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Abstract

This paper reports a multiscale electrostatic model of a two-dimensional Micro-Mirror
Array. It is applicable to very large arrays with several zone of electrical actuation. The
model is made with periodic solutions and four kinds of boundary layer effects at outer
boundaries, interfaces between different actuation zones and also to outer and inner edges.
This work is done in the context of the development of a symbolic calculation software based
on an extension-combination principle, so that the model derivations are constructed in such
a way as to follow a same algorithm.



1 Introduction

Micro-Mirror Arrays, abbreviated as MMAs, are devices related to Micro-Optical-Electromechanical
Systems (MOEMS) family with mirrors in their components. The size of the mirror is very small,
millimeter-sized, micro-sized, or smaller, with the principal goal being steering or monitoring light
phase or amplitude. According to the statistics in 2018 of authors in [33], there are about 277
MMA designs from 49 companies and 23 academic research groups. They are widely used in
various fields such as optics, telecommunications, astronomy, biology, etc.

MMASs can be categorized according to the type of their actuators into four groups: electro-
static, electrothermal, piezoeletric, and magnetic. Another aspect of the classification is based on
the kind of mirror surface. Two groups are distinguished, the discrete and the continuous one.
In the former, the mirrors are disconnected from that of the adjacent cells, so their movements
are independent. In the latter, the mirrors in each cell are continuously linked to each other. In
other words, there is only one mirror in the structure of the devices in this group. The number of
mirrored elements in the array depends on the function of the device, can vary from one cell to
thousands and can be placed in a one or two dimensional array. These arrays can be operated by
one of the command algorithms: direct addressing, line addressing, or the line-column addressing,
see more in [11, 12, 13].

The MMA for which the model of this paper has been developped is with electrostatically
actuated tilting mono-crystalline silicon micro-mirrors called MIRA, see its top view in Figure 1.
It is actuated according the line-column addressing scheme. It has been designed with stringent
requirements such as a mirror size of 200 x 100um?, a title angle of more than 20°, a filling factor of
more than 80%, a contrast ratio of more than 1000, a wavelength bandwidth from visible to IR, an
actuation voltage lower than 100V and an operating temperature ranging from room temperature
to less than 100K. For more details see [13, 37].

The direct simulation of physical phenomena in such a micromirror array is very computation-
ally expensive due to the large number of degrees of freedom, its enormous size and the existence
of several scales. The approach adopted in this paper to overcome this difficulty is to use an
approximate model obtained by deploying asymptotic methods for periodic problems, see intro-
ductions to the field through historical references as [9, 34, 18] among others. Precisely, we use the
unfolding method [24, 17, 15, 16, 4, 14] also called two-scale convergence since it generalizes the
two scale convergence introduced in [27] and developed in [1]. A preliminary work was done for a
one-dimensional array in [29]. Here, we report results for two-dimensional arrays governed by the
equations of electrostatics. Similar results for the coupling with the system of linear elasticity are
available in the PhD thesis [35]. They are not reported here due to the paper length limitation,
however their statement and derivation follow similar principles.

We assume that the array is divided into two zones where the actuation voltage is uniform. The
electrostatic potential of the asymptotic model is periodic, with different periods, in each of these
zones. Compared to the solution of a standard periodic homogenisation problem, here the periodic
model solution corresponds to the periodic correctors only. This is due to the fact that each cell is
grounded and a potential difference governs its behaviour. As a result, the electrostatic potential
and its normal derivative are discontinuous at the interfaces between the uniform actuation zones.
In addition, they do not satisfy the boundary condition at the lateral boundaries of the array.
To get rid of these defects, boundary layer correctors are introduced at the interfaces and at the
lateral boundaries. Besides, the corrections are formulated separately on each face of the interfaces
and of the lateral boundaries, which led to the discontinuity of the sum of their contribution at
the face junctions, namely at the edges. This is why, additional boundary layer correctors are also



introduced at the edges.

Boundary layer problems in periodic homogenization problems have been much investigated,
see [10, 2, 31, 21, 23, 32, 20, 19, 3, 20] to cite only few. In this work, our contribution is to outer
edge and internal edge corrector models which have not been studied yet. In total, we derive five
kinds of models with the following features: periodic solution, lateral (i.e. outer) boundary layer,
interface boundary layer, internal edge boundary layer, and exterior edge boundary layer, see in
Figure 2. For each kind, we provide only one model instance for one boundary, interface or edge,
the other ones being obtained without difficulty. Due to the length of the paper, the results of our
numerical implementation of the models are not presented here. The interested reader can find
them in the PhD thesis [35] while older ones for a one-dimensional array were reported in [30] in
an optimization context.

An other point is that this work is carried out with the perspective of developing symbolic
computation algorithms for model building in continuation of the works [36, 5, 28, 8, 7]. Thus,
a particular attention is paid to the algorithmic structure of the model proofs and here we have
endeavored to write them all following the framework of a single algorithm. Variations from this
reference algorithm can be expressed by the extension-combination method. Here, we do not
expose this aspect but it has been the subject of our work [7] achieved for simpler models with
for the same algorithm. Notice that a complete theory of extension-combination is available in [0]
while an extended version is submitted for publication.

It can be observed that in the above mentioned algorithm, most of the operations are done
on a very weak formulation instead on a weak formulation as it is usual. This leads to shortened
proof lengths due to the absence of need of weak convergences of derivatives.

Another characteristic of our choice in designing symbolic computation algorithm is to adopt
a compromise between imposing assumptions and doing more mathematical analysis. Thus our
attention is more on developping calculations that can be algebraized than on fine mathematical
analysis deployment. Precisely, in our algorithm, we assume a priori estimates, or equivalently weak
convergences of subsequences, on the physical solutions. Thus in the following model derivations,
we adopt the same assumptions which apply to the solution as well as to the boundary layer
correctors. In addition, the boundary layer correctors and their gradients are assumed to converge
exponentially to zero at infinity. This might be proven as e.g. [2, 34]. Another characteristic of
this work, which shows the interest of having models automatically derived, is the choice to deal
with a real problem whose complexity exceeds by far the one usually treated in academic works.
While the complexity of the MIRA cells is not so high, nevertheless its handling in the framework of
asymptotic methods quickly leads to having to manage extremely heavy notations, which is quickly
prohibitive for a manual treatment. In this sense, this work provides a very interesting (indeed
precious) family of models to guide the development of a rather general symbolic computation
tool.

Still in the perspective of developing systematic proofs, despite the fact that the imposed electric
voltage is assumed to be piecewise constant in the array MIRA, it is treated with the minimal
conditions necessary for the validity of the models. In particular, it can have smooth variations
inside some zones and abrupt changes at their interface. In the paper we do not discuss further the
other possible cases. The electrostatic potential of the two-scale model in a cell is then solution
to a periodic problem depending on the local actuation voltage. The latter varies continuously in
each zone and is discontinuous at their interface. This yields additional boundary layer effects that
could find applications for other devices.

As the model proofs all follow the same pattern, it would be unnecessarily long to write them
all in detail. It has been chosen to provide all details for the first models, then to focus on the



special features for the next ones.

2 Problem Statement

We start by providing more details on the operation of a MMA cell. Then, the electrostatic
equations are recalled in their strong, weak and very weak forms. Since the principle of asymptotic
methods deals with small parameters, it is necessary to distinguish the small physical dimensions
of the small parameters to be taken into account for the asymptotic analysis. This is why the
whole system is scaled to a length of the order of unity. Finally, the algorithm followed by the
model constructions is detailed. It uses operators related to scale transformations which can be
specific to certain problems. Here those used for the construction of the periodic model are recalled
to illustrate the algorithm.

2.1 Structure of a Cell of the MMA

The structure of one cell of MIRA is illustrated in Figure 3. It is composed of two components:
the mirror part and the electrode part. The mirror part is made with a micromirror supported
by two flexible beams. The latter are attached to a frame enabling a displacement of the mirror
when a voltage is applied. A stopper beam is situated under the frame to guarantee that a tilt
angle satisfies a given value after actuation. Two landing beams are under the tilting edge of
the micromirror to avoid the generation of a short-circuit between the mirror and the electrode
throughout the actuation. The electrode part includes the electrode base which is electrically
grounded; landing pads are where the landing beams contact; two pillars separate the mirror and
electrode parts defining an electrostatic gap. The electrostatic force applied to the mirror results
from its difference of potential with the electrode base.

2.2 Geometry and Mathematical Equations

We begin by describing the geometry of the MIRA array. It occupies the region €2 decomposed
into 2™ and 2" where the mechanical part and the vacuum surrounding it are located. Its
width, length and thickness are respectively L;, Lo and L3, see Figure 4. It includes n; X ny cells
Q. of sizes [y, l5, and [5.

Thus Q = U, , where ¢ is a multi-index belonging to Z,,,.,; = {¢ = (c1,¢2), ¢1 € 1,...,n; and
¢y € 1,...,n}. Each cell Q, includes the mechanical part Q7'¢“ and the vacuum Q9%¢, see Figure 5.
The mechanical structure consists of two parts, the mirror ;77" = and the electrode Q¢ so that

mir,c

Qe = Quer . U QEES. We also use the decomposition of the domains Q™ and 2" of the array

as the unions Q™ = U.Q7"* and Q" = U2, and the same for the domains consisting of all

o mec __ mec mec __ mec
mirrors and electrodes Q757 = U700 and Q72 = U075

The boundary of 2 is the union I'**¢ U I'7*¢ U I'2y¢, where I'}2¢ is the boundary of {2
intersecting with this of €2, while I']'* and I'T**® are the complementary parts of the boundaries of
Qrec and e, The lateral part I']¢¢ does not play any role for the electrostatic models, thus it is

ele mar*

not discussed further. Moreover, I'(**¢ = U I'¢¢ and I'1" = U 'S¢ where I']’¢¢ and I'1"° denote

respectively the boundary of the electrode Q¢ and of the mirror (7"  of the mechanical body

in a cell Q7. The boundary 992"*¢ of Q¥*¢ is the union of the internal boundary I'}% and the
external boundary I't%7, where I'}Sy is defined by I'f*¢ U I'T** and I'yey is the union of the lateral

boundary I'}7¥ and of the top boundary I';7" of the vacuum part, I'g7¢ = 177 U 7% For the sake



of simplicity but without losing generality, we consider that 2 is split into two zones €2; and €25 in
which the imposed voltages noted as V; and V5, are different. Hereafter, we add the subscripts 1, 2
in geometrical notations to represent to which zones they belong, for example, 7% and €5 is a
vacuum part of )y and €y, I'%,;, and I'y%, is the internal boundary of Q7% and 3%, and note
that all previous geometrical notations without the subscripts 1,2 now are understood as a union
of two elements related to zones 2y and 9, e.g. I'l7 = I'790,U T990,.

int
The field of electric potential ¢ in the vacuum is governed by the equation of electrostatics, see
[22],
—A¢p =0 in Qv
o} =V onl¥y, (2.1)

int

Vo-n =0 onl0%

ext

where V' is the imposed voltage taking two distinct constant values V; in ©; and V5 and €25, and
n is the outward unit normal vector. The continuity of the potential and the electrostatic field at

the interface I'J7¢ » of Q7%¢ and (5% are given as

(blﬂijac - (blﬂgac and V(lei)ac : Ill = _vgﬁ‘gsac . 112,
where n' and n” are the outward unit normal vectors of Q¢ and Q5% on I'}%. ., n' = —n” .
Let us introduce a Hilbert space Hpvae o(2°%) = {v € H'(2"*), v = 0 in T}f} endowed with
the norm
Qvac) = ||V'I_]|’L2(Qﬂuac)7

ol

for all v € Hiuae o(€27).
Then a variational problem of (2.1) is to find ¢ € H%yatcy(Q”aC) = {¢p € H'(Q"), ¢ =
V in 'Y} such that

int

/ VoVudr =0,

for all v € H%WCO(Q““C). Assuming more regularity of the test function and applying Green’s

wnt

formula, we have a very weak formulation of the problem,

/ PpAvdr = / VV,v-nds(z)+ / ¢V,v-nds(z), (2.2)

int

int

for all v in ngvatc,o(ch) = {v e H*(Q"),v =0 on ['¥%}.

