A corrector result for an electrostatic model of interdigitated combs
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Abstract

In this paper we consider two opposite and intergitated 2D-combs, each one with e-periodically
distributed fingers, each finger having cross-section of order € and fixed height. Via an asymp-
totic analysis based on the two-scale convergence method, we study, as € vanishes, the electrical
potential in the vacuum between these two combs when one comb is grounded while the voltage
in the other one is assumed of order €, and we prove a corrector result.
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1 Introduction

In this paper we consider two opposite and interdigitated 2D-combs Q¢ and Q, each one with
e-periodically distributed fingers, each finger having cross-section of order € and fixed height (see
Figure 1). Via an asymptotic analysis based on the two-scale convergence method proposed in
[11] and developed in [1] (see also [2] and [10]), we study, as ¢ vanishes, the electrical potential in
the vacuum Q¢ (see Figure 1) between Q¢ and Q°, when 0 is grounded and the voltage in Q2 is
assumed of order &, and we prove a corrector result.

Precisely, let (1, (2, (3, ¢4 €]0,1[ be such that {; < (o < (3 < {4, and set w* =|(1, (2] and
w® =], C4[. Let L €]0, +oo[ and Iy, l2,l3 €]0, +oo be such that i1 +2 < Iy < I3.

For every € € {% :n € N} set (see Figure 1)

L

02 = (10, L[x]l, 1s) U | | J (ew® + k) x|l + 1,1] |
k=0
L

Q= (o, L[xJo.upu | | (ewb+ak) x [l — 1]
k=0

QF = (0, L[x]0, s]) \ (22 UNE)

T2 =000, TC=002na0s, T.=T2UT? T ={0,L}x]l,l
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Figure 1: €. Figure 2: Decomposition of €2
In what follows, = (21, 72) denotes the generic element of R?, while y belongs to [0, 1].
For every ¢, consider the following normalized problem
—A¢, =0, in QF,
¢ =1, 00T ¢ =0, onl?, (1.1)

Vo -v=0, onT,

where v denotes the unit normal to I' exterior to {}¢. The solution ¢. represents the electrical
potential in the vacuum Q¢ between Q¢ and Q°, when Q° is grounded and the voltage in Q2 is
assumed equal to 1. The weak formulation of (1.1) is

¢= € Hf_(Q%, pie), Voe(x)Vip(z)de =0, Wy € Hy (%,0), (1.2)
g
where g =1 on I'?, . = 0 on I'? (for g € H%(I‘E), H (Q%,9) ={p e H'(QE) :¢p =g, onT.}).
The aim of this paper is to study the asymptotic behavior of €¢., as € vanishes. Precisely, let

1
L ity e .Gl

17 lfy € [Clvéé]?

V=8 ity e (GGl (1.3)
G2 —(3
07 lfy € [C37<4]7

\ Cly—_céfj-l’ lfy & [<4,1}

Moreover, split the vacuum Q¢ in three parts (see Figure 2) Q¢ = Q%' U Q2% U Q2?, with
Qe = Q2N (10, L[x]ly, 1 +1[), Q9% = Q2N (10, L[x[l1 + 1,12 — 1]), Q%3 = QN (J0, L[x]la — 1,13]).

¢2:y€[0,1]—>

Then, the main result of this paper is the following corrector result.

Theorem 1.1. For every e, let ¢. be the unique solution to (1.2). Moreover, let ¢o be defined by
(1.3). Then,

lim [ |ege(x)*dz =0, (1.4)
e—0 Qg
lim eVe(2))? dz = 0,
e—0 Q§’1UQ§’3
(1.5)

z1

lim (‘s@xlqbg(l‘) — (Oy2) <

e—0 9?2

)‘2 n |68x2d>5(x)|2) dz = 0.

€
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In section 2, some a prior:i estimates will be proved. These estimate allows us to obtain some
two-scale convergence results in section 3 which provide the convergence of the energies in section
4. Eventually, Theorem 1.1 will be proved in section 4.

There is a large bibliography about different problems in a comb-like shaped structure starting
from the pioneering PhD thesis [4] (see also [5]). We refer to [8] and references therein for an
exhaustive view on the subject. About the homogenization of problems in opposite comb-like
shaped structure, we refer to [3], [6], [7], and mainly [9] which strongly inspired the present paper.

