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Abstract

In this paper we consider two opposite and intergitated 2D-combs, each one with ε-periodically
distributed fingers, each finger having cross-section of order ε and fixed height. Via an asymp-
totic analysis based on the two-scale convergence method, we study, as ε vanishes, the electrical
potential in the vacuum between these two combs when one comb is grounded while the voltage
in the other one is assumed of order ε, and we prove a corrector result.
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1 Introduction

In this paper we consider two opposite and interdigitated 2D-combs Ωa
ε and Ωb

ε, each one with
ε-periodically distributed fingers, each finger having cross-section of order ε and fixed height (see
Figure 1). Via an asymptotic analysis based on the two-scale convergence method proposed in
[11] and developed in [1] (see also [2] and [10]), we study, as ε vanishes, the electrical potential in
the vacuum Ωc

ε (see Figure 1) between Ωa
ε and Ωb

ε, when Ωb
ε is grounded and the voltage in Ωa

ε is
assumed of order ε, and we prove a corrector result.

Precisely, let ζ1, ζ2, ζ3, ζ4 ∈]0, 1[ be such that ζ1 < ζ2 < ζ3 < ζ4, and set ωa =]ζ1, ζ2[ and
ωb =]ζ3, ζ4[. Let L ∈]0,+∞[ and l1, l2, l3 ∈]0,+∞[ be such that l1 + 2 < l2 < l3.

For every ε ∈
{
L
n : n ∈ N

}
set (see Figure 1)

Ωa
ε = (]0, L[×]l2, l3[) ∪

L
ε
−1⋃

k=0

(εωa + εk)×]l1 + 1, l2]

 ,

Ωb
ε = (]0, L[×]0, l1[) ∪

L
ε
−1⋃

k=0

(
εωb + εk

)
× [l1, l2 − 1[

 ,

Ωc
ε = (]0, L[×]0, l3[) \

(
Ωa
ε ∪ Ωb

ε

)
,

Γaε = ∂Ωa
ε ∩ ∂Ωc

ε, Γbε = ∂Ωb
ε ∩ ∂Ωc

ε, Γε = Γaε ∪ Γbε, Γ = {0, L}×]l1, l2[.
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Figure 1: Ωε Figure 2: Decomposition of Ωε

In what follows, x = (x1, x2) denotes the generic element of R2, while y belongs to [0, 1].
For every ε, consider the following normalized problem

−∆φε = 0, in Ωc
ε,

φε = 1, on Γaε , φε = 0, on Γbε,
∇φε · ν = 0, on Γ,

(1.1)

where ν denotes the unit normal to Γ exterior to Ωc
ε. The solution φε represents the electrical

potential in the vacuum Ωc
ε between Ωa

ε and Ωb
ε, when Ωb

ε is grounded and the voltage in Ωa
ε is

assumed equal to 1. The weak formulation of (1.1) is

φε ∈ H1
Γε

(Ωc
ε, µε),

∫
Ωc

ε

∇φε(x)∇ψ(x)dx = 0, ∀ψ ∈ H1
Γε

(Ωc
ε, 0), (1.2)

where µε = 1 on Γaε , µε = 0 on Γbε (for g ∈ H
1
2 (Γε), H

1
Γε

(Ωc
ε, g) = {ψ ∈ H1(Ωc

ε) : ψ = g, on Γε}).
The aim of this paper is to study the asymptotic behavior of εφε, as ε vanishes. Precisely, let

φ2 : y ∈ [0, 1] −→



y + 1− ζ4

ζ1 − ζ4 + 1
, if y ∈ [0, ζ1],

1, if y ∈ [ζ1, ζ2],
y − ζ3

ζ2 − ζ3
, if y ∈ [ζ2, ζ3],

0, if y ∈ [ζ3, ζ4],
y − ζ4

ζ1 − ζ4 + 1
, if y ∈ [ζ4, 1].

(1.3)

Moreover, split the vacuum Ωc
ε in three parts (see Figure 2) Ωc

ε = Ωc,1
ε ∪ Ωc,2

ε ∪ Ωc,3
ε , with

Ωc,1
ε = Ωc

ε∩ (]0, L[×]l1, l1 + 1[) , Ωc,2
ε = Ωc

ε∩ (]0, L[×[l1 + 1, l2 − 1]) , Ωc,3
ε = Ωc

ε∩ (]0, L[×]l2 − 1, l2[) .

