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This paper proposes a new way to approach hysteresis with the rate-independent property
through an analytical response for the non-smooth hysteresis loop using frequency
response approximations. The method consists of rewriting the loading and unloading loop
using smooth operators and after applying a harmonic probing in the equivalent system to
obtain the higher-order frequency response functions computed by Volterra series. The
novelty of this paper lies on predicting analytically, through closed-form equations of
the Volterra kernels, the output and the hysteresis loop from a non-smooth system. To
illustrate the applicability of the proposed approach, a challenging benchmark with
hysteretic damping, described by the Bouc-Wen model, is simulated through a numerical
integration scheme. The hysteresis loops, as well as the outputs, are compared to the ana-
lytical approach proposed here. The results show that the Volterra model is able to predict
the hysteretic outputs when the excitation amplitude is weak and the hysteresis draws a
single loop in the restoring force � displacement plane. The higher-order FRFs are given
as a function of the model parameters. This framework could turn into an alternative tool
to perform nonlinear modal analysis on a hysteretic system.

� 2018 Elsevier Ltd. All rights reserved.
1. Introduction

The hysteresis effect is a nonlinear phenomenon described by a lag between the input and output involving memory
mechanisms [1]. They are found in many applications, for instance, energy dissipation and vibration isolators [2–5], bolted
joints in assembled structures [6], friction dynamics [7,8], etc. The models commonly used to describe the complexity of real
hysteretic systems are mostly phenomenological and seek to represent some physical properties observed experimentally
[9]. Several models that describe hysteresis can be found in the literature, for example, Presaich’s model, Prandtl-Ishlinkiı̆
[10] and the classic model proposed by Bouc (1971) [11] and expanded by Wen (1976) [12]. Unfortunately, few research
works have used white-box modelling to derive analytical solutions for hysteretic systems, and contributions still lack in
the literature.

For applications in a Bouc-Wen model, Okuizumi et al. (2004) [13] examined the response from a Bouc-Wen oscillator
through the multiple scales method to verify the stability of the solutions by visualizing the trajectories on the phase plane.
The idea behind the method lies on smoothing the hysteresis loop by an expansion of the restoring force using power series
through multiple scales. Ikhouane and Rodellar (2005) [14] proposed the analytical characterization of the limit cycle that
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occurs in Bouc-Wen oscillator for a periodic input by using its normalized version and instrumental functions that can
describe the effect of parameters of the model on the hysteresis loop. Other works use equivalent linearization to achieve
analytic expressions for the oscillator response, such as Shen et al. (2005) [15], who used the averaging method to obtain
the response of a suspension system with a magnetorheological damper, and Jalali (2014) [16], who proposed an alternative
linearized approach to deal with weakly hysteretic systems.

In addition, the multidimensional Fourier transform of the Volterra kernels, so-called higher-order FRFs and computed
through the classical harmonic probing method, is an attractive white-box modelling approach widely used in structural
dynamics for nonlinear modal analysis [17,18], system identification problems [19–22], output-only applications [23], struc-
tural damage assessment [24] and so on [25]. Furthermore, if it were not for technical limitations, such as the presence of
module functions in most examples involving hysteresis and the fading memory property that exists in the Volterra series
[26], the methodology could be an interesting tool to deal with hysteretic systems by deriving analytical expressions that
approach in an approximate way the hysteresis loop.

Therefore, to apply the Volterra theory to evaluate hysteretic systems, the nonlinear restoring force needs to be previously
smoothed by some procedure. Ran et al. (2014) [27] proposed simplifying assumptions that allowed to smooth the restoring
force of a hysteretic system modeled by the Bouc-Wen model by using Taylor series, but the hysteretic loop was not repro-
duced. Manson and Worden (2016) [28] explored the possibility of considering the non-smooth system as a combination of
smooth systems to develop a Volterra series representation for such models. That method aims to rewrite motion equations
by removing the hysteretic effect using a switch between the smoothed submodels. Unfortunately, it was also not possible to
represent analytically the hysteresis loop using the Volterra series since the switching procedure among the submodels
includes a transient component in the total output.