2 A priori estimates
Let ¢* : (y,z2) € R x [I1,l2] = ¢*(y,z2) € R be a function such that
(,0* € COO(R X Ul,lg]) (2.1)

©*(+, z2) is 1-periodic for every zo € [I1, 2],
©* =1, inwx|ly + 1,ls[, ¢* =0, in wx]ly,lz — 1], (2.2)
e*=1, on R x {la}, ¢*=0, on R x {l;},

and for every € set
x

o (z1,12) = * (?1932) L in R x [I1, ls). (2.3)
Proposition 2.1. For every e, let ¢. be the unique solution to (1.2). Then

Je €]0,+oo[ : [[eVee| e < Ve (2.4)
Proof. For every ¢, let pf be defined by (2.1)-(2.3). Moreover, set Y =]0, 1[x]l1, l2[. Then, one has

Ly

* S ]‘ * L *
Hazl%H%z(Qg) = Z gl!ﬁyso H%z(y) = ?Hay%’ \\%2(1/)7
k=0 Ve. (2.5)

Ly
€

Ham@:H%%Qg) = Z EHaxQSD*H%z(y) = L“8x290*|’%2(y)7
k=0

Now choosing ¢ = ¢. — ¢* in (1.2) and using Young’s inequality and (2.5) provide

| 190Pde < L (10,6 Ry + 10w I« Ve,

which implies (2.4). O
Proposition 2.2. For every ¢, let ¢. be the unique solution to (1.2). Then,

Je€]0,+oo[ ¢ Pl < ¢, Ve (2.6)
Proof. First, let us prove that

dc €]0,+o00] : ||¢5||L2(Q§’2)§C’ Ve. (2.7)



To this aim, set P =]0, 1]\ (Wuﬁ) =10, (1[U](2, (3[U](4, 1[. Fix . Then, one has

L

I¢el22 e, Z / 16 (2) 2. (2.8)

Ptek)x)ly+1,la—1]
Now fix k € {0, cee % - 1}. Then, if z1 € eP + €k, one of the following three cases holds true:
€ E]&k‘,€<l +8k[, €1 €]5<2 +6k‘,€<3+8k[, T €]€C4+6k‘,6(1 +k3)[

In the first case, since ¢. = 1 on {e(; + ek} x]l; + 1,1lo — 1], one has

eC1+ek
¢e(z1,22) =1 — / Op, @=(t,x2)dt, Vx1 €lek, (1 + k[, for a.e. xg €]l1 + 1,12 — 1],

T
which implies

l21 l21

e1+ek
/ |8x1¢a(3317372)‘2dx1dm2.

(2.9)
Similarly, since ¢. = 0 on ({e(3 + ek} U {eCs + €k}) x]l1 + 1,12 — 1], in the last two cases one has

eC1+ek
/ ’¢5(x17 xg)’ d:L’ld.TQ < 2(l2 — ll — 2)6 + 26

l1+1 141

lo—1 pe(3+ek lo—1 preC3+ek
/ | (21, m2) [P day day < 267 / |0z, e (1, 22) |Pdz1ds (2.10)
l1+1 Catek l1+1 Cotek
and
lo—1 1+k‘ lo—1 1+k‘
/ |pe (21, 20) | dayday < 263 / |03, G (21, 22)|?dy dzs. (2.11)
141 Catek l1+1 Catek
Adding (2.9), (2.10), and (2.11) gives
/ (6 (2) 2z < 215 — 11 — 2)e + 252/ 100, 6. (2) 2da,
(eP+ek)x]li+1,l2—1] (eP+ek)x]li+1,l2—1]

from which, summing up k € {0, - ,% — 1} and using (2.8) and (2.4), one obtains (2.7).
Similarly, one can prove that

e el0, 400 ellpaety So el paggen < Ve (2.12)

Eventually, (2.6) follows from (2.7) and (2.12).