Then, the main result of this paper is the following corrector result.

Theorem 1.1. For every ε, let φε be the unique solution to (1.2). Moreover, let φ2 be defined by
(1.3). Then,

lim
ε→0

∫
Ωc

ε

|εφε(x)|2 dx = 0, (1.4)
lim
ε→0

∫
Ωc,1

ε ∪Ωc,3
ε

|ε∇φε(x)|2 dx = 0,

lim
ε→0

∫
Ωc,2

ε

(∣∣∣ε∂x1φε(x)− (∂yφ2)
(x1

ε

)∣∣∣2 + |ε∂x2φε(x)|2
)
dx = 0.

(1.5)
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In section 2, some a priori estimates will be proved. These estimate allows us to obtain some
two-scale convergence results in section 3 which provide the convergence of the energies in section
4. Eventually, Theorem 1.1 will be proved in section 4.

There is a large bibliography about different problems in a comb-like shaped structure starting
from the pioneering PhD thesis [4] (see also [5]). We refer to [8] and references therein for an
exhaustive view on the subject. About the homogenization of problems in opposite comb-like
shaped structure, we refer to [3], [6], [7], and mainly [9] which strongly inspired the present paper.
.

2 A priori estimates

Let ϕ? : (y, x2) ∈ R× [l1, l2]→ ϕ?(y, x2) ∈ R be a function such that

ϕ? ∈ C∞(R× [l1, l2]) (2.1)
ϕ?(·, x2) is 1-periodic for every x2 ∈ [l1, l2],
ϕ? = 1, in ωa×]l1 + 1, l2[, ϕ? = 0, in ωb×]l1, l2 − 1[,
ϕ? = 1, on R× {l2}, ϕ? = 0, on R× {l1},

(2.2)

and for every ε set

ϕ?ε(x1, x2) = ϕ?
(x1

ε
, x2

)
, in R× [l1, l2]. (2.3)

Proposition 2.1. For every ε, let φε be the unique solution to (1.2). Then

∃c ∈]0,+∞[ : ‖ε∇φε‖L2(Ωc
ε) ≤ c, ∀ε. (2.4)

Proof. For every ε, let ϕ?ε be defined by (2.1)-(2.3). Moreover, set Y =]0, 1[×]l1, l2[. Then, one has
‖∂x1ϕ

?
ε‖2L2(Ωc

ε) =

L
ε
−1∑

k=0

1

ε
‖∂yϕ?‖2L2(Y ) =

L

ε2
‖∂yϕ?‖2L2(Y ),

‖∂x2ϕ
?
ε‖2L2(Ωc

ε) =

L
ε
−1∑

k=0

ε‖∂x2ϕ
?‖2L2(Y ) = L‖∂x2ϕ

?‖2L2(Y ),

∀ε. (2.5)

Now choosing ψ = φε − ϕ?ε in (1.2) and using Young’s inequality and (2.5) provide∫
Ωc

ε

|∇φε|2dx ≤ L
(
‖∂yϕ?‖2L2(Y )ε

−2 + ‖∂x2ϕ
?‖2L2(Y )

)
, ∀ε,

which implies (2.4).

Proposition 2.2. For every ε, let φε be the unique solution to (1.2). Then,

∃c ∈]0,+∞[ : ‖φε‖L2(Ωc
ε) ≤ c, ∀ε. (2.6)

Proof. First, let us prove that

∃c ∈]0,+∞[ : ‖φε‖L2(Ωc,2
ε )
≤ c, ∀ε. (2.7)
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To this aim, set P =]0, 1[\
(
ωa ∪ ωb

)
=]0, ζ1[∪]ζ2, ζ3[∪]ζ4, 1[. Fix ε. Then, one has

‖φε‖2L2(Ωc,2
ε )

=

L
ε
−1∑

k=0

∫
(εP+εk)×]l1+1,l2−1[

|φε(x)|2dx. (2.8)

Now fix k ∈
{

0, · · · , Lε − 1
}

. Then, if x1 ∈ εP + εk, one of the following three cases holds true:

x1 ∈]εk, εζ1 + εk[, x1 ∈]εζ2 + εk, εζ3 + εk[, x1 ∈]εζ4 + εk, ε(1 + k)[.