In summary, the main drawbacks listed in applying the Volterra theory to deal with hysteretic systems arise from the
procedure performed to smooth the hysteretic restoring force. Thus, the contribution of the present paper to overcome this
technical limitation lies on using a smooth nonlinear operator based on bounding functions that aim to reproduce individ-
ually the loading and unloading regime of the restoring force in systems that carry the rate-independent hysteresis property.
Since the polynomial form of the bounding functions can smooth properly the hysteretic restoring force, the novelty of this
paper is to identify parametrically, by using a harmonic probing algorithm, the higher-order frequency response functions of
an equivalent system that has the nonlinear operator. Although the results obtained here allow the hysteresis loop for
narrow-banded input conditions to be represented analytically, to the best of our knowledge, the possibility of describing
an analytical hysteresis loop approached by Volterra model was not demonstrated in previous works.

The paper is organized in 5 sections. First, Section 2 shows the assumptions used to develop the smooth bounding func-
tions. Section 3 introduces the Volterra theory and the harmonic probing method employed to derive analytical expressions
for the higher-order frequency response functions. Next, Section 4 presents the numerical application of the suggested
approach for the Bouc-Wen model benchmark recently proposed by Noël and Shoukens (2016) [29] at the Workshop on
Nonlinear System Identification Benchmarks. Further details about the challenges involving the hysteretic benchmark are
also enlightened by Esfahani et al. (2018) [30], Bajrić and Høgsberg (2018) [31], Rebillat and Schoukens (2018) [32], and
Worden et al. (2018) [33]. Finally, Section 5 reports the final remarks and the next steps for future works.
2. On the smooth nonlinear operator

Nonlinear operators can be used to describe non-smooth systems or even singular functions [34–37]. Giri et al. (2014)
[38] demonstrated that effects of backlash presented in non-smooth oscillators can be approached through Wiener models
by applying beforehand a piecewise smooth operator. Radouane et al. (2017) [39] assume a similar procedure to analyze a
hysteretic system modeled by a Bouc-Wen oscillator. Martins and Aguirre (2016) [40] discussed sufficient conditions to
identify autoregressive models for rate-independent hysteretic systems to reproduce multiple solutions in the polynomial
model by considering a single-input and single-output (SISO) Hammerstein model, which uses a multi-input and single-
output (MISO) deterministic NARX block. It is important to point out that all these bounding functions or structures do
not try to propose new physical models, but rather to extend methods and techniques to deal with non-smooth systems.
In addition, the present paper relates the Bouc-Wen parameters to the polynomial coefficients that compose the bounding
functions, as it is shown in 2.2.

2.1. Nonlinear operator

Some assumptions need to be made. First, a system with hysteresis that carries the bounded-input bounded-output
(BIBO) property when excited by a harmonic input u tð Þ ¼ A cos xtð Þ bounded between amplitudes
�1 < �A 6 u tð Þ 6 A < 1 will produce on the displacement � restoring force plane a hysteresis loop delimited by the
enclosed area ABCD [1], as is shown in Fig. 1(a).

The excitation u tð Þ belongs to the class of T�periodic input signals [9] and presents a periodic loading–unloading regime
defined in a period T 2 IRþ. Thus, the output from the hysteretic system �1 < ymin 6 y tð Þ 6 ymax < 1 moves along two dif-
ferent paths. When _u tð Þ > 0 the output y tð Þ is subjected to the load regime in the interval
y" tð Þ 2 y t þmTð Þ; y t þ mþ jð ÞTð Þ½ � and the pair Z; yð Þ moves along the path BCA. On the other hand, when _u tð Þ < 0, the



