the system in blocks, sub-blocks and links. A block
represents a complete system, a sub-system, or an element of a system. It can
include values, properties, parts, references to other blocks, ports (properties
specifying the types of interactions allowed between blocks), constraints (prop-
erties specifying constraints on other properties), and operations. Operations
represent functionalities described in the behavioral part of the system. The use
of the BDD has a dual objective: 1) Ensuring a comprehensive understanding
of the DT structure. 2) Enabling the automatic transformation into DT imple-
mentation. In the case study section, we are interested in the Package Diagram
(PD). The PD is a diagram that is used to organize and represent the various
elements of a system model in a hierarchical manner. We use the PD to provide
a visual representation of the possible modules that could be delivered from our
proposal. It can help stakeholders to better understand the system.



SysML model-driven development for digital twins 5

3 SysML model-driven development methodology

3.1 Design

Architecture: To achieve our work, we defined a general architecture which
reflects our definition of a DT system. It is composed of six components (see Fig-
ure 2): PT component, DT component, Data Lake component (DL), Connection
Components (CC), Service Components (SC), and Analysis Components (AC).
The PT component represents the deployed physical device. The DT component
is the virtual copy of the PT component. The DL component plays the role of
a storage space to manage data collected from the other components of the DT
system. The CC represent possible interactions between the other components,
this component is represented in the figure as arrows. The SC represent addi-
tional services and functionalities offered by the DT component to improve the
operation of the PT component. The AC represent tests on the other software
components of the architecture to ensure that they behave as expected. It’s
worth noting that all components of the architecture can interact with the DL
component through CC, which are implemented by the architecture developer.

Fig. 2. Architecture for developing DT syetms.

The purpose of the methodology proposed in this work is to develop a DT that
simulates the behavior of its PT and verify the fidelity, which requires the use
of the PT component, DT component, DL component, a single analysis compo-
nent, which we call Fidelity Test Component (FTC), CC with three interactions,
between PT and DL, DL and DT, as well as between DL and FTC, without any
service component. The restricted architecture that we are interested in is il-
lustrated in Figure 3. It is composed of five components: PT, DT, DL, CC and
FTC. We consider it as an initial and essential architecture for verifying the
fidelity of DT before extending it with any service component.

SysML model: In our proposal, the developer works at a high level of abstrac-
tion by creating a SysML model as BDD to model the DT in a SysML modeling
tool. Working at a high level of abstraction eliminates low-level details and takes
only specific features of the PT, instead of taking the physical system as a whole,
the BDD shows thus only the structural elements that interest a developer. The



6 K. Ouari et al.

Fig. 3. Initial architecture for verifying DT fidelity.

resulting BDD is an abstraction of the PT that can include other elements re-
quired by the simulation that the DT performs. The behavior of the DT, which
reflects the behavior of the PT, can be indicated by a list of operation in each
BDD block at a high level, without going into the details of how the behav-
ior is implemented. The behavioral part of the operations is integrated in the
implementation step of our methodology as we will see in the next section.

3.2 Implementation

Automatic generation of code: After modeling the DT using the BDD,
the developer automatically generates the SysML model implementation in an
operational language. This activity automatically transforms the SysML model
from a graphical format to a machine-interpretable textual format, or DT imple-
mentation. This allows enhancing the productivity, saving time and minimizing
coding errors and mistakes. There are tools that provide interfaces allowing code
generation, thus enabling the technical utilization of SysML. In this activity, a
tool that allows code generation is needed.

Behavior integration: The behavior of the DT is completed by the developer
manually in the same operational language by implementing the body of the
operations modeled in the SysML model (BDD). This allows to obtain a DT
that simulates the behavior of its PT. He also creates the DL in an appropriate
database, and implements the CC that allow interaction between the other com-
ponents. At this stage, the DL interacts with the PT that executes commands,
and with the textual SysML model that simulates the behaviors of the PT.

3.3 Verification

The objective of the verification step is to ensure that the behavior of the PT
and the DT are similar. To achieve this, the developer implements the FTC
which uses the DL to measure the fidelity. It queries the database to retrieve
the results produced following the execution of a command by the PT and the
simulation of the DT. The same input data is fed into both the PT and DT,
and then the traces of their behavior are compared to determine if there are any



SysML model-driven development for digital twins 7

differences. At this stage, the developer also implements the CC that allows the
interaction between the DL and FTC.