2.3 Global Scalings

The asymptotic analysis is conducted for the small parameter € specified below but which is of
the order of the [;/L; assumed to remain in the same order of magnitude. All the geometrical
notations, normal vectors, variables, functions, etc of the physical problem are written with the
superscript ¢, for example one writes Q°, Ffrz;“c, n, z¢, and ¢° instead of Q, T'% n, z, and ¢.
Then, all the geometrical data are scaled by the largest length L of the array, e.g. 25 = 2°/L
yielding the scaling of Q° into Q¢ and Q2 into Q€ with respective sizes L; = L; /L and L, =1, /L

for i = 1,2,3. All the other geometrlcal notatlons are then decorated by a hat ™ to represent

scaled domains and boundaries, e.g. Qe vac Ff 04¢ are scaled regions from =V T";"““. Moreover,

the derivation variables are added as subscripts to operators such as Laplace A, divergence div.
For instance, A, div_: are the Laplace and divergence operators with respect to the variable z=.



Now, we define the small asymptotic parameter as ¢ = maX{Z;/LAZ- =1/n;}overi € {1,2,3}. We
say that it tends to 0 with the meaning that the numbers n; and nsy of cells tend to infinity. Another
constraint on n; and ns is that the positions and sizes of €2 and €25 in the x; and T directions
remain fixed when ¢ — 0. Finally, to simplify the formulations, we assume that l = L3 = ¢ for all
i =1,2,3 so the volume of a scaled cell is [Q25| = Hl — &3, and that L, = Ly = 1 so the volume

of the scaled array is |Q°] = ] L; = e. This aV01ds unnecessary complications in the calculation

writing without affecting the [;rinciple of the final models.

We now deal with the scaling for the electrostatic potential and the mechanical displacement.
In the electrostatic model part, the space scale L is reused, we set Ve = Ve /L and ¢° = ¢°/L.
Plugging these new scaled fields into the equation (2.1), we obtain the following equations for the
scaled potential q/ﬁ\e,

~Az¢ = 0 in Qe wac
@ = Vi onlp® (2.3)
V.o = 0 onliy™

Remark 2.1 For simplicity of notation, we hereafter remove the hat =~  from all the notations,

for instance, Q°™, ¢° replaces QE™ee, resp. ¢°, and we employ the notation T" referring to the
boundary of a domain with name the domain name, for example, I'"* s the boundary of 5V,

2.4 Two-Scale Transform Operators for the Periodic Model

We recall the two-scale transform operator or unfolding operator in a domain as introduced in
[24, 17, 15, 16, 4, 14]. This operator is used to build the periodic solution model. The definitions
and properties of this section are adapted from [25]

Let us begin by introducing Q* C R? such that Q° = Q* x 0, [ with a partition {Q?} where
Qf = [(c1 — 1)e, cre] x[(ea —1)e, cog], ¢ = (c1, ¢2) € Ty, and x%¢ is the center of the cell Qf defined
as 77¢ = (c1e — €/2, coe — €/2). Tt follows that Q = QF x |0, ¢[ and that 25¢ = (2%, £/2) where 2¢
is the center of the cell (2.

We now represent the reference cell also called the unit periodicity cell Q' residing at the

position |—1/2,1/2[*, see Figure 6. Its boundaries of the vacuum and mechanical parts are denoted
by 9Qbvee = r;;;“c U TLrac U Tyo® and 0Qb™ee = Tg™ UT™* UTLme. Obviously, if 2° € Q,
¢ € Ly then (2°—2° c)/e € Ql and QF =Ue((c1—1/2,c0—1/2,1/2)+ Q). Similarly, we also use
I'! representing any surface in ﬁ and the associated periodic surface I'* = Ugez,,e((c1 —1/2, ¢ —
1/2,1/2) +T1) in Qe.

In the following definitions and properties the pair (X¢, X') stands both for (Q¢, Q') and for
(¢, T'1). The same notation for operators defined on functions with variables in domains or their

boundary because they are defined by the same formulae.

Definition 2.2 The two-scale transform operator T¢ operating on functions with variable in X¢©
1s defined by

T(p) (2%, 2') =Y xgu(ah)p(a™° + ex'),
for a.e. 2¥ € QOF and x' € X, where x4 is the characteristic function over a set A.

Proposition 2.3 The two-scale transform operator has the following properties.



1. T¢ is a linear and continuous operator from L*(X¢) to L*( x X1).

2. For g, € L*(X°), T*(pth) = T*()T*(¢)).

3. For ¢ € L'(§¥)
/ pdx® = &?/ T¢(p) da*da’.
e Qfx Q!

/ gpdaf:/ T () datds(at).
€ Qi xT1

5. For o € L*(¥°), ||l r2e) = VEIT ()l L2t xen).
6. For ¢ € L'(I*), llollzawe) = IT=() |2 (@exry).-

Remark 2.4 We introduce the norm ||| - |||= 72| - || to include the factor €'/? of the height of
a thin domain.

4. For ¢ € L}(T*)

Let us introduce the operator

* x® — x> 3 € €
T = 522/ ( d —) dxﬂxﬂz () for any x° € Q (2.4)

operating on functions ¢ with variables in * x X' and returning a function with variables in X¢.

Property 2.5 The operator T is the adjoint of T¢ in the sense

1
et = [ roudddn
€ QixQl

3

for all ¢ € L*(QF x Q') and ¢ € L*(Q), and in the sense

[emmaste) = [ s,

for all ¢ € L>(QF x T'Y) and ¢ € L(I¥).
We observe that T%*(¢)) is not regular, thus we introduce a smooth approximation B¢.

Definition 2.6 The operator B¢ is defined on functions 1 with variables in Qf x X' as

B = (Pe). - 5),

where P(z°) = (x5, 25) and returns a function with variables in X°¢.

For derivable functions 1, the derivation property of B¢y reads as

oBey . L0y 10y
o B (Xzii (Z)axg + - 895}) (2.5)

foralli € Z = {1,2,3}, ¥ = {1, 2}.
In the following, a function x! — ¢(2!) is said to be Q!-periodic in the directions z} and 23 if
it is defined in R?*x] — 1 1[ and such that o (z} + ki, 2} + ko, 23) = ¢(21, 23, x3) for all ky, ks € Z.

7



Proposition 2.7 For all ¢ in C'(QF x X') and Q'-periodic in the directions x} and 3,

T () (z°) = B*(¢)(2°) + O(e) for all 2° € X7,
where O(g) is the Landau notation for a sequence bounded by & up to a multiplicative constant.
Remark 2.8 In the following, C represent a constant that may be different from place to place.
Proposition 2.9 Let ¢ be a sequence in L?(QF) that satisfies

&% llz2@< € and e ||| Vae® ||[r2(0)< €,

then, there exists a function ©° in L*(QF; HY (Q)), Q- periodic in the directions x}, x5 such that,
up to the extraction of a subsequence, when € — 0

i. T¢(o%) — ©° weakly in L*(F x Qb),

i1, €T5(Vpe0f) — Va¢® weakly in L2(QF x Q).

Remark 2.10 One can show that T=* is a left inverse of T¢ namely that T<*T° = Id. Using this
remark and the fact that B¢ is an approximation of T<*, the principle of building a two-scale model
is done by the following steps. We start from a physical field ¢° solution of a problem P¢(¢°), and
look for the problem P°(¢°) verified by the limit ¢° of T°¢° when ¢ — 0. Then, the approzimation
to ¢° is B5¢". The same principle applies to all the subsequent models and will not be repeated.

2.5 The Reference Algorithm for Model Proofs

Here we recall the symbolic computation algorithm that served as a reference proof for the con-
struction of the models reported in [7] and based on the extension-combination method. It is
this same algorithm that drives the construction of the five models of this paper. The opera-
tions described therein are high level, the implementation details not being explained because they
strongly depend on the special case considered as well as how the way partial differential equations
are represented in a symbolic computing environment, see the two approaches in [30] and in the
PhD Thesis [35].

The starting point of the algorithm is a boundary value problem either in strong form or in
weak form. It uses the definition of a two-scale transformation 7° and its associated operators T*
and B°. These operators and their properties depend on each model.

i) Define
- a two-scale transform (or unfolding) operator 7°,
- its adjoint T°*,
- and a smooth approximation B° of T**.
ii) Derive the very weak form of the boundary value problem with
- solution W€,
- and test function wv.
iii) Replace v by £*B®(w) for some k € Z\{0}, and apply the rule of the derivative
of Bf(w).



iv) Replace B° by an approximation in terms of 7°*.

v) Apply the adjoint rule to replace the instances of 7°* by instances of 7° on
expressions of W°.

vi) Assuming that 7°(¥°) is bounded for an appropriate L*-norm when ¢ vanishes,
an extracted subsequence weakly converges to a limit W°.

vii) Convert the very weak form satisfied by ¥Y into a strong form.

viii) Finally, the approximation of W¥¢ is B°UC.

The rest of the paper is devoted to the construction of the main model whose solution is periodic
in each subdomain where the applied voltage is constant and of its boundary layer correctors on
the outer boundary, on the interfaces and on their edges. For each of these cases, the construction
follows the above algorithm.

3 Periodic Model

We start with an assumption on the voltage source which expressed in terms of the weak limit of
its two-scale transform.

Assumption 3.1 T°(V¢) converges weakly to VO in L*(QF x ') which is continuous in QF
except at the interfaces between some subdomains that are specified in the section of boundary
layer models.

Then, we make an assumption on ¢° the solution of (2.3) that could be easily proved using a
priori estimates techniques. However, we skip this step since we do not take it into account in the
algorithm. The same principle is adopted for each of the following models.