Fig. 1. Example of hysteresis loop in time continuous domain for a bounded loading–unloading input. is the loading output and – the unloading
output.
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system is in the unloading regime in the interval y# tð Þ 2 y t þ mþ jð ÞTð Þ; y t þ mþ 1ð ÞTð Þ½ � and the pair Z; yð Þ moves along
ADB, where j ¼ 1

2 is a time constant andm 2 Zþ is the number of oscillation cycles. This second remark was well discussed by
Radouane et al. (2017) [39] for defining the hysteretic loop assumption. Furthermore, systems where the restoring force Z
encodes the hysteresis depending only on the ymin 6 y tð Þ 6 ymax excursion interval are called rate-independent hysteretic
systems. The Bouc-Wen, Duhem, Presaich, Prandtl-Ishlinkiı̆ models, etc. exhibit this property [10].

From the description of the loading–unloading paths on the hysteresis loop, it is possible to propose the bounding func-
tions making use of theWeierstrass approximation theorem [41], which defines if f xð Þ is a continuous function defined in the
interval A;B½ � and, if an approximation error � > 0 exists, then a polynomial form P xð Þ in A;B½ � exists such that:
f ðxÞ � PðxÞj j < � 8 x 2 ½A; B� ð1Þ

Assuming that the load and unload regime cycles on the hysteresis loop can be interpreted individually, one can propose a
particular function for each regime by encoding its nonlinear dynamic to transform a hysteretic system into an equivalent
piecewise smooth problem.

Then, let F" y tð Þ½ � and F# y tð Þ½ � be continuous bounding functions along the interval ymin 6 y tð Þ 6 ymax to describe properly
the load and unload regimes, respectively. Based on the Weierstrass approximation theorem, the functions F" y tð Þ½ � and
F# y tð Þ½ � can be written as [38]:
F y tð Þ½ � : F" y tð Þ½ � ¼ f 0 þ f 1y tð Þ þ � � � þ f ny
n tð Þ for sign _u tð Þð Þ P 0

F# y tð Þ½ � ¼ d0 þ d1y tð Þ þ � � � þ dnyn tð Þ for sign _u tð Þð Þ 6 0

(
ð2Þ
where f 0 þ f 1 þ � � � þ f n and d0 þ d1 þ � � � þ dn are the coefficients that compose the bounding functions. Furthermore, the
continuity relation between these functions must be guaranteed to provide a smooth transition between the cycles:
F" y t þmTð Þ½ � ¼ F# y t þmTð Þ½ �
F " y t þ mþ jð ÞTð Þ½ � ¼ F# y t þ mþ jð ÞTð Þ½ �8t ð3Þ
After establishing the existence of bounding functions, the next section presents how to rewrite the coefficients
f 0 þ f 1 þ � � � þ f n and d0 þ d1 þ � � � þ dn as a function of the hysteretic system described by the Bouc-Wen model.

2.2. Application example on the Bouc-Wen oscillator

The classic phenomenological oscillator model proposed by Bouc (1967) [42] and expanded by Wen (1976) [12] to
describe a single-degree-of-freedom system with hysteresis is given by:
m€y tð Þ þ c _y tð Þ þ ky tð Þ þ Z y; _yð Þ ¼ u tð Þ ð4Þ
_Z y; _yð Þ ¼ a _y tð Þ � b c _y tð Þj j Z y; _yð Þj jm�1Z y; _yð Þ þ d _y tð Þ Z y; _yð Þj jm

� �
ð5Þ
wherem [kg] is the mass, c [Ns/m] is the viscous damping, k [N/m] is the linear stiffness, a [N/m], b; c [m�1], d [m�1] and m are
the Bouc-Wen parameters. In addition, €y; _y and y are the acceleration [m/s2], velocity [m/s] and displacement [m],
respectively, for an excitation input u [N]. The term Z y; _yð Þ represents the hysteretic force that is described by the ordinary
differential equation _Z y; _yð Þ.
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In fact, the use of the Volterra series and the harmonic probing method in Eqs. (4) and (5) is not possible due to the pres-
ence of absolute values. However, the smooth bounding functions F" y tð Þ½ � and F# y tð Þ½ � can be well represented by the Vol-
terra series, since their representation are convergent. In this way, the interest in proposing the nonlinear operator is to
explore the possibility of the higher-order FRFs describing systems with hysteresis in addition to being parametrized by
the Bouc-Wen parameters.