4 Case Study

4.1 Physical Twin (PT): Lego Mindstorms vehicle

This case study is taken from the literature [10]. The Lego Mindstorms vehicle,
shown in Figure 4, consists of three captures: an ultrasound sensor to measure
distances, a tactile sensor to detect collisions, and a light sensor to differentiate
colors. The vehicle has a motor to advance and turn at a specific angle. It includes

Fig. 4. Lego Mindstorms vehicle [10].

also a pose-provider to detect its position. The vehicle interacts with computers
through a Bluetooth connection. The Lego software installs itself on a computer
and controls it through various behaviors. This software represents the firmware
used by the vehicle, and it is implemented in our case in the Java programming
language. An example of a behavior to be simulated by the DT and verified by
the FTC is the following: Lego follows a black line on the ground, if the line
disappears, it continues to turn until it finds it.

4.2 Digital Twin (DT)

Graphical SysML model The BDD diagram is used as a SysML model to
specify the physical vehicle structure in Papyrus tool with additional information
required by the simulation. The BDD serves as the DT component in graphical
format. Papyrus is a software system modeling tool developed by the Eclipse
community. It allows software engineers to model software systems using UML
and SysML. Papyrus is used as a modeling tool because it is open source and
offers interfaces with other tools to directly transform SysML models. The BDD
diagram used to model the vehicle is presented in Figure 5. The main block
presented in the BDD diagram is called Vehicle. The other main blocks are
Motor, UltrasonicSensor, LightSensor and TouchSensor. The signature of each
operation is indicated in the block operation compartment.



8 K. Ouari et al.

Fig. 5. Graphical SysML model of the DT of Lego.

Textual SysML model We have installed Papyrus in Eclipse to allow the
direct exchange of SysML model, from a graphical model to a textual model,
expressed as Java code. The Papyrus modeling tool features an interface that
enables automatic code generation. We have chosen the Java programming lan-
guage because, as mentioned before, the firmware of the vehicle uses Java. This
activity presents the automatic generation of the code in the implementation
step of our methodology. The code includes all the model information (block
names, block properties, operation signatures and links between blocks), which
ensures a lossless integration. This code is completed by the behavior of the
vehicle and other behavior related to the simulation, by implementing the body
of the operations. This process illustrates the behavior integration in the imple-
mentation step of the proposed methodology. To illustrate the relation between
Papyrus and Eclipse, Figure 6 shows the SysML modeling in Papyrus, automatic
generation of code in Eclipse, and manual integration of behavior.

4.3 Data Lake (DL)

In order to manage all data on the DT system and ensure the interaction between
all components of the architecture, we used Neo4j to create the DL. Neo4j is a
graph-oriented NoSQL database. It uses nodes and arcs to store data instead of
tables as in relational databases. Neo4j allows complex queries, necessary when
efficient data analysis is required through its expressive Cypher language, which
is one of the reasons why we chose this database, since we want to ensure an



SysML model-driven development for digital twins 9

Fig. 6. The relation between Papyrus and Eclipse.

easy and efficient interaction with the storage space. In our work, we did not
implement the FTC, because we did not synchronize the SysML model with the
real vehicle, we only show how to implement a prototype of the architecture
proposed in Eclipse to demonstrate our ideas. The DT framework that allows
the SysML model to be connected to a physical system for simulation and fi-
delity test purposes can be implemented in Eclipse using the Java programming
language by creating a project, named for example DigitalTwinFramework, with
five packages. We have used the PD to illustrate these packages or modules in
Figure 7. The required knowledge to implement this project includes SysML in
Papyrus, advanced concepts in Java programming language such as collections,
exceptions, threads, and sockets, as well as the ability to create and interact
with a Neo4j database, a real system, and the FTC using Java language.

Fig. 7. PD showing how to implement a prototype of the initial architecture.