Assumption 3.2 [|[¢°|||r2(qevacy and e|||V e ¢||| 120z wac) are bounded uniformly with respect to €.

Proposition 3.3 If ¢° satisfies Assumptions 3.2 and 3.1, there exists ¢° € L?(QF, H'(Q1vae))
Qlvec_periodic in the directions xt, 2} such that T°¢° — ¢° weakly in L*(QF x Q9. Moreover
for a.e 2t € QF, ¢° is solution to

( _A:cl ¢O =0 mn Ql,vac

¢’ =V on T4

Vg’ -nl=0 on I‘i;;ac

V¢’ - n! 18 F;;;‘;“C—antiperiodic
\ﬁbo 18 F;)’e’;ac—periodic.

Proof. Thanks to Proposition 2.9 and Assumption 3.2, we obtain the existence and the
periodicity of ¢°. The proof is completed by showing that ¢° satisfies the above equations.

Let us take w sufficiently regular in Qf x Q1% such that w = 0 on I'}"* and Viw-n' = 0 on

Tt u )2, Obviously, B*w = 0 on I';;,* then we can replace v° in (2.2) by e Bw,

6/ ¢° Ay Bfwda® = 8/ VeV, Bfw - n°ds () + 5/ ¢°VeB*w -n°ds (zf). (3.1)
Qe,vac Fi,vac

revac

int ext



From the property (2.5) of the derivative of B¢,

GﬁBsw_B6 ()ia—er (.>218w+i88w
oxs 05 Azl dxt Ozt Xzt € 9at Oxj €% Oxj O}

foralli € T = {1,2,3}, T = {1,2}.
By a calculation, the left-hand side (I.h.s) of (3.1) becomes

2 2
= é /QE’W ¢°B® (Apw) dz® + O(e), (3.2)
e 29 ow 2.9 ow
O(e) :a/mm ¢° B (le@> dx€+2/ﬂw ¢° B <i218_m§a%1> da*.

Similarly, the right-hand side (r.h.s) of (3.1) becomes

2
1
rh.s = g/r Ve ;BE (%) ni + B (Vaw) n6] ds (z°)

int :B,L
2 ow 1
+€/Fi;§i“ 4 ;BE <@> R WM)'ng] ds (2°).

It is clear from V,w-n' =0 on F%&Zac UT )2 that B* (Vaw) -n® =0 on Ty = T U T,
then

r.h.s = VEB® (Vaw-n') ds (2) + O(e), (3.3)

Fa,mzc
int

where
2 ow
Oe) =¢ / B | — | njds(z).
CED Y (ax§> (@)
Combining with (3.2) and (3.3), we can assert that
1
- / ¢° B (Apw)da® = / VEB® (Vaw-n') ds(2°) + O(e).
Qa,vac

£ re-vac

int

Approximating B by T°* from Proposition 2.7 it follows that

1
g/ T (Apw)da® = / VT (Vaw-n') ds (2°) + Ofe).
Qe,vac revac

int

The definition of T%* yields

/Q o T°(¢°)Aprw dafda! = / T(VE)Vaw - n'dzfds (z') + O(e).
X ,vac

1,vac
o Xrint

10



Passing € to 0 with Proposition 2.9 we get

/ A pwdsidat = / VOV, 1w - n' dafds (xl) :
Qff xQl,vac

anl—\l,uac

int

Applying Green’s formula twice, therefore assuming sufficiently regularity of ¢°, combining with

i : : lwac _ T lvac 1,vac 1,vac :
conditions satisfied by w and decomposing 0f2 =T UIReuly,,”, we obtain

/ Ay ¢®w datdat — / V19" - n'wdzfds(2!)
Qi x Ql,vac Qfx(

1,vac 1,vac
Iper UFtOp )

+ / 'V w - n' defds(z!) = / VOV, aw - n' datds (z') .
qurl,vac qurl,vac

int int

Choosing w such that w = 0 on [}2¢ U T, 2% and V,w - n' = 0 on T4 yields

Ap¢? =0 in Qbvee,

1,vac 1,vac
per U Ftop

Next, choosing w such that w =0 on I’ yields

1
¢” =V on Iy

wnt

And then, we choose w = 0 on I'}2* to find

1
V¢ -n! =0 on T'po™.

top

Finally, with the remaining term we conclude that

0 1. 1,vac : : :
Vai¢"-mis )70 - antiperiodic.

4 Lateral Boundary Layer Model

Due to the periodicity condition in the periodic model of Proposition 3.3, ¢° does not satisfy the
nominal boundary conditions on the outer lateral boundary. This leads to introduce the corrector

5 = ¢ — B%(¢") and the corresponding voltage source v§;, = V¢ — B*(V?). We investigate the
convergence of ¢;, at the first lateral boundary. The convergence on the other boundaries can be

derived in the same way.

4.1 Geometry Notations

Let Qiloj be a subdomain of ¢ defined as Qzloi = Ucez,,, Q% where Ty = {c = (c1,¢c2) : c1 € I,y
and ¢y € 1, }, with a € N* such that ae < L?, and where L? is a positive number, see Figure
7. All other notations of subdomains, boundaries and subboundaries, let say lel’?’lz, are inherited
from those defined for the periodic model through the rule Xglﬁ:]g =X, k0 QZﬁ. For instance,

we shall use Q77" = Qove N QT Tyl = TN QY. The same principle is used for the

physical domain of each model without explanation. However for each kind of domain and each
model there are special cases which are detailed.

11



Here, there is an additional boundary T/ U T35 at the end of the boundary layer, see

Figure 7, so that [5;5% = D550 U Ty e U T 0.

We next denote the macroscopic domain by qu = [0, L;[, with a partition {le,h:l }Cl, 9217101 =
[(c; — 1)e,c1e], 1 = 1,...,n; and denote 28 = ;e — £/2 as the center of QF, 1o

The finite microscopic domain €, is built by @, = Ug‘;ol(Ql +(0,1/2+&,1/2)), see Figure
8. We underline that €, depends on a even if this is not explicitely written in its notation. The
same remark holds true for each model and will not be repeated.

All other notations of subdomains, boundaries and subboundaries, let say Xbll”i 4, are inherited

from those defined for the periodic model through the rule X bll:li,é =X 51 * Q;l’l with some special

Fl ,vac

1,mech
bl,1,per r

1,vac
bl.1per correspond to the parts of I'

and per

cases. As shown in Figure 8 the subboundaries
. . . 1 .
and [')7“" which normal vector is collinear to 3. Moreover, the subboundary I',;'}"s is to the end

1,vac l,vac - 1,vac 1,vac 1,vac
of the boundary layer. It results that the boundary €2, of ;" is I'; % U T U Ty U
1,vac 1,vac .
10Ul . as Figure 8 shows.
The infinite microscopic domain 25¢; is defined as Q9 = lim,_,« 2}, ;. Its subdomains, bound-

ary and subboundaries are deduced from those of Q;;, by passing to the limit on a.

Remark 4.1 We use the subscript i« = 1,2,3,4 for all geometrical notations and operators, the
superscript © for all functions to indicate which lateral boundary models they belong to, according
to the index in Figure 2. For instance, (% and €% are the first and the second physical domains,

Ty, and Ty 5 are the first and the second boundary layer two-scale transform operators, ¢y and

¢§l are the solutions of the first and the second lateral boundary models.
When we say "for each o”, this means "for all « € N* such that ae < L3”,

Next, we introduce the two-scale transform and its properties for the first lateral model.

4.2 Boundary Layer Two-Scale Transform Operator

As in Section 2.4, T'! is any surface in Q' while here I}, = UgZ (I + (0,1/2 + £,1/2)) € Q}
and Ty = Ueer,,  ((c1 — 1/2,¢0 — 1/2,1/2) +T1) C 7. Then in this section the pair (X¢, X')
stands both for (€%, ;) and for (T, T, ;) in the statements. For Section 5.2, we also define
150, = limg oo Tl .

Definition 4.2 The boundary layer two-scale transform operator Ty, | operating on functions ¢
with variable in X¢ is defined as

5100 = D x| (@)l + el ead ead),
C1

for a.e. at € le’l, ' e X1

We introduce the operator T defined as

1 x5 1, 2§ 25
€% ey _ g1 TN\ 2 73 f €
2 =Y [ w(d S e D2 i )
Cc1 bl,1cy
for all function ¢ on ng x X1 and for 2° € X¢.

12



Property 4.3 The operator Ty is the adjoint of Ty, | in the sense

1 £ % £ e
=2 SDTbl,l(w)dx = / Tbl71(¢)wdxﬁdx1,
& oy le,1XQiii

bl,1
or all ¥ € L2, , x Q1) and p € LA(Q52), and also in the sense
ERR LS bl,1

1
S emnwase = [ Taleudddst),

€ bi,1 gl,lxriiﬁ
for all v € LA, x Thy1), ¢ € LA(T5%).

Definition 4.4 The operator By, is defined as:
1 x5 x5
Bia)e) = (P, 2 - 1 2 5)
for any function 1 with variables in qu x X1 where P(z°) = a5.
Proposition 4.5 For all i in 01(92171 x X1), Ql%l,l - periodic in the direction x}, then

Tbelfl () (2°) = Bzfz,l(w)(xe) + O(e).

Proposition 4.6 For each «, if a function i with variables in Qg x QL respectively in Qg x 't is
continuous w.r.t. its first variable and is Q' - periodic in the direction x1, then

Tlfl,l(BE(@b))(xﬁJl) - @Z(-’ﬂﬁyxl) for (af,z") in le,l X Qlld,l respect. 921,1 X Ftl;u when € = 0,
where @(xﬁ,xl) =4 ((24,0), (z], 23 — 5, 25— 3)).

Proof. By the definition of 7j; ; and B¢, it follows that

TbEl,l(BE(w))(xﬁa fBl) = ZXQﬁ (fEﬁ)BE(Yﬂ)(:Uﬁ’CI + E.I%, sx%, E:L‘é)

bl,1cy
C1
¢ f.c1 1 .1 o1 1o 1
:ZXQQHCI(LL' )¢ (I” +8$1,EI’2),(ZL‘1,ZE2—§,I’3—§) :
Cc1

Applying the continuity property,

1 1 1 1
o (@ ek e, ehab = Jood = ) ) = ((0h0) (ahah = Gad = ) + 0l

where o(¢) — 0 when ¢ — 0. Next, passing € to 0, we have
£ € i 1 .1 1 1 1
Tbl,l(‘B W)) —H/f (SE ,0),((371,262—5,.%3—5))

as expected. m
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4.3 Derivation of a Lateral Boundary Model

In this section we assume without repeating it that the following assumptions are fulfilled. It
involves the remaining voltage source Vii = V¢ — BV and on the corrector ¢§, = ¢° — B*¢" and
we recall that by construction €,;%° depends on a.