The shape of the hysteresis loop changes according to the model parameters and more details are given by [14,43–45].
Dividing the Eq. (5) by _y:
dZ
dy ¼ a� b c _yj j Zj jm�1Z

_y þ d Zj jm
� �

) dZ
dy ¼ a� b Zj jm sgn _yZð Þcþ d½ �

ð6Þ
If Z ¼ 0, the slope of the restoring force is a implying that the parameter a can be associated in an equivalent way with the
linear stiffness k when the oscillator is subjected to null initial conditions. Moreover, it is important to point out that b is
responsible for the hysteresis effects, c in turn, whose values are always greater than zero for real systems, is the parameter
that controls the hysteretic relationship between Z and y. Finally, the combination of �cþ dð Þ characterizes the hardening or
softening behavior in the hysteresis loop [46].

The explicit time integration of Eq. (6) with m ¼ 1 divides the hysteresis loop of the Bouc-Wen model into four different
intervals on the force � displacement plan between the signs of _y and Z. The equations of each interval are given by:

� Interval (i): _y 6 0;Z P 0
Z1 ¼ a
b d� cð Þ 1� e�b d�cð Þ y�y0ð Þ� � ð7Þ
� Interval (ii): _y 6 0;Z 6 0
Z2 ¼ � a
b dþ cð Þ 1� eb dþcð Þ y�y0ð Þ� � ð8Þ
� Interval (iii): _y P 0;Z 6 0
Z3 ¼ � a
b d� cð Þ 1� eb d�cð Þ yþy0ð Þ� � ð9Þ
� Interval (iv): _y P 0;Z P 0
Z4 ¼ a
b dþ cð Þ 1� e�b dþcð Þ yþy0ð Þ� � ð10Þ
where y0 is the displacement at Z ¼ 0. The loading regime of the hysteresis cycle is described by the pair Z3;Z4ð Þ, whereas
that the unload pair is Z1;Z2ð Þ. Besides that, these equations can check when y0 assumes a unique absolute value in Eqs. (7)–
(10), since the hysteresis loop of the oscillator is symmetric regarding each regime of motion. Under these conditions, the
bounding functions need to have the same structure for load and unload cycles, which means that the coefficients with
the same subscript have equal absolute values, i. e., f 0 ¼ d0; f 1 ¼ d1; . . . f n ¼ dn.

An alternative way to rewrite the restoring force Eqs. (7)–(10) is by using the Taylor series approach around the displace-
ment y0 assuming the first three orders:
Z1 ¼ a y� y0ð Þ � ab d� cð Þ
2