10 K. Ouari et al.

5 Related Work

We can link our work to several previous works conforming to three axes: 1)
Architecture. 2) Automated transformation of models into DT implementation.
3) Fidelity verification.
Several works have described a possible architecture for developing DTs. [1]
proposed an initial architecture with three dimensions: physical entity, virtual
model, and connection. This same number of dimensions has been considered by
other authors, such as [3]. Based on the initial architecture, works like [14], [15]
have proposed five dimensions: physical entity, virtual model, services, data, and
connection. [10] proposed an architecture with five components: physical entity,
digital twin, data lake, analysis, and services. We have taken inspiration from
this work and included the AC in our architecture. Generally, there are several
architectures proposed in the literature, but they do not illustrate the possibil-
ity of using the DT for fidelity verification. In our work, we introduced a formal
definition for DT systems in general and associated it with an architecture con-
sisting of six components: PT, DT, DL, CC, SC, and AC. Our architecture is
independent from application domains, implementation technologies, and pur-
poses of using DTs. We also demonstrated how to restrict this architecture to
simulate the PT behavior and verify the fidelity using five components: PT, DT,
DL, DL, and FTC.
The automated transformation of models into DT implementation is already
used by several authors. [11], [16], [17], [18] have used an architectural model of
components and connectors in MontiArc with UML class diagrams specifying
the data types of the objects exchanged between components as a starting point
to facilitate the automatic generation of DTs, the behavior of DTs is integrated
by a domain-specific language. In the context of using SysML, we have identified
two works [4], [7] that use a SysML diagrams to design DT and transfer them di-
rectly into machine-recognizable code in a specific context, where part of the DT
behavior is generated by the SysML state machine diagram, without following
any architecture or separated steps. Our work differs from these works by two
main novelties: 1) Our work uses SysML as a starting point for the systematic
development of DTs in general by separating the architecture from SysML usage
and implementation. 2) Our methodology requires the fidelity verification before
integrating services to ensure the quality of DT.
Some works have implicitly considered fidelity verification, such as [3], [13], [19].
[3] mentioned the possibility of performing specific tests on the DT. [13] has pro-
posed a method for validating the behavior of the two twins. [19] has shown the
importance of defining DTs at different levels of abstraction for performing tests
according to the properties to be validated. Concrete proposals for measuring
the fidelity between the two twins are introduced in [10] [9]. These works use
the UML language to introduce a model-driven methodology for testing DTs. In
[10], a verification method similar to the one proposed in our work is treated.
In [9], a bioinformatics algorithm is adapted to validate that the behavior of the
two twins is the same or sufficiently similar. These works use class diagrams in a
tool called USE [20] to model the DT at a high level of abstraction. The behavior



SysML model-driven development for digital twins 11

of the DT is integrated with an imperative language called SOIL [21]. Our work
exploits the SysML language instead of the UML language to launch another
research methodology for developing DTs by focusing on the fidelity verification
before integrating additional services.

6 Conclusion

In this work, we have proposed a new methodology based on SysML model for
systemically developing DTs. The methodology supports three main steps: de-
sign, implementation and verification. In the design step, we have adapted an in-
dependent architecture from application domains,implementation technologies,
and purposes of using DTs. The DT is described using a BDD. In the imple-
mentation step, an essential part of the code was automatically generated. In
the verification step, we are required to verify the fidelity of the DT before de-
veloping any other service component in order to ensure its quality in the future
development steps. In the future directions of this work, we intend to synchronize
the textual SysML model with the real vehicle. Also, we want to show how to
model the FTC using a SysML model and automatically derive its code, follow-
ing the process indicated in our methodology. In addition, we plan to analyze the
traces of the two twins using the bioinformatics algorithm used in the literature.
Additionally, we intend to use a requirement diagram to capture and model the
requirement of our system in the design step. Also, we want to automatically
generate a part of the behavior using the SysML behavior diagrams. Finally, we
want to integrate other AC and SC to our initial architecture.

References

1. M. Grieves, “Digital twin: manufacturing excellence through virtual factory repli-
cation,” White paper, vol. 1, no. 2014, pp. 1–7, 2014.

2. A. Sharma, E. Kosasih, J. Zhang, A. Brintrup, and A. Calinescu, “Digital twins:
State of the art theory and practice, challenges, and open research questions,”
Journal of Industrial Information Integration, p. 100383, 2022.

3. M. Grieves and J. Vickers, “Digital twin: Mitigating unpredictable, undesirable
emergent behavior in complex systems,” Transdisciplinary perspectives on complex
systems: New findings and approaches, pp. 85–113, 2017.

4. F. Wilking, C. Sauer, B. Schleich, and S. Wartzack, “Sysml 4 digital twins–
utilization of system models for the design and operation of digital twins,” Pro-
ceedings of the Design Society, vol. 2, pp. 1815–1824, 2022.

5. R. France and B. Rumpe, “Model-driven development of complex software: A
research roadmap,” in Future of Software Engineering (FOSE’07). IEEE, 2007,
pp. 37–54.