Assumption 4.7 1. For each a, there exist ¢;" in L? (le,p H%Qijf’fﬂ) , Qijf}lac—periodic in the
direction x}, and V™ in L? (qu X F;l’f’ffnJ such that T 1 (¢5,) — ¢ weakly in L* (qu X Q;l’f’lac>
and Tg 1 (Vi) — vy™ weakly in L <le71 X Fiijffm) when € — 0.
2. There exist ¢y in L? (Qghl,Hl(QZZf“c)), Qi ““-periodic in the direction x1, and Vy in
L? (le’l X Fl?lolvfrit) such that ¢;I’O‘XQ;£T;C — ¢y, weakly in L? (qu X Qgﬁf“c> and Vb}’axﬂéﬂw —

Vi weakly in L? (ng x Dyt ) when oo — +o0o. Moreover ¢y, and its gradient exponentially

decreasing to 0 when x5 — +o00.
Assumption 4.8 The limits ¢° and VO satisfy the conditions of Proposition 4.6.
Proposition 4.9 For each o, when ¢ — 0,
Ty 0" — <bil’°‘ + (bNO weakly in L* (Q,ﬁ)u X Qzl’f’lac)

and
Ty Vi — Vb%a + VO weakly in L* (qu X F;lvflfm) )

Proof. The proof is by passing € to 0 in Ty, ;¢ = T§,1(35¢0)+T§71(¢a), Ty, Ve =Ty, (BVO)+
Ty 1(Vy;) and combining with Proposition 4.6 and Assumptions 4.7 and 4.8. =

Proposition 4.10 The limit ¢y, is solution to

(—Axl(ﬁél —0 n ng,lvac

S = Vi on Ly i

Vaigy -t =0 on Tjpyee

Vaigy - m' is Ty ney - antiperiodic
Vagy -nl=-Ve¢'-n'  on |

\%z is Ty ) her - periodic.

Proof. The proof starts by finding the very weak form satisfied by the limit qb;l’a and then to
pass to the limit on a — oo to find the very weak form satisfied by ¢;;. The derivation of the
corresponding strong form follows. Let us begin with « fixed and replace v° in (2.2) by a smooth

function vf, in Q7" vanishing out of ;7" and s.t. vf; = 0 on I';;% . This yields

/Q O Agevy, da® = / VEV ey, - nds (2F) + / ¢°Vevy - n®ds (2°).
£,a,vac s vace

re;ovac
bl,1 bl,1,int bl,1,ext
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Taking a function w in C‘”(le’1 X Qll)l’f’lac), Qll,l’j)lac - periodic in the direction z{ satisfying w = 0

1,vac 1,vac 1 _ 1,vac 1,vac 1,vac 1,vac

on Lyjying U Do ad Vorw - mt =0 on Ty po U Ty 0y U Thi10 U e 0 We observe that
3 _ ,a,vac . £ c

By i (w) = 0 on I'y 7507, then replacing vy, by By (w), we get

/ ¢°Aqge By 1 (w) da® = / VeV e By 1 (w) - n° ds (2°) +/ ¢°Ve By (w) -m® ds (2°) .
QS -vac s ovac

re;evac

bl,1 bl,1,int bl,1,ext
(4.1)
A direct computation shows that
OBy jw . Low 10w
oo By <X1ﬁ(l)@ + Eﬁ_m}) ;
0 9Bjaw _ . (i)ia_er (i)giﬁw +l 0 ow
oxs  Oxs U XD\ ot ot T AT g dxt  e20x} ozl )’
for i € Z = {1,2,3} and with Z¥ = {1}. Then, the l.h.s of (4.1) becomes
0 ow 20 Jw 1
[.h.s = B ——=—+ ——=——=— 1+ =An dax*
’ /le’alvm ® <8xﬁ o7t T c o dxl = w) ’
1
=5 ¢° B (A w)dz® + O(e), (4.2)
QFvac

bl,1

where

& ow 2 0 dw
_ cpe dat - cEBf [ — —— | daf.
0(8) /S;il,o;,vac ¢ (axﬂ 8xﬂ) t + € \/leyial’vac ¢ (al'ﬁ al’%) .

The 7.h.s of (4.1) becomes
g 15 aw g 1 g g g
rh.s = /szjv {B (@) ni+ B (Vaw)-n } ds (z°)

¢ ¢ aw € 1 € 5 €
+/I:s,a,vac¢ {B (@) ny+ EB (Varw) n} ds (x).

bl,1,ext

. €,,vac - £,q,vac __ E,,vac £,a,vac £,a,vac s . 1
Decomposing Iy o, into Iy = Ty " ULy e, UL 1, and combining with Viiw -n® =0

on F;l’f}f;ﬂ U Fll)l’?ffop U I‘;l’jfg U F;l’j’fg yields B¢ (V w) -n® =0 on leoi?;i, then
r.h.s = %/FEWM VEB® (Vaw-n') ds(2f) + O(e), (4.3)
b int
where
Oe) = /aﬂmlm ¢°B° (%) nj ds(z®).
From (4.2) and (4.3),
8—12 - ¢* By (Apw) da® = é/rm@;‘; VB4 (Vaw-n') ds(z%) 4+ O(e), (4.4)

replacing By, ; by Ty using Proposition 4.5, Equality (4.4) becomes

1 1
- ¢ Ty (Aprw) da® = —/ VT (Vxlw . nl) ds (%) + O(e),
€ Jagqree €Uy
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By the definition of T3, we have

#t 1,a,vac
bl,1 Q1,1 X050 1 it

/S;n Ql a,vac T(;71(¢8)Ax1wdmﬁdx1 - / Tbsl,l(vs)vl‘lw : nl d.’L'ﬁdS (:El) + 0(5)
1,1 X800

Passing ¢ to 0, combined with Proposition 4.9,

1, o 1, iy
/u . m( 0+ ) Apwdatdat = /u " (V' ® + VOV, aw - n' datds(at), (4.5)
Qpr,1 %11 Q1,1 % T4l 1 ime
for each a.
Now we pass to the limit in . Equation (4.5) still holds if w is taken on the form of 7,v, where

oco,vac

(Ta)aclao,+oo 18 @ family of smooth truncation functions with compact support in le L X

270t Ooovac f Ooowac 200t Ooowac
Suchootvhaacut ToU — v forallve H (lefl X Qi) O%I:ch € C“"’(lel’1 X Qi C>Q)MQH (%lwlwx Qb%% mz
is (277~ periodic in the direction xy, v =0on I'y’ 0, Vav-nt =0on Ty oo UT 0 Uy
as well as |v], [V,1v], and |A,1v| exponentially decrease to 0 when x3 — +o00. Thus,

/g;ﬁ Qoo;vac

bl,1 % 41,1

( ;ja+¢0)XQ;iflach1(Tav ydafda! = / (%}’a+‘76)xgil,j,lacvm1(Tav)'nl dzfds(z!).

tt co,vac
Q1 XTpr it

Then, passing a to 400, by Assumption 4.7, we get

/ﬁ (¢p, + Q’SVO)AIM) dz*da! = / (Vi + ‘/}B)Vxl’l) -n' dzfds(z!).
Q¥

Qﬁbl L o0 vac
>

bl,1 bl,1,int

To carry out the interpretation of this very weak formulation, we consider that v is vanishing out

of a bounded domain which is taken as €, ; x Q%™ to avoid new notations. Then

/ (op, + (];())Axw dotdat = / (Vg + ‘//T))wa -n' dzfds(z!),
Q 1,vac

Qu Fl,uac

b1,1 X201 bl,1 %L bl,1,int

. 5 . : 1,vac 1,vac 1,vac 1,vac
for each a. Applying Green’s formula twice, decomposing 98" as Iy, Uy U0 U

1,vac 1,vac : s . 0 _ : 1,vac 0 _ 170 1,vac
[yito U Ty, using the conditions satisfied by v and A,i¢” = 0 in Q7 ¢° = VO on I'};75

V' n'=0on "%  Va¢?- n'is 1" _antiperiodic resulting from Proposition 3.3,
A ¢1§W dztda’ + / gbélvxw -n! dxﬂds(:vl)

bl,1,top? bl,1,per
/Q)i Ql,'uac Qﬁ Fl,'uac

1,1 X5 %01 1,1 % 1,1, int

- / Vi¢y, - ntodatfds(zt) + /
Qﬁ X(Fl,vac Ul—d,vac ) Qﬁ Fl,'uac

bl,1 bl,1,top =" bl,1,per 1,1 %4 bi,1,0

= / ViV v - n' dzbds (z").
1,vac
Qi xr

bl,1,int

Vi (qbél + 50) -n'vda’ds(z!)

. _ 1,vac 1,vac 1,vac 1 1,vac .
Posing v =0 on I'y g ULy, ULy e and Vv -nt =0 on Iy 5, vields

/ Ay (¢h)vdatdat =0
Q

# 1,vac
b1,1 X201
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and then
Apigy =0 in Q4"

1,vac 1,vac 1,vac
Next, for v =0on I'y; o UL, UL,

I (8 — Vi) Vv 0! defds(a) = 0,
Q
then

¢y = Vi on T

1,vac 1,vac
For v =0 on Fbl’m U Fbl’ljper,

1
/u ) Vi - n'odefds(z) =0,
,vac
Q15T 1 op
then
1 1 _ 1,vac
Vg, -n =0 on Fbl’l’top.

1
For v = 0 on I[';;%%

bl,1,per
/ Vo (qb;l + ¢0> -n'vdrfds(z') =0,
le,l Xréij)la,g
then N
Vady -n' = —V,1¢° - n'on F;ijﬁc)-
Last, we get

.l o
Vaidy, -n'is [y per - antiperiodic.

Since these equations hold true for any « then they hold in the infinite domain and the proof is
complete. m

5 Exterior Edge Model

We assume that all lateral boundary models are already derived and identified by the index i =
1,2,3,4 of the lateral boundaries, see Figure 2. We consider the contributions of two lateral
boundary models corresponding to the indices ¢ = 1 and ¢ = 2 at the first exterior edge. Obviously,
the sum of contributions is not continuous at this edge, and then it leads to propose an edge
corrector to overcome this problem. We introduce terms ¢, = ¢° — (B¢ + By 4 o Bgmgbgl)
and ve,, = V= — (BV° + B vy + Bf,V;7), where we recall that ¢” is the solution to the periodic
model while ¢;; and ¢3; are the solutions of the first and second lateral boundary problems near
the first exterior edge, By, and By, are the smooth approximation operators of the first and

second adjoint boundary layer two-scale transform operator 7" and Ty, , and v}, and V2 are
the weak limits of v;;* and v;;* when a — co which themselves are the weak limits of 7} ; (v;) in

2 i 1,vac e e\ = 2 b 1,a,vac
L (le,l X Fbl,l,int)? resp. of Tbl,2<vbl> in L <sz,2 X Fbl,Q,int)'
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5.1 Geometry Notations

Let Q0% | = Ucer,,., Q2 be a subdomain of Q° where Zeyen := {c = (c1,¢2) : c1,¢0 € 1, } with ae <

min{ L}, L?}, see Figure 9. The manner to construct its subdomains, boundary and subboundaries

. AT . . g,q,vac  __ TE,q,vac £,a,vac £,a,vac
follows this of the periodic model. Here the special case is I'c;1 cor = Ueveta U lere 1t0p YU Dere 1 gat
where 70"

e are to the ends x1 or z3 = ae of the boundary layer Q77 ;.
We introduce the finite microscopic domain ! _, defined by Q| = Ug;io(Ql +(E+1/2,n+

exe,l exe,l —

1/2,1/2)), see Figure 10. Here the periodic boundaries are replaced by Ty 1, Tt ) located

1,vac 1 1 _ lvac __
ere 1o b0 the ends z} or x5 = . Thus 09| =

to the first and second lateral boundaries and by I"
1, 1, 1, 1, L
DL L UTLS , U Ty T L UTES

exe,l,int exe,l,top exe,l,a*
The infinite microscopic domain 9%, ; and its related sets are defined as the limits of Q!

exe,l
and related when « tends to infinity.