In the first case, since φε = 1 on {εζ1 + εk}×]l1 + 1, l2 − 1[, one has

φε(x1, x2) = 1−
∫ εζ1+εk

x1

∂x1φε(t, x2)dt, ∀x1 ∈]εk, εζ1 + εk[, for a.e. x2 ∈]l1 + 1, l2 − 1[,

which implies∫ l2−1

l1+1

∫ εζ1+εk

εk
|φε(x1, x2)|2dx1dx2 ≤ 2(l2 − l1 − 2)ε+ 2ε2

∫ l2−1

l1+1

∫ εζ1+εk

εk
|∂x1φε(x1, x2)|2dx1dx2.

(2.9)
Similarly, since φε = 0 on ({εζ3 + εk} ∪ {εζ4 + εk})×]l1 + 1, l2 − 1[, in the last two cases one has∫ l2−1

l1+1

∫ εζ3+εk

εζ2+εk
|φε(x1, x2)|2dx1dx2 ≤ 2ε2

∫ l2−1

l1+1

∫ εζ3+εk

εζ2+εk
|∂x1φε(x1, x2)|2dx1dx2 (2.10)

and ∫ l2−1

l1+1

∫ ε(1+k)

εζ4+εk
|φε(x1, x2)|2dx1dx2 ≤ 2ε2

∫ l2−1

l1+1

∫ ε(1+k)

εζ4+εk
|∂x1φε(x1, x2)|2dx1dx2. (2.11)

Adding (2.9), (2.10), and (2.11) gives∫
(εP+εk)×]l1+1,l2−1[

|φε(x)|2dx ≤ 2(l2 − l1 − 2)ε+ 2ε2

∫
(εP+εk)×]l1+1,l2−1[

|∂x1φε(x)|2dx,

from which, summing up k ∈
{

0, · · · , Lε − 1
}

and using (2.8) and (2.4), one obtains (2.7).
Similarly, one can prove that

∃c ∈]0,+∞[ : ‖φε‖L2(Ωc,1
ε )
≤ c, ‖φε‖L2(Ωc,3

ε )
≤ c ∀ε. (2.12)

Eventually, (2.6) follows from (2.7) and (2.12).

3 Two-scale convergence results

We refer to [1] for the definition and the main properties of the two-scale convergence (in particular,
see Definition 1.1 and Proposition 1.14 in [1]). Set

Ωc,1 =]0, L[×]l1, l1 + 1[, Ωc,2 =]0, L[×]l1 + 1, l2 − 1[, Ωc,3 =]0, L[×]l2 − 1, l2[.
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Proposition 3.1. For every ε, let φε be the unique solution to (1.2). Set

φε,2 =



φε,2, a.e. in Ωc,2
ε ,

1, a.e. in

L
ε
−1⋃

k=0

(εωa + εk)×]l1 + 1, l2 − 1[,

0, a.e. in

L
ε
−1⋃

k=0

(
εωb + εk

)
×]l1 + 1, l2 − 1[,

(3.1)

where φε,2 = φε|
Ω
c,2
ε

. Moreover, let φ2 be defined by (1.3). Then, as ε tends to zero,

{
φε,2 two-scale converges to φ2,

ε∂x1φε,2 two-scale converges to ∂yφ2, ε∂x2φε,2 two-scale converges to 0.
(3.2)

Proof. Proposition 1.14 in [1], Proposition 2.1, and Proposition 2.2 ensure the existence of a sub-

sequence of {ε}, still denoted by {ε}, and u2 ∈ L2
(

Ωc,2, H1
per(]0, 1[)

)
(in possible dependence on

the subsequence) such that{
φε,2 two-scale converges to u2,

ε∂x1φε,2 two-scale converges to ∂yu2, ε∂x2φε,2 two-scale converges to 0,
(3.3)

as ε tends to zero.
The next step is devoted to proving that

u2 = 1, a.e. in Ωc,2 × ωa. (3.4)

Indeed, the definition of φε,2 gives∫
Ωc,2

φε,2(x1, x2)ψ
(
x1, x2,

x1

ε

)
dx1dx2 =

∫
Ωc,2

ψ
(
x1, x2,

x1

ε

)
dx1dx2,∀ψ ∈ C∞0 (Ωc,2 × ωa), ∀ε.