3 Two-scale convergence results

We refer to [1] for the definition and the main properties of the two-scale convergence (in particular,
see Definition 1.1 and Proposition 1.14 in [1]). Set

Qo =)0, L[x]l, lh + 1], Q%% =]0, L[x]l; + 1,1o — 1], Q%% =]0, L[x]ly — 1,15].



Proposition 3.1. For every ¢, let ¢. be the unique solution to (1.2). Set

G2, a.e. in 95’2,
L
1, a.e in U (ew® +¢ek) x|l + 1,12 — 1],
Pe2 = k=0 (3.1)
L_4

€

0, a.e. in U <5wb+5k> x]li 4+ 1,1e — 1],
\ k=0

where ¢e 2 = ¢e| . Moreover, let ¢ be defined by (1.3). Then, as € tends to zero,
Q%

{ ¢ 2 two-scale converges to ¢a, (3.2)

€0z, Pc 2 two-scale converges to Oypa, €0.,¢c 2 two-scale converges to 0.

Proof. Proposition 1.14 in [1], Proposition 2.1, and Proposition 2.2 ensure the existence of a sub-
sequence of {e}, still denoted by {e}, and uy € L? (QC 2 per(]o 1[)) (in possible dependence on

the subsequence) such that

¢ 2 two-scale converges to ug, (3.3)
€0z, ¢e,2 two-scale converges to Oyua, €0.,¢. 2 two-scale converges to 0, '
as ¢ tends to zero.
The next step is devoted to proving that
up =1, a.e. in Q%% x w? (3.4)

Indeed, the definition of @ gives

— 1
be2(x1,22)0 (:Ul,xg, 6 ) dx1dxs = / . P (:El,l‘z, ) dxidzo Y € CF° (962 x w?), Ve.

Qc.2 Qe
(3.5)

Passing to the limit, as € tends to zero, in (3.5) and using the first limit in (3.3) provide

/ ) U2(ﬂf]_,ﬂf2,?/)¢ (l’l,IEQ, y) d:Eld:ery = / ¢ (xla x2, y) dx1d$2d2% \V/¢ € 080(96’2 X wa)a
Q&2 xwa

Qc2xwa
which implies (3.4). Similarly, one proves that
us = 0, a.e. in Q%% x w’. (3.6)

Finally, choosing ¥ = e?x1(z1,z2)X2 (%) with x1 € C§° (Qc’z) and yg € Hll)er (]0,1[) such that

x2 = 0 in w® Uw’ as test function in (1.2) gives

z - x
/ 2 Oar 92 ( Oy X1 (21, T2) X2 <?1 +e xa (@1, w2)dyxo (?)) dzidxy
Qe
x
+e? Oy e, 28x2X1(331,$2 X2 (?1) (3.7)

dl’ld{EQ = 0,
)

Qc
Vxi € C5° (Q9%), Vxe € Hper (J0,1]) : x2 =0, in w*Uw®, Ve.



Passing to the limit, as € tends to zero, in (3.7) and using the second and third limits in (3.3)
provide that, for a.e. (z1,22) in Q%2,

/} A\ (wotiat) Oyuz (w1, 2,90y x2(y)dy = 0, VX2 € Hper (0,1]) 1 x2 =0, inw*Uwb.  (3.8)
0,1\ (w*Uw

Problem (3.4), (3.6), and (3.8) is equivalent to the following problem independent of (z1,x2)

{ azqu =0, in 0, 1[\ (w* Uw?),
b

up =1, nw® wuy =0, inw’, up(0) =uz(l), yus(0) = dyua(1), (3.9)

which admits (1.3) as unique solution. Consequently, limits in (3.3) hold for the whole sequence
and (3.2) is satisfied. O

The following result can be proved in a similar way.