5.2 Exterior Edge Boundary Layer Two-Scale Operator

We still consider any surface I'' in QF, T | = U?y;io(ﬁl +(E+1/2,n+1/2,1/2)) C Q. and
Ioret = Ueetpe,e((c1 — 1/2,¢0 — 1/2,1/2) +T) C m Then in this section the pair (X¢, X*)
stands both for (Qg;% |, Q. ) and for (Tgy |, Tl )

We introduce the dilation operator T, , for the first exterior edge model.

Definition 5.1 For any a, the operator T, | operating on any function ¢ with variable in Qg |
1s defined by

T (@) (x) = p(ext) for z* € ol

exe,l exe, 1"
ex € =1 ;
Here the operator T, | = (T¢,. ;)" ie.

T () (@) = (5.

X

Property 5.2 The operator T;;, | is the adjoint of T, in the sense

1 * 1> 15
5[ et = [ T et

83 Q5

exe,l exe,l

for all o € L*(Qg ), ¥ € L*(Q,.,), and in the sense

exe,l

1 * e €
2 ¢T§m6,1<w) dS(I ) = / Teme,l (@)dj dS(.’L‘l),
€ Jree r!

exe,l exe,l

forall o € LT 1), v € L*(Th,.)-

exe,l

In this edge case, the operator T¢;, | and its approximation B¢, are identical. However both

will be used in the model proof to follow the algorithm of Section 2.5.

Proposition 5.3 Let B, By, By, be the smooth approzimation operators of the adjoints of T¢,
Ty1s Ty o respectively.

18



1. For each «, if a function ¢ with variables in Qq x QY respectively in Q% x Tt is continuous
w.r.t. its first variable and is Q' - periodic in the directions x1,x then

TE

exe,l

(B*Y) () = o(xY) for z* in QL | respect. in T, | when e — 0,

where P(z') = (0, 2" — 1/2).

2. If a function v with variables in le’l X U7y, respectively in qu X I'pry, 18 continuous w.r.t.
its first variable in Qzﬁ)z,l and is Q7 - periodic in the direction ] then

1
exe,1’

T€

exe,l

(B, ¥) (') — () for zt in QL

exe,1”

respect. in I’ when € — 0,

where P(z) = (0, (z} — 1/2, 23, ).
3. If a function v with variables in ng,z X (2p7o, respectively in ng X I'pro, 18 continuous w.r.t.

its first variable in ng and is 7y - periodic in the direction xj then

€
Teze,l

(B o) (a') — () for z' € Q) respect. in '} when ¢ — 0,

exe,1”? exe,1’

where ¥(z') = (0, (x}, 25 — 1/2,21)).

5.3 Derivation of an Exterior Edge Model
Let us recall that ¢, = ¢"—(B°¢" + By, ¢y + Bjo0y) and V5, = Ve—(BVO + Bf Vil + B; ,Vid).

exre
In this section we assume that the following assumptions are satisfied.

Assumption 5.4 1. For each «, there exist ¢5 in L2(Q2%) and V.5 in L2(T0Y ) such

exe exe,l exe exe,l,int
€ € 1, . 2 1,vac € € 1, . 2 1,vac
that Te:ce,l (¢eme) - ¢eme wea’kly in L (Qeme,l) and Teme,l(v;ame) - ‘/e;re weakly in L (Fexe,l,int>
when € — 0.

2. Assume that there exist ¢.., in H' (QS0") with ¢! . and its gradient converging exponen-

exe exe,l exe
tially fast to zero when x} 4+ x5 — oo, and V. in L*(T.5,,) such that the extensions by

exre
2610 Prt X poae — boge weakly in L2(Q01) and VIS xgreae — VL, weakly in L*(T201%0)
exe,l exe,l

exe,l e exe exe,l,int

when o — +00.
The following proposition results from using Proposition 5.3.

Assumption 5.5 The limits ¢°, V° satisfy the assumption of Proposition 5.5.1 and similarly, (ﬁl,
Vb and ¢3,, Vi3 satisfy Proposition 5.3.2 and 5.3.3.

Proposition 5.6 When ¢ — 0,
thxe,l((bs) - (bi;coé + ¢0 + (bl%l + (bl%l

weakly in L2(Q2°%) and

exe,l
(Vo) = Ve + VO Vi +

exe

TE

exe,l

tﬁﬁakly m L2(F1’wc ), where E(xl) = 0,2 —1/2), g/o\gl(:pl) = @0, (z] — 1/2,2),23)) and

exe,l,int

o5 () = ¢3)(0, (x1, 25 — 1/2,23)) and with similar expressions for the voltage sources.
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Proposition 5.7 The limit ¢' _ satisfies

exe

( 1 . oo,vac
Aéfl¢exe =0 m exe,l
/1 oo,vac
gbezle - V;axe on Pexe,lﬂ'nt
1 _ oo,vac
vzl¢ea¢e n = 9\/ on exe,l,top
1 1 _ 2 1 oo,vac
Vﬂﬁl(beace n = —VII% n on Feme,l,bll
1 1 _ 1 1 oco,vac
\ vxl(bea:e ‘nt = _vl“l(bbl ‘n on Feze,l,bl?'

Proof. The outline of the proof runs as the previous ones. Firstly, we take a fixed o and
replace v° by a smooth function v¢,, in (2.2) s.t. v, is defined in Q20 7%, v,, = 0 on T2

exe ere exe,l exe,l,int
. €,
and vanishes out of Q. ;, then

& g g __ € € 15 g (3 1> € g
O°Agevs,, dat = VEV e, -n°ds (2°) + O°V e, - ds (2°) .
QS avac reoesvac e asvac
exe,l exe,l,int exe,l,ext

After that, we substitute v, by e 1B, | (w) where w is in C®(QL"*), w = 0 on T',2% tUFi;:”e‘fia

exe exe,l exe,l exe,l,in
1 _ 1,vac 1,vac 1,vac 1,vac
and Vaw-n" =0on Ly, Ule 1 o UL UL 0y e Hence,
1 1
5 e e __ € € € €
- ¢ Ape B,y (w)da® = — VEV e Be,o 1 (w) - 0° ds (29)
I Qs,a,'uac £ Fs,a,’uac

exe,l,int

1
e / OV By (w) -0 ds (2.
Fs,a,vuc

exe,l,ext

exe,l

We check at once that,
0B¢ oB:
e:veylw 1BE (8w ) and 0 exe,lw 1 - ( 0 Ow > 7

= — 1 _ 7 = ==
oxs e o\ Ox} oxs Ot g2 et \ O} Ox}
. : £ e __ g,a,vac
for all 7 = 1,2,3, and if follows that B, ., (V,w)-n® =0 on [ 7000, then
l ¢6s (A )de_l € RE (v . l)d(e)
3 exe,l 21W T = 5 exe,1 21W - 1 S\T).
ISl Qa,a,vac £ Fs,a,vac
exe,l exe,l,int

€%
exe,l’

Approximating B¢, ; by T, ; and combining with the definition of

exe,

/ Tfme 1(¢6)Ax1w da' = / ,fze I(VE)V$1w -n'ds (1:1) .
Ql,vac ’ s

Fl,vuc

exe,l exe,l,int

Passing ¢ to 0, by Proposition 5.6, it follows that

/Q (Gt "+ Oyt B Apwda’ = /F (VS + VOV + V) Voaw - nds ().
exe,l,int

. . . . . 1,vac
We now replace w by 7,v, where 7, is a smooth truncation function with compact support in €2,

and v € C=(QX )N H?(QX ) satisfying v = 0 on TS0 . Vaav-n! = 0on L2, UTLY U

exe,l exe,l exe,l,int’ exe,l,top ex

1 . :
L2 ey [0, [Varv] and |Agv| converge exponentially fast to zero when x] + a3 — 0o, 7,0 — v in
H2(22271) when o — oo. We obtain

La, 0, 41, 2 1 Lo 041112 1 1
(Demet @ +b+04 ) Xqrwae A1 (Tqv) da” = (Voo 4+ VOV + Vi) X grvac Vi Tov-n ds (:L‘ ) )
Qoo,'uac exe,l Foo’vac exe,l
exe,l exe,l,int
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Passing a to +00, by Assumption 5.4, we get

/Q (Phoe + " + b + o) Apvda’ = / (Vi + VO + Vi + V) Vv -nlds ().
oac e,

1,vac

exe1 fOT @ given

Now, we choose v vanishing out of {2

/Q oo (B + &+ Oy + B Apvdat = /F (Vi + VO + Vil +V2) V0 -ntds («1).
exe,l exe,l,int

. 5 . . l,vac _ pl,vac 1,vac 1,vac 1,vac
Applying Green’s formula twice and decomposing 92,1 = Teheq ine Ul ere 1 top Ul e 1 11 Ul e 1 12U
I ., combining with conditions satisfied by v, the results from Proposition 3.3 and Proposition

~0_ Af_ Aé/_ . 1,vac fv()_f\_(/)/\f_/\i/\é/_/\é 1,vac AE) 1 _

4.10 Awlgb - A$1¢bl - A$1¢bl =01in Qeme,l? ¢ =V ’¢bl - ‘/}717 ¢bl - V;)l on Feme,l,int’ vwlgb nt =
1 1 _ 2 1 _ 1,vac 0 1 1 _ 1,vac 0 2 1 _

Vagy -m' = Vg -n' =0 on Feace,l,to;ﬂ Vi (9" + ¢p) -nt =0 on Fexe,l,bll’ V(¢ + @) nt =0

1,vac
onI'); 5 s we deduce that

/ Agi (gl )vdat — / Vol -ntods(zt)
Ql,vac Fl,vac

exe,l exe,l,top

[ Valhor ) mivdste) < [ Vel + o)) mvds(a)
Fl vac Fl vac

exe,1,bll exe,1,bl2

+ / oL Vav-n'ds(z!) = / V> Vv -n'ds(zh).
Fl,vac Fl,vac

exe,l,int exe,l,int

The rest of the proof runs as the previous proofs. m

6 Interface Model

As the asymptotic voltage source V° may exhibit a discontinuity at the interface between two
zones, the solution ¢” in Proposition 3.3 inherit of this lack of regularity. This section introduces
an interface corrector to deal with this problem starting from the terms ¢, = ¢ — B*(¢") and
vy = Ve — B5(VY).