(3.5)
Passing to the limit, as ε tends to zero, in (3.5) and using the first limit in (3.3) provide∫

Ωc,2×ωa

u2(x1, x2, y)ψ (x1, x2, y) dx1dx2dy =

∫
Ωc,2×ωa

ψ (x1, x2, y) dx1dx2dy, ∀ψ ∈ C∞0 (Ωc,2 × ωa),

which implies (3.4). Similarly, one proves that

u2 = 0, a.e. in Ωc,2 × ωb. (3.6)

Finally, choosing ψ = ε2χ1(x1, x2)χ2

(x1

ε

)
with χ1 ∈ C∞0

(
Ωc,2

)
and χ2 ∈ H1

per (]0, 1[) such that

χ2 = 0 in ωa ∪ ωb as test function in (1.2) gives

ε2

∫
Ωc,2

∂x1φε,2

(
∂x1χ1(x1, x2)χ2

(x1

ε

)
+ ε−1χ1(x1, x2)∂yχ2

(x1

ε

))
dx1dx2

+ε2

∫
Ωc,2

∂x2φε,2∂x2χ1(x1, x2)χ2

(x1

ε

)
dx1dx2 = 0,

∀χ1 ∈ C∞0
(
Ωc,2

)
, ∀χ2 ∈ H1

per (]0, 1[) : χ2 = 0, in ωa ∪ ωb, ∀ε.

(3.7)
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Passing to the limit, as ε tends to zero, in (3.7) and using the second and third limits in (3.3)
provide that, for a.e. (x1, x2) in Ωc,2,∫

]0,1[\(ωa∪ωb)
∂yu2(x1, x2, y)∂yχ2(y)dy = 0, ∀χ2 ∈ H1

per (]0, 1[) : χ2 = 0, in ωa ∪ ωb. (3.8)

Problem (3.4), (3.6), and (3.8) is equivalent to the following problem independent of (x1, x2){
∂2
y2u2 = 0, in ]0, 1[\

(
ωa ∪ ωb

)
,

u2 = 1, in ωa, u2 = 0, in ωb, u2(0) = u2(1), ∂yu2(0) = ∂yu2(1),
(3.9)

which admits (1.3) as unique solution. Consequently, limits in (3.3) hold for the whole sequence
and (3.2) is satisfied.

The following result can be proved in a similar way.

Proposition 3.2. For every ε, let φε be the unique solution to (1.2). Set

φ̃ε,3 =

{
φε,3, a.e. in Ωc,3

ε ,

1, a.e. in Ωc,3 \ Ωc,3
ε ,

and φ̂ε,1 =

{
φε,1, a.e. in Ωc,1

ε ,

0, a.e. in Ωc,1 \ Ωc,1
ε ,

(3.10)

where φε,3 = φε|
Ω
c,3
ε

and φε,1 = φε|
Ω
c,1
ε

. Then, as ε tends to zero,

{
φ̃ε,3 two-scale converges to 1,

ε∂x1 φ̃ε,3 two-scale converges to 0, ε∂x2 φ̃ε,3 two-scale converges to 0,
(3.11)

{
φ̂ε,1 two-scale converges to 0,

ε∂x1 φ̂ε,1 two-scale converges to 0, ε∂x2 φ̂ε,1 two-scale converges to 0.
(3.12)

4 Proof of Theorem 1.1

The following proposition is devoted to proving the energies convergence.

Proposition 4.1. For every ε, let φε be the unique solution to (1.2). Then

lim
ε→0

∫
Ωc

ε

|ε∇φε(x)|2 dx = L(l2 − l1 − 2)

(
1

ζ1 − ζ4 + 1
+

1

ζ3 − ζ2

)
. (4.1)

Proof. Let ϕ?ε be defined by (2.1)-(2.3), and let φ̂ε,1, φ̃ε,3, φε,2 be defined by (3.10) and (3.1).

Choosing ψ = ε2 (φε − ϕ?ε) as test function in (1.2) and taking into account that φ̂ε,1, φ̃ε,3, φε,2,
and ϕ?ε are constant on the fingers, give∫

Ωc
ε

|ε∇φε(x)|2 dx

=

∫
Ωc,1

(
ε∂x1 φ̂ε,1(x) (∂yϕ

?)
(x1

ε
, x2

)
+ ε2∂x2 φ̂ε,1(x)∂x2ϕ

?
(x1

ε
, x2

))
dx

+

∫
Ωc,3

(
ε∂x1 φ̃ε,3(x) (∂yϕ

?)
(x1

ε
, x2

)
+ ε2∂x2 φ̃ε,3(x)∂x2ϕ

?
(x1

ε
, x2

))
dx

+

∫
Ωc,2

(
ε∂x1φε,2(x) (∂yϕ

?)
(x1

ε
, x2

)
+ ε2∂x2φε,2(x)∂x2ϕ

?
(x1

ε
, x2

))
dx, ∀ε.