6. S. Friedenthal, A. Moore, and R. Steiner, “Omg systems modeling language (omg
sysml™) tutorial,” in INCOSE international symposium, vol. 18, no. 1. Wiley
Online Library, 2008, pp. 1731–1862.

7. F. Wilking, C. Sauer, B. Schleich, and S. Wartzack, “Integrating machine learning
in digital twins by utilizing sysml system models,” in 2022 17th Annual System of
Systems Engineering Conference (SOSE). IEEE, 2022, pp. 297–302.



12 K. Ouari et al.

8. H. A. Handley, W. Khallouli, J. Huang, W. Edmonson, and N. Kibret, “Maintain-
ing the consistency of sysml model exports to xml metadata interchange (xmi),”
in 2021 IEEE International Systems Conference (SysCon). IEEE, 2021, pp. 1–8.

9. P. Muñoz, M. Wimmer, J. Troya, and A. Vallecillo, “Using trace alignments for
measuring the similarity between a physical and its digital twin,” in Proceedings
of the 25th International Conference on Model Driven Engineering Languages and
Systems: Companion Proceedings, 2022, pp. 503–510.

10. P. Muñoz, J. Troya, and A. Vallecillo, “Using uml and ocl models to realize high-
level digital twins,” in 2021 ACM/IEEE International Conference on Model Driven
Engineering Languages and Systems Companion (MODELS-C). IEEE, 2021, pp.
212–220.

11. P. Bibow, M. Dalibor, C. Hopmann, B. Mainz, B. Rumpe, D. Schmalzing,
M. Schmitz, and A. Wortmann, “Model-driven development of a digital twin for
injection molding,” in Advanced Information Systems Engineering: 32nd Interna-
tional Conference, CAiSE 2020, Grenoble, France, June 8–12, 2020, Proceedings.
Springer, 2020, pp. 85–100.

12. M. Segovia and J. Garcia-Alfaro, “Design, modeling and implementation of digital
twins,” Sensors, vol. 22, no. 14, p. 5396, 2022.

13. F. Bordeleau, B. Combemale, R. Eramo, M. van den Brand, and M. Wimmer,
“Towards model-driven digital twin engineering: Current opportunities and future
challenges,” in Systems Modelling and Management: First International Confer-
ence, ICSMM 2020, Bergen, Norway, June 25–26, 2020, Proceedings 1. Springer,
2020, pp. 43–54.

14. F. Tao, J. Cheng, Q. Qi, M. Zhang, H. Zhang, and F. Sui, “Digital twin-driven
product design, manufacturing and service with big data,” The International Jour-
nal of Advanced Manufacturing Technology, vol. 94, pp. 3563–3576, 2018.

15. Q. Qi, F. Tao, T. Hu, N. Anwer, A. Liu, Y. Wei, L. Wang, and A. Nee, “Enabling
technologies and tools for digital twin,” Journal of Manufacturing Systems, vol. 58,
pp. 3–21, 2021.

16. J. C. Kirchhof, J. Michael, B. Rumpe, S. Varga, and A. Wortmann, “Model-driven
digital twin construction: synthesizing the integration of cyber-physical systems
with their information systems,” in Proceedings of the 23rd ACM/IEEE Interna-
tional Conference on Model Driven Engineering Languages and Systems, 2020, pp.
90–101.

17. M. Dalibor, J. Michael, B. Rumpe, S. Varga, and A. Wortmann, “Towards a model-
driven architecture for interactive digital twin cockpits,” in Conceptual Modeling:
39th International Conference, ER 2020, Vienna, Austria, November 3–6, 2020,
Proceedings. Springer, 2020, pp. 377–387.

18. T. Bolender, G. Bürvenich, M. Dalibor, B. Rumpe, and A. Wortmann, “Self-
adaptive manufacturing with digital twins,” in 2021 International Symposium on
Software Engineering for Adaptive and Self-Managing Systems (SEAMS). IEEE,
2021, pp. 156–166.

19. A. Arrieta, “Multi-fidelity digital twins: a means for better cyber-physical systems
testing?” arXiv preprint arXiv:2101.05697, 2021.

20. M. Gogolla, F. Büttner, and M. Richters, “Use: A uml-based specification environ-
ment for validating uml and ocl,” Science of Computer Programming, vol. 69, no.
1-3, pp. 27–34, 2007.

21. F. Büttner and M. Gogolla, “On ocl-based imperative languages,” Science of Com-
puter Programming, vol. 92, pp. 162–178, 2014.