6.1 Geometry Notations

Let " be a subdomain of Q° defined as ;") = Ucez,, 2%, where Z;,; = {c = (c1,¢2) :
cg =i, nand e € is —ayis+a, 2 < 0,7 < ny} and a € Z7T, see Figure 11. The domain

Q57 is decomposed by two subdomains Q5% and QF7, written as Q5 for short, which are

7 in,l in,l in,l
. e e . £,a g,o+ g,00— -
subdomains of €25 and Q. The interface I'; " ;¢ between €;75" and €277 is a subboundary of
e e,at - g, ot e, at €,
Iyters- The complementary part of the boundary of €257 is I = 0,77 N Ty7 e All the
. . €,x e, €,k € . . e, vact
other notations are then derived from 5, €77, I and I'f ¢ with the exceptions I';77 00" =

Ps,a,vac:t U Fe,a,vac:t U Fs,a,vac:l:

in,l,a in,1,top in,llat *
The macroscopic domain Q2 ; = [L1, L}) is built as the partition {an,lcl = [c1e, (e1 + 1)5)}
i

in,lcy*

Y

c1=11,J1—1
with 4y, 5y s.t. L} =iye, L} = jie, and 2% = ¢1e + /2 is the center of
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The bounded microscopic domain €}, as in Figure 12 is the union of two subdomains QF

in,l
and Q. , s.t. Qi = U, _15(Q" + (0, +(n — 1/2),1/2)), with interface I} The notation

n=1,a in,1, interf"
system built for the physical domain is transposed to the microscopic domain.

For all regular function v defined in €j, ;, we denote v* and v~ the restriction of v in 911: , and
Qi

in1> and [[v]] = v* — v~ the jump of v at the interface I'}, | -

The infinite microscopic domain Q5 | and its boundaries are defined as the limit over o of €,
and of its boundaries.

6.2 Interface Boundary Layer Two-Scale Transform Operator

We again consider any surface I'' in QF, T} | = Ugeqy,-} Uy_1a (T + (0,0(n — 1/2),1/2)) C O}, |
and I3 = Ueez,,, ,€((c1 —1/2,¢2—1/2,1/2) +T1) € Q3. In this section the pair (X, X') stands
both for (Q57, €, ;) and for (I5%, T}, ). In Section 7.2 we also use Q57 and I'5e7 the limits over
aof Qi and of T} = U, (I + (0, £(n — 1/2),1/2)).

n, in,l

Let us introduce the interface boundary layer two-scale transform T7 ;.

Definition 6.1 The interface boundary layer two-scale transform TF, | operating on functions ¢
with variables in X¢ is defined by

Tra(@)ah2) =) xgr  (af)p(ah + exy, I + ey, ex3),
C1

in,lcy

forae. st e QF | xt e XV, L2 =ise and iy € ZV.

wn,1’

Let us introduce the operator T, defined by

in,l
1 x5 —aber a5 — L2 af
¢ (mﬁa c ) 9 ? dl‘ﬁXQﬁ ("E‘i) )

GRDIGE S

for all functions 1 with variables in an’l x X' and all 2° € X°.

Property 6.2 The operator T;', is the adjoint of T, | in the sense
1

g2 Jose

in,l

for all € L*(Q, , x QL1), o € L2(Q57), and in the sense

in,l

T () da = / T2 (o)ddatda’,
, an IXQ%n,l ’

1
! / oTE (V)ds(af) = / T2, (o) datds(a),

£ e, # 1
in,1 Qi 1xlin g

for ally € L, x T}, 1), ¢ € LAT5%).

in,l in,l

Definition 6.3 The operator BS, , is defined by

in,l
. . - e € x€
B )(e) = v (PG, D - 5 2.5,
for any function v with variables in Q?ml x X1 and all 2° € X¢, where P(x°) = 5.
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Proposition 6.4 For every ¢ in C*(Q, | x X1) and QL - periodic in the directions 1 and =},
then for all x* € X°©,
Tia () (2%) = B, ($)(27) + O(e).

Proposition 6.5 If1 is a function with variables in (25 UQL) x Q1 respectively in (8 UQL) x T,
is Qb - periodic in the directions xi, ¥y and is continuous w.r.t. its first variable in a vicinity of
the interface,

TE

in,l

(B2 (1)) (2%, 21) — ¥(at, ') for (z%, 2") in Q?ml x Q| respect. in ngl x T}, when e — 0,

where ¥ (xf x') =9 ((ﬁﬁ, L), (w1, 25 — %v T3 — %))

Proof. By the definitions of T}, ; and B®, we obtain

v

in,lcy

Tra(BE W) (@' 2") =Y xgr  (aF)BE(0)(a + eay, LT + ewy, exy)
C1

c 1 1
=2 Xay,,,, ()Y (‘”ﬁ’ o eat 13 ead), (o 0 — o, —>) |
c1

By the continuity property,

1 1
¢ ((mﬁ,q + &T%, L% + EQT%), (l’% + clal‘% - 5,1’:13 - _)) = ¢ ((l’ﬁ,L%), ((L’%,I‘; — 5 d3 _)> + 0(€)a

f f
for % in each (2, , . .

Passing ¢ to 0, then

T (B0) 0 (1), (k. = g0k - ).

6.3 Derivation of an Interface Model

Let us recall the expressions of the remaining voltage source V5 = V¢ — B*(V") and the corrector
o5, = ¢° — B°(¢°). Now we assume that the following assumptions are satisfied.

Assumption 6.6 1. For each a, there exist o)™ € L*(QF, |, H (7)), Q1Y - periodic in the

in,1» in,1 in,1
direction xt and Vi, € L2(QY, | x T1'1S.,) such that Tf, ((65) — ¢5%y weakly in L*(Q%,  x

in,lint
Qzlnwllc) and T3, (Vi) — Vo weakly in L2(Q§n’1 x Thvac .

mn in,lint

2. There exist ¢} € L2 | HY(Q)), Q0 - periodic in the direction x} and V;\ €

in,1 in,l in,l
2 f oco,vac . 1,« 1 . 2 f
LA(8%,  x T %) such that the extensions by zero ¢ Xqlvee = @y weakly in L (1 X
1 : , .
QY and Vi pwae — Vib weakly in L2(S%, | x T5o0% ). Moreover ¢, and it gradient
k) in71 bl =y

exponentially decrease to 0 when |xl| — +o0.

Assumption 6.7 The limits ¢° and V° satisfy the condition of Proposition 6.5.
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Proposition 6.8 When ¢ — 0 then

T5 1 (6°) = 63 + ¢ weakly in L (9,1 x Q1)

in,1
and .
T3 1 (V) = Vi + VO weakly in L*(,  x T;;'5,,),
where (2, 2') = ((z*, L3), (z], 2 — 3,23 — 3)).
Proposition 6.9 The limit @31 s a solution to
(2,10}, =0 in Q1
1 b
Din = Vin U
vx1¢zln -n' = 0 on on::iif)p
Vi, -n' is T5 er - antiperiodic
1 0 ,
[[Vxlqu}] ‘n' = — |:|:V:L"1¢ :|i| -n' on F;’)s,’f,aiftterf
1 0 :
[e0)] == [|¢']] o T3
\@n is Iy per - DeTiOdiC.

Proof. Only some key steps are detailed. We replace v® by a smooth function o5, in (2.2),

e s . €,a,vac e £,a,vac . £,a,vac
where vf, is defined in €277, vf, = 0 on ', 3, and vanishes out of €2,/
/ O°Agev;, dat = / VEV e, - n°ds (2°) + / ¢°Vevs, -0 ds (2°) .
£,a,vac £,a,vac £,a,vac
Qin,l Fin,l,int Fin,l,emt
. 5 c . 0o g ~1Lvac 1,vac : sl
Then, we substitute v5, by B, ;(w), where w is in C*°(€2}, | x ;7°(°), 7"/ - periodic in the
. . 1 .1 . 1l,vact 1,vact 1 _ 1,vac,+ l,vact 1l,vact
directions 1, x5, w =0 on I, 70, UL and Vaw - nt =0on Iy UL S0 U0, we

get

/ ¢ Ape By, 4 (w) daf = / VEV e By, (w) n® ds (935)+/ Ve By, 1 (w) -0 ds (2°) .
Qé.:,a,'uac Fg,a,vac

e ovac
in,l in,l,int in,l,ext
> o1, 51y

As for the other cases,

0B;, jw . ow 10w

Tow Bina (in @+ E@Ta}) :
0 OBiyw _p (O D020 w10
or: Oz ™! XA Bt gzt T TN dzt €29z} oxl )’

for all i € Z = {1,2, 3} where Z# = {1}.
We check that Bj, | (Vaw) -n® =0 on I';'05 and a calculation reveals that

in,

1 1
5_2 gbaBiEn,l (Arlw) dz® = E / VEBfn,l (vmlw ) nl) ds (CUE) + O(€>a
Qj;l?zivac F;,a,vac

in,l,int

coe [0 0w\ . 2 epe [0 Ow . o
Oe) = /Qw’mﬁb Bina (@@) dz® + g/m,a,mgb Bin (%07&%) de

in,l

& e aw . .
B /89j;la,vac ¢ Bin71 <@) nl ds(x )
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Thanks to Proposition 6.4, we have

1 1
5 S50 (D) da® = 1 / VT, (Varw - n') ds (2) + O().  (6.1)
Q;,L(’xivac s vac

in,l,int

By the definition of T}, it follows that

/jj . Tia (0°)Apw da*da! = /ii Tra (VO ) Vaw - n'dz* ds (xl) +0(e).
Q nVIXQ ,vac QO n’lxl—\s,a,vac

in,l in,l,int

Passing ¢ to 0, combined with Proposition 6.8, we obtain

/S;ﬁ Ql vac ((bi;la + (bO)Axlw dxudml - /S;ﬁ rlvac (‘/;i’a + i—/\(/))vxlw ' nl dxﬁds (xl) :
in,1 % in,1 in XLin1,int

for each a.
It follows that the above equality still holds if w is taken on the form of 7,v, where 7, is a
smooth truncation function with compact support Qfm x Q¢ and v € COO(ng1 x Q27N

in,l in,l
2 f ©0,0ac o0,vac . o e . . 1 .1 o oo,vact 1 _
H2(S%, 1 x Q07%), Q1™ - periodic in the directions @1, x5, v = 0 on [';7)55, Vav - nt =0 on
£ + .
o e Ul e > vl Vo], and |Aziv]  exponentially decrease to 0 when |z3| — +o00, and
: 2(0f oo,vac . .
ToU — v in H2(8, 1 x Q771%) when a tends to infinity. Then

(Vbe 4 ‘%)XQ;,U?CV,ﬂlw -n'dafds(z").