Proposition 3.2. For every ¢, let ¢. be the unique solution to (1.2). Set

. 3 . c,1
¢e3, a.e. in Q°, — ¢e1, a.e. in Q7
= ’ d = ) 310
b3 { 1, a.e. in Q3\ Q7 and e 0, a.e. in Q1\ QS (3:.10)
where ¢ 3 = ¢5| Ly and e = qb5| ..~ Then, as € tends to zero,
QE’ QE’
g/b;; two-scale converges to 1, (3.11)
€0z, ¢e,3 two-scale converges to 0, €0.,¢. 3 two-scale converges to 0, '
g; two-scale converges to 0, (3.12)
€0z, 91 two-scale converges to 0, €0,,¢-1 two-scale converges to 0. ’
4 Proof of Theorem 1.1
The following proposition is devoted to proving the energies convergence.
Proposition 4.1. For every ¢, let ¢. be the unique solution to (1.2). Then
li eV (z)* de = Lly — 1 2)( ! P ) (4.1)
1m g x r = 2 — 1 — . .
e=0 Jqe : G—-GC+1 GB-C

Proof. Let ¢} be defined by (2.1)-(2.3), and let 55,\1, 5;, @2 be defined by (3.10) and (3.1).

L

Choosing 1 = &2 (¢ — ©f) as test function in (1.2) and taking into account that ¢. 1, ¢c3, ¢c2,
and ¢} are constant on the fingers, give

/QC eV e (2)]? dx
— /C’1 <58x1$;(:x) (Oy™) (%,1'2) - 520362@/55,\1(:1:)&,32@* (%,:@)) dx
—I—/: (58331&;/3(30) (Oy™) (%,m) + 52612&;/3(;13)0@@* (%,xg)) dx

3
" /Qc,g (5(%1(1)?72(%) (9y”) (%» $2) + 6259;2@(33)61«290* (;1, 332)) dz, Ve.

(4.2)

X
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Passing to the limit, as e tends to zero, in (4.2), and using Proposition 3.1 and Proposition 3.2
imply
iy [ (Vo) de = [ 0,620, (0. 2)dndy, (13)
Qe Q

=0 20,1

where ¢9 is defined by (1.3).
As the last integral in (4.3) is concerned, the first two lines in (2.2) and (1.3) and an easy
computation ensure that

1 1
Lo a0 ey = st ) [
0e2x]0,1] GQ—G+1 G-/ Joe (4.4)
1 1 )
= + L(ls — 11 — 2).
GG+l @—@>(2 1-2)
Eventually, (4.1) follows from (4.3) and (4.4). O
Remark 4.2. Note that in (4.1)
L(ly — 1) — 2) = |Q%, (4.5)
and an easy computation show that
! T —/1\8¢>|2d (4.6)
G-Grl GG Jo W '

where ¢o is defined by (1.3).

Now, Proposition 2.2, Proposition 3.1, and Proposition 4.1 allow us to prove Theorem 1.1.

Proof of Theorem 1.1. Limit (1.4) follows from Proposition 2.2.
Let us prove (1.5). o
Let ¢ 2 be defined by (3.1). Since ¢ (%1) and ¢, 2(x) are constant on the fingers, one has

[ ¥o@P e [ ([0 - @0 (2)] + ettt s
S 2 v z1\ |2 ) — 1
— /Qg eV ()] dm+/ ‘(Gy%)( >‘ dx — 2/95,2 8y, hen () (D) <;) dr, Ve

Qc.2 g

(4.7)

As far as the first integral in the right-hand side of (4.7) is concerned, Proposition 4.1 asserts
that

2 . o 1 1
eV (z)>dz = L(ls — I — 2) < caritas @) (4.8)

As far as the second integral in the right-hand side of (4.7) is concerned, the fact that dy¢o is
a 1-periodic function belonging to L*°(]0, 1[), (4.5), and (4.6) imply that

lim
—
15 Qg

. T\ |2 ey [

i [ (@00 (2) [ do= [ i0,0atu)dedy = 97| [ 10,0200) dy

e—0 Oc:2 9 QCaQX]O,].[ 0 (4.9)
1 1

_L@_“_”<@—@+1+@—@‘



As far as the last integral in the right-hand side of (4.7) is concerned, Proposition 3.1, the fact

that dy¢s is a 1-periodic function belonging to L*°(]0,1[), (4.5), and (4.6) imply that

lim [ 0y dea(z) (Bye2) (%)d:p: /

|0ya(y)|? ddy
e—=0 Jqe,2 Qe2x]0,1]

(4.10)

! 1 1
— 1052 2y — R

Passing to the limit, as € vanishes, in (4.7) and using (4.9), (4.8), and (4.10) provide (1.5).
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