(4.2)
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Passing to the limit, as ε tends to zero, in (4.2), and using Proposition 3.1 and Proposition 3.2
imply

lim
ε→0

∫
Ωc

ε

|ε∇φε(x)|2 dx =

∫
Ωc,2×]0,1[

∂yφ2(y)∂yϕ
?(y, x2)dxdy, (4.3)

where φ2 is defined by (1.3).
As the last integral in (4.3) is concerned, the first two lines in (2.2) and (1.3) and an easy

computation ensure that∫
Ωc,2×]0,1[

∂yφ2(y)∂yϕ
?(y, x2)dxdy =

(
1

ζ1 − ζ4 + 1
+

1

ζ3 − ζ2

)∫
Ωc,2

1dx

=

(
1

ζ1 − ζ4 + 1
+

1

ζ3 − ζ2

)
L(l2 − l1 − 2).

(4.4)

Eventually, (4.1) follows from (4.3) and (4.4).

Remark 4.2. Note that in (4.1)
L(l2 − l1 − 2) = |Ωc,2|, (4.5)

and an easy computation show that

1

ζ1 − ζ4 + 1
+

1

ζ3 − ζ2
=

∫ 1

0
|∂yφ2|2 dy, (4.6)

where φ2 is defined by (1.3).

Now, Proposition 2.2, Proposition 3.1, and Proposition 4.1 allow us to prove Theorem 1.1.

Proof of Theorem 1.1. Limit (1.4) follows from Proposition 2.2.
Let us prove (1.5).
Let φε,2 be defined by (3.1). Since φ2

(
x1
ε

)
and φε,2(x) are constant on the fingers, one has∫

Ωc,1
ε ∪Ωc,3

ε

|ε∇φε(x)|2 dx+

∫
Ωc,2

ε

(∣∣∣ε∂x1φε(x)− (∂yφ2)
(x1

ε

)∣∣∣2 + |ε∂x2φε(x)|2
)
dx

=

∫
Ωc

ε

|ε∇φε(x)|2 dx+

∫
Ωc,2

∣∣∣(∂yφ2)
(x1

ε

)∣∣∣2 dx− 2

∫
Ωc,2

ε∂x1φε,2(x) (∂yφ2)
(x1

ε

)
dx, ∀ε.

(4.7)

As far as the first integral in the right-hand side of (4.7) is concerned, Proposition 4.1 asserts
that

lim
ε→0

∫
Ωc

ε

|ε∇φε(x)|2 dx = L(l2 − l1 − 2)

(
1

ζ1 − ζ4 + 1
+

1

ζ3 − ζ2

)
(4.8)

As far as the second integral in the right-hand side of (4.7) is concerned, the fact that ∂yφ2 is
a 1-periodic function belonging to L∞(]0, 1[), (4.5), and (4.6) imply that

lim
ε→0

∫
Ωc,2

∣∣∣(∂yφ2)
(x1

ε

)∣∣∣2 dx =

∫
Ωc,2×]0,1[

|∂yφ2(y)|2 dxdy = |Ωc,2|
∫ 1

0
|∂yφ2(y)|2 dy

= L(l2 − l1 − 2)

(
1

ζ1 − ζ4 + 1
+

1

ζ3 − ζ2

)
.

(4.9)
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As far as the last integral in the right-hand side of (4.7) is concerned, Proposition 3.1, the fact
that ∂yφ2 is a 1-periodic function belonging to L∞(]0, 1[), (4.5), and (4.6) imply that

lim
ε→0

∫
Ωc,2

ε∂x1φε,2(x) (∂yφ2)
(x1

ε

)
dx =

∫
Ωc,2×]0,1[

|∂yφ2(y)|2 dxdy

= |Ωc,2|
∫ 1

0
|∂yφ2(y)|2 dy = L(l2 − l1 − 2)

(
1

ζ1 − ζ4 + 1
+

1

ζ3 − ζ2

)
.

(4.10)

Passing to the limit, as ε vanishes, in (4.7) and using (4.9), (4.8), and (4.10) provide (1.5).
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