/ij 1><Q, vac

»
in,l

(647 + &)X A datda’ = /

# oco,vac
Qi1 X1

in,l,int

Passing a to 400, by Assumption 4.7 , we get

/ (65, + °) Ao datda’ = /
0l X 0f, xS

in,l,int

(Vi + ‘%)XQ;,vch:Bw -n' dzfds(zh).

L. 1 .
Now, we choose v vanishing out of an L X Q.07 for a given a

in,1
/ (63, + ¢")Agrv datda’ = / (VL + VO Vv - n' datds(z").
an lxggh’ljlllc an,lxr'};jlll,cint
Applying Green’s formula twice, then
~+
Z/m s DO 8 Yo dadat
+ in,1 <8 1
~+
- Z/ o Vo (oiE +¢° ) - n'*odaids(a')
+ an,l XaQiﬁqfllw
~+
Y AT S
+ an,lxaﬂir’:fc
~+
= Z/ (viE 4+ VO ) Vv - n'* datds (') .
VS

. lvac . 1,vact . . . l,vac,= _ plvac,t 1l,vac,+
Decomposing €2;,"1" into two parts 2,7 with their boundaries 9€2;;"7"" = [,/ U L0 U

~F
[hvacd g pleack pleac combining with the results of Proposition 3.3, A,1¢" = 0 in Q19°*

bl,1,per in,l,o in,l,interf? in,l
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Ab:t ot 1lvact NO:t 1+ 1lvact Ab:t 1+ 1,vac,+
¢ =V on N5, Vg -n= =0on )0 Vg -n'=is I 70 - antiperiodic, and

from the conditions satisfied by v it remains

Z/ _— A (5 v dabda!
Q Q vac

zan in,l

X s gy oottt

in,l X(an 1 top 1n l,per)

~+ ~
- /ﬁ |:Vx1 (Qli +¢° ) -V (gbzln_ + ¢ )} 'y defds(at)
anlxrl ,vac

in,1,interf

+> / GV v - n'F datds(2t)

~ + ~ —
- (04 ) (o + )| T en aasat
Q“L 1><F1 ,vac

in,1,interf

= Z /ﬁ i ViV v - n'E dzfds (a:l) .
Q ,vac

in, 1 zn 1,int

The rest of proof runs as the previous proofs. m

7 Internal Edge Model

We assume that all interface models are yet built with the index ¢ = 1,2,3,4 as in Figure 2. We
consider the contributions of two interface models ¢ = 1 and ¢ = 2 at the first internal edge zone,
see Figure 13. Since the sum of contributions is not continuous at this edge, we introduce an
internal edge corrector to overcome the lack of continuity. Here, the corrector and the remaining
voltage source are

5 € - 1+ 5
ine ¢ - B ¢ an 2 in XQET’LZ’";’“’Q - ( 1¢ + Bm 2%in )XQE s 11;ac »3 an 1%in Xanae 109% 4y
Vi, =V =BV — B;, Vi Xgeawace — (BS, Vit + B, oVt ) geawacs — B,
ine,1 ine,l

ine in,2 in,l in,l

1—
in, 2 V XQE [ vac 4,
where ¢ is the solution of the periodic model, qﬁli and gbzi are the solutions of the first and
second interface models in the interface zones near the first internal edge zone, B;, ; and Bj, , are

the smooth approximation operators of the first and second adjoint interface two- scale operators
Tgry and T, , Vi© and V" are the weak limits of Viil’aiXm vact N L2 1 X I20%) and of

n,2 in,l,int

V;i’aixgl,mci in L2(Q, , x [23%) when a tends to +oo, Vi ot and V>F are the weak limits of

in,2,int
T, (Vi) in L? (anl X F;;f‘fiii) and of Ty, ,(V,) in L? (an 5 X FJJ;‘%) when ¢ tends to 0. The

domains Q7% 71’“” is introduced in the next section.

7.1 Geometry Notations

The whole internal edge boundary layer domain €27 ,, which subscript ine, 1 refers to the first
internal edge, is a subdomain of Qf U 25 defined as Qme 1 = Ueet.,S2. Here Zye 1 is a set of

multi-indices ¢ = (¢1,¢) : ¢y € 13 — i1 +  — 1, and ¢3 € iy — a,in + a — 1, iy, i5 being such that
QE is the first internal edge cell, see Figure 14.

(31,i2)
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. €, . . . . £,Q,1 - ]
The domain (27, is decomposed into four nonoverlapping subdomains ;70 = Uz

e, ine,l

with the multi-index sets Ifne’l

Iilne,l = {(Cl? C2

Iizne,l = {(Cl? C2

I?ne,l = {(Cl? C2
(

4 _
Iine,l - { €1, C2

%

ZCleil—Oé,il—l, 0262'2—04,2'2—1},
ZCleil—Oé,il—l, CQG’iQ,iQ—FOé—l},
tcL €11,0 +a—1, CQEiQ,i2+Oé—1},

10162'1,’&-14‘@—1, CQEiQ—a,ig—l}.

We observe that Q7% is a subdomain of QF for i = 1,2,4 and of Q5 for i = 3. For the

ine,l
sake of concision, interface numbering is with indices modulo 4, e.g. 5 plays the role of 1 and

. . £,Q,1 e,a,i+1 - g,x s
so on. Precisely, the interface between 27 and €. is noted I';70 o +1 fori =1,2,3,4
€,x £, . . . £, . €,
and FZ"n,e,l,interf,S or Fine,l,interf,l fOl" i = 4. The whole 1nterface 18 Fine,l,interf - UiZIFine,l,interf,i‘ The
g,a,val,i g,aval,i - g,a,val,i g,a,val,i £,x £,
boundary aQine,l of Qine,l 18 decomposed as Fine,l,intUFine,l,extUFine,l, interf,iUFine,l, interf,i+1- All
the other notations for subdomains, boundaries and subboudaries are derived from these definitions
)

. . £,0,VAC,% __ TE,0,Vac,t £,0,0aC,1

with the exceptions I';70y ory = Ty 0, U0 o7

1

. . . . _ 4 1)3‘ . . .
The finite microscopic domain §2;, ., = U;_;§2;. | is also parametrized by «, with

QgﬁleJ = Ug,nzo,afl(Ql + (=€ —=1/2,—n—1/2,1/2)),
szeg = U{,n:O,a—l(Ql +(=§—-1/2,n+1/2,1/2)),
Qi’f;l = Ug,nzo,a—1(91 +(§+1/2,n+1/2,1/2)),

(€ +(

Ql

§+1/2,—n—1/2,1/2)),

14
Qine,l - U&n:(),a—l

see Figure 15.

The notation system built for the physical domain is transposed to the microscopic domain
without the need to detail it. The infinite microscopic domain €7, , is defined as the limit of Q}
when « tends to infinity.

Finally, for all regular function v defined in 2}, ;, we denote v’ the restriction of v to €’

[[v]] stands for a jump of v at the interface defined by the following formula

; and

1 4 1,
vt v at F’ine,l,interf,l
1 .2 1,vac
[[U“ _ v v at 1-‘ine,l,interf,2
- 3,2 t Fl,vac
v v a ine,l,interf,3
3

4 1,vac
vt = at Fine,l,interfA'

7.2 Internal Edge Boundary Layer Two-Scale Operator
We consider any surface I in QF, T} | = Userr -y U5 (T + (0,0(n — 1/2),1/2)) C Q. and

ine,l

5% = Ueer,, e((cr — 1/2,¢0 — 1/2,1/2) + T1) € Q7). Then in this section the pair (X X)

in,1 in,l*
stands both for (37", ;) and for (I';%,T,. ;). Now we introduce the dilation operator Tj,,

at the first internal edge.

Definition 7.1 The operator T, operating on functions @ with variable in X is defined by
Trea(@)(@') = p(exy + Ly, exy + L, ex3)
for ' € X1 where L} = i1e and L? = ise for some iy, iy € Z7.
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Here the operator 15" | = (1%

71 .
ine,l — zne,l) 1.e.
€ 1 € 2 €
a1 — Ly 25— 14 T3

Te () () = ( ity ) .

9 9 9

Property 7.2 The operator T}, | is the adjoint of Tf,. , in the sense

ine,

1 * I3 €
3 @Eiw,l(lp) dz® = / Ene,l(gp),(b dxla
£ Q5« !

ine,1 ine,l

for all ¢ € L*(Q,..,), v € L*(Q, 1) and in the sense

ine,l

1
62 ree

ine,l

T2 1 () ds(z) = / T2, () ds(a),

Fl

ine,1

forally € L2(T},.,), ¢ € L* (T35 ).

ine,l

In this internal edge case, the operator T;77, ; and its approximation B, are identical however

both will be used to follow the algorithm of Section 2.5.

Proposition 7.3 Let B®, B;, | and B, , be the smooth approzimation operators of T<*, T:r, and

n, in,2
[
Ty, then

1. If a function ¢ with variables in (8 UQE) x QL respectively in (Q UQL) x T, is continuous

w.r.t. its first variable and is Q' - periodic in the directions x1,xl then

3 1
T; ine,

ine,1l

(B*)(z!) — %Z(xl) for z in Qzl,w’l, respect. in T’

1 when € — 0,

where ¥(zt) = Y((LY, L2), 2! — 1/2)).

5o

i1 1S continuous

2. If a function = with variables in an,l x Q2% respectively in an,l X

in,l’
w.r.t. its first variable and is Q5°% - periodic in the direction x} then

Tien(Bs o) (') — oF(a') for z' in Q% | respect. in | nQ?

in,l ine,1’ ine, 17
dTe Be - 1 It 1 Ql,4 Lo Fl 9174
an me,1( in,1 @) — Y (x) fora € ine,1> respect. an Ly, o ML,

when € — 0, where = (z') = (L1, (x] — 1/2, 23, z1)).
3. If a function ¥* with variables in Qt-tm2 x Q2% respectively in anﬁ X I’fﬁ;, continuous w.r.t.

[ mn,2’
its first variable and is Q°% - periodic in the direction x} then

—

Tren(Biob ) (') — oF(a') fora' € Q8 | respect. in [esN Q)8

in,2 ine,1’ ine,1?
AT (B =) (2! o 1 l2 ¢t inT! L2
an ine,l( in,2 )("E ) — 7»5 (I ) fO?" LS ine,1’ respect. in ine,l N ine, 1’

when € — 0, where zﬁ(xl) = (L3, (x}, 2h — 1/2,23)).
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7.3 Derivation of an Internal Edge Model

The following assumptions are supposed to be fulfilled in the next propositions.

Assumption 7.4 We assume that
1. For each o, there exist ¢y in H'(Q;0F)
weakly in L*(Q0%) and T5,, 1 (v5,.) — ve

ine,l ine ine

Lo - 1, 1,
and Uince! m L2(Finlg,llc,int) such that infme,l(gb?ne) - gbinae

weakly in LT}, ).

ine,l,int

2. There exist ¢,

. n Hl(Qoo,vaC)’ le

ine.1 ine and its gradient converge exponentially fast to zero when
|zt| + |2d| = +oo, and v} . in LA(T5200 ) such that ¢};L’ZXQ;,MIC — ¢ weakly in L?(Q55:70)

ine ine,l,int ine,l

weakly in L*(To 15 ).

ine,l,int

1

ine

1,
and v, Xqlvae =V

Assumption 7.5 The limits ¢°, V° satisfy the assumption of Proposition 7.3.1. Similarly, ¢\,
Vi and o7, V2 satisfy the assumption of Proposition 7.5.2 and 7.5.83.

Proposition 7.6 When € — 0,

e € La | 70, 2 L ,
1—11'71671( ) — ¢ine + ¢ + ¢inXQf};11)ealc72UQ;hzalc,3 _|_ ¢7LNXQ;’;GIC’5UQLUQC’4

ine,1

weakly in L*(Q°%) and

ine,l
Trea(VE) = Vil + VO + VinXalpee2ugheaes + VipXgrwes jgivacs
weakly in LT ), where (%) = (L1, 12),2" — 1/2), oh (o) = 6L(I%, (e} — 1/2,28,23)),
and @2, (x") = ¢2 (L1, (2}, 23 — 1/2,23)) and with similar expressions for the voltage sources.

Proposition 7.7 The limit ¢;
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18 a solution to
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Proof. The main idea of the proof is the same as for the other models. Firstly, we replace v°

in (2.2) by a smooth function vj,, defined in €777 and vanishing out of €707, then

£ g g g g g g £ g g g
/ O°Agevy, dat = / VEV 5, - n°ds (2°) —|—/ ¢°V s, - n°ds (2°) .
QS avac e a.vac

e esvac

ine,l ine,l,int ine,l,ext
; € -1 e fa ] oo (()lvac —
After that, we substitute v;,. by e B;,, (w) where w is in C*°(€.,["]) such that w = 0 on
1,vac 1,vac 1 1,vac 1,vac
Fine,l,int U Fine,l,oz and v$1w ‘n° =0on Fine,l,top U Fine,l,oﬂ hence
! GACBE (w)det = = VeV, B, (w) - nf ds (z°)
2 Dine 1 \W) AT = o= Dipe 1 (W s(x
ISl Qs,a,vac £ Fs,a,vac
ine,l ine,l,int
1
€ € € £
+- ¢V e Bi oy (w) - ds (2°) .
£ e osvac
ine,l,ext
Obviously,
€ >
8Bine,1w . 1B8 ow and 0 aBine,lw . 1 c 0 Ow
——=-B, .| == — == | ===
0xs e "ot \ Oz} Oxs  Oxt g2 et \ Ozt ozl )’
. I e _ g,a,vac
for all i = 1,2,3, and Bj,,,(Vaw) -0 = 0 on Iy 0770, Thus,
l ¢£5 (A )da_l € RE (V 1)d(a)
3 ine,1 mlfUJ r = 2 ine,1 wlw n S\T .
£ Qs,a,vac I Fs,a,’uac
ine,l ine,l,int
: 5 €% : % e
Replacing B;,.; by T3, ; , then transposing T35, | to T, 1, we have

/ et (09)Apwda! = / rer(V)Vaw-n'ds ().
Q},vac ’ )

F},vac

ine,l ine,l,int

. lyvac | 4 1,vac,i lvac | 4 1,vac,i .
Decomposing ;07 = U;_, Q00" and Ty 0T = Ui Tl the above equality becomes

4 4 .
Sl [ T At =T, [TV a n s (o)
i;ze,l7 i;Le,l,yint

Passing ¢ to 0, and combining with Proposition 7.6, gives
Lh.s = / o ((pg;gvl + ¢O*) Apwdz' + / o (gbi;;j? + ¢ + gb;;) Apwda!
Qe Qinen’

La3d | 0+ |, 1+ | .2+ 1
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and
r.h.s = / (VZ;:1 + W) V. iw-n'ds (:1:1) + / (V-l’a’2 + VO 4 ‘Zf;) Vw-n' ds (xl)
Fl,vac,l

1,vac,2 e
ine,1 1—‘ine,l
La3 | 1704 1 1A 124 1 1
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i
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It follows that these above equalities still hold if w is taken on the form of 7,v, where v &€

00 [/ ()O0,vac 2 /(yoo,vac o oo,vac o oo,vac 1 oo,vac
C (Qine,l )N H (Qine,l ), v =0 on Fine,l,int? v =0on Fine,l,int and V,iv- no =0 on Fine,l,top 5
|v], |Vav], and |Agiv| exponentially decrease to 0 when |z1|+ |z3| — +00, and 7, is a smooth

truncation function with compact support Qzlniaf . Then
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Passing « to +o00, by Assumption 7.4,
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Now, we choose v vanishing out of {2
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that we note
=T, + 15+ T5 + Ty,

and
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(VJLS FVO- 4+ V2o ) Vav-n' ds(z')
1,vac,2

ine,l

+ / <Vz;3 VO 4+ VlJr + V2+> Vav-n'ds (z')
Fl vac,3

ine,1

+/ <VJL§+V0 + V- > Vav-n'ds (z').
plvacd

ine,1

Applying Green’s formula twice to each term T; yields,

= /Ql vac,1 <¢me ¢ ) mlvdwl

ine,l

ine, 1 ine, 1

o

1ne 1

/1 9 zne + ¢O_ + ¢zn ) CClU dxl
Q vac,

ine,l

[ 2m4~w+¢m)vdx—+/‘l (94246 + % ) Vo - nt2ds(a)
Q vac, 89 ,vac,

ine,l ine,l

/ 9 UVCEI (bme + ¢0* + (bm ) 1’2d8($1),
Ql vac,

ine,l

/1 . ¢me+¢°++¢> + o3 > Agivdz!

ine,l

/1 L Aa cbme+¢“++¢3$+¢?7f)vdxl+/
Q’U(ZC

ine,l 9

(62 + 6™ + 0l + 62 ) Varw - n'3ds(a)
Ql vac,3

ine,l

/ vV 1 <¢me + ¢O+ + ¢ + %) -n"3ds(at),
an vac,3

ine,l
and

T4 = / 4 (¢zne + gbOi + (bzn ) 2tV dxl
Ql vac,

ine,l

- /Q A (et e el a4 /

1,vac,4
ine,l 897,77,5 1

- / _— vV 1 (gf)}i +¢" + ¢Zln_) -n'ds(at).
BQ vac,

ine,l

(6t + 6" + 0L, ) Varv-n'ds(a!)

32



Decomposing each 90 = phvact yplveci | jplvaci jplvac yrkvae fori =1,2,3,4

ine,l ine,l,int ine,l,top ine,l,a ine,l,interf,i ine,l,interf,i41
and combining with the conditions satisfied by v, with the results from Proposition 3.3 and with

Proposition 6.9 it follows that A,1¢° = 0 in Qzlniaf, Appt =0in Q?r’fg}f’?’, Ayl =0in Qi,’:;‘,lf’zl,
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—_— —_—

. 1 3 - . 1 2 1
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The rest of the proof runs similarly as the proofs of the previous models. m
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Figure 1: Top view of the MIRA array with 100 x 200 cells. The zoom represents a single cell.
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W Interior edge

Figure 2: Zones where the asymptotic models are taken into account. The corresponding color
numbers indicate the models’index.

Micromirror

Suspended Beam:

Landing Beam

Landing Pad

Electrode

Figure 3: Overview of the components of a MIRA cell.
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Figure 4: Representation of two zones the external zone {2; and the internal zone {25 with different
actuation voltage in the MIRA array. The zoom illustrates one cell €1 1) of the array with the
mechanical structure in }) surrounded by the vacuum in Q{f9).
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c)

Figure 5: Illustration of the components of the cell ). of the MIRA array. The mechanical part
Qe is made with two components, (a) the mirror part Q¢ and (b) the electrode part Qec .
Figure (c) represents the vacuum part Q2.
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xz\]/ 1 1,vac
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Figure 6: The reference cell Q' =] — 1/2,1/2[*> made with the mechanical part Q"™ surrounded
by vacuum in Qe
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g,a,vac
bl,1lat

g,a,vac

bl,1,lat 0

Figure 7: The physical domain 77, for the first lateral boundary model with two subdomains

the mechanical body ;" and the vacuum part ;" with & = 1. The zoom represents the

internal subboundaries of the vacuum and the mechanical part between cells of the external zone.

Fl,vac
x% bl,1,a

1,vac
bl,1,per

1,mec
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1,mec
bl,1,per

1,vac
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Z1/2

. . . . . . 1 1 .
Figure 8: The microscopic domain €}, , with two subdomains ;7 and Q,;"/"“ with « =1 .
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‘_/’/ reavac
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1 0 Qife,l
Figure 9: The first exterior edge physical domain Q% . including two subdomains Q%" and
Y exe,l exe,l
o1 with = 1. The zoom illustrates their boundaries.
1,vac
Fexe,l,a
1,mec
Fexe,l,a
X2
1
X1
Fl,mec
exe,1,bl2
1,vac 1,vac
Fexe,l,blZ Fexe’l’bll
0
. . . . . ae . : ag,vac ag,mec
Figure 10: The first exterior edge physical domain g7, ; with two subdomains (2,2 and €,
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Figure 11: The first interface physical domain 7, with two nonoverlapping subdomains Qagl and

agvact
in, 1

in1> each domain QO‘E is assembled by two parts the vacuum part €2; and the mechanical

part Q0Cm with o = 1.

in,l

1,mec+
inla

rLvact
in1,per

1,vac—
in,1,per

Fl ,vac
inl,interf

1,vac—
Fm 1,a

Figure 12: The first interface microscopic domain €, .1 With two nonoverlapping subdomains Qb

1,vact
in,l

in,1
1 + .
mec ,in

and the mechanical part Qm 1

each of them also involves two parts, the vacuum part €2
the case of a = 1.

43



QS
2
& 2— & 2+ £ 4.0+
Bin,Z in Bin,z in B ¢
&
interf
Fi?t‘;,l,interfs | %\
/
2 (24,33
Qf—‘.a. Qe £ ;L+
ine,1 ine,1 Bm,l in
/N //W'
E,a
rine,l,interf,z sal &a,4 Fiii‘:,l,interm Bg 1—
Qine,1 Qine, in,1%¥in
& Qg’a rii‘:,l,interf,l
X5 ine,1 BE ¢0_
&
X1

Figure 13: Description of the geometry of the internal edge problem. The green and maroon colors
represent the zones of the first and the second interface models. The red region is the zone of the
first internal edge model made with four subregions. The electrostatic potential has a different
approximation in each of these subregions.
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Figure 14: The first internal edge €25, | in the physical domain with o = 1.
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Figure 15: The first internal edge €}, in the microscopic domain with a = 1.
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