y� y0ð Þ2 þ a �b d� cð Þð Þ2
6

y� y0ð Þ3 ð11Þ

Z2 ¼ a y� y0ð Þ þ ab dþ cð Þ
2

y� y0ð Þ2 þ a b dþ cð Þð Þ2
6

y� y0ð Þ3 ð12Þ

Z3 ¼ a yþ y0ð Þ þ ab d� cð Þ
2

yþ y0ð Þ2 þ a b d� cð Þð Þ2
6

yþ y0ð Þ3 ð13Þ

Z4 ¼ a yþ y0ð Þ � ab dþ cð Þ
2

yþ y0ð Þ2 þ a �b dþ cð Þð Þ2
6

yþ y0ð Þ3 ð14Þ
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Logically, the more terms included in the Taylor series approach, the greater the precision of the polynomial form for the
hysteresis loop will be. However, for sake of simplicity and by convergence assurance for the conditions addressed in this
work, the functions F# y tð Þ½ � and F" y tð Þ½ � assume a polynomial form up to the cubic term according to the order used in
the Taylor series approach:
F" y tð Þ½ � ¼ k0 þ k1y tð Þ � k2y2 tð Þ þ k3y3 tð Þ for sign _u tð Þð Þ P 0 ð15Þ
F# y tð Þ½ � ¼ �k0 þ k1y tð Þ þ k2y2 tð Þ þ k3y3 tð Þ for sign _u tð Þð Þ 6 0 ð16Þ
where k0 [N], k1 [N/m], k2 [N/m2] and k3 [N/m3] are their coefficients. Also, each coefficient is responsible for describing many
features of the hysteresis loop, for instance, k0 provides the multiple solutions to the nonlinear operator, k1 is the slope of the
restoring force and finally, k2 and k3 give the hardening or softening stiffness characteristics to the model. Comparing Eqs.
(11)–(14), the F# y tð Þ½ � is used to approach the pair Z1 and Z2, which describes the intervals (i) and (ii), whereas the F" y tð Þ½ �
function is responsible for the other ones. Finally, the motion equation using the proposed nonlinear operator is given by:
m€y tð Þ þ c _y tð Þ þ ky tð Þ þ F y tð Þ½ � ¼ u tð Þ ð17Þ

The coefficients of the polynomial form are computed by minimizing an error function described by [21]:
E k0; k1; k2; k3ð Þ ¼
Z y0

�Y
Z2 � F# y tð Þ½ �� �2

dyþ
Z Y

y0

Z1 � F# y tð Þ½ �� �2
dy ð18Þ
subjected to:
@E
@ki

¼ 0; for i ¼ 0;1;2;3 ð19Þ
which results in the following expressions:
k0 ¼ ay0
16

3bdY þ 8bcy0 � 16ð Þ ð20Þ
k1 ¼ a ð21Þ
k2 ¼ ab

16Y
8bd2Yy0 þ 8bc2Yy0 þ 15bdcy20 � 8cY � 15dy0
� � ð22Þ

k3 ¼ ab
96Y5

16bd2Y5 þ 70bdcY4y0 � 70bdcY2y30 � 35dY4þ
105dY2y20 � 105dy40

 !
ð23Þ
where Y ¼ yminj j ¼ ymaxj j. These equations are valid only for harmonic excitations that ensure a weak hysteretic force and
when the force � displacement plane draws a single loop. Furthermore, despite the application illustrated on a Bouc-Wen
model, the approach proposed could be used to deal with other hysteretic systems with the rate-independent property.

3. Multi-input Volterra series and the Harmonic Probing Method

For multi-input and single-output (MISO) systems, the functional of the Volterra series in continuous time domain is
given by the following mapping with the multi-inputs u1 tð Þ þ u2 tð Þ þ � � � þ uj tð Þ [47]:
y tð Þ ¼
X1
g¼1

yg tð Þ ¼
Xj

p¼1

Z
IR1

h
upð Þ

1 s1ð Þup t � s1ð Þds1|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
¼y1 tð Þ

þ
Xj

p¼1

Xj

k¼1

Z
IR2

h
up ;ukð Þ

2 s1; s2ð Þup t � s1ð Þuk t � s2ð Þds1ds2|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
¼y2 tð Þ

þ
Xj

p¼1

Xj

k¼1

Xj

l¼1

Z
IR3

h
up ;uk ;ulð Þ

3 s1; s2; s3ð Þup t � s1ð Þuk t � s2ð Þul t � s3ð Þds1ds2ds3|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
¼y3 tð Þ

and higher� order contributions

ð24Þ
where each polynomial contribution of g�order is given by:
yg tð Þ ¼
Xj

p¼1

Xj

k¼1

� � �
Xj

n¼1

Z
IRg

h
up ;uk ;...;unð Þ
g s1; s2; . . .; sg

� �Yg
i¼1

up t � s1ð Þuk t � s2ð Þ. . .un t � sg
� �

ds1ds2. . .dsg ð25Þ
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The term h
up ;uk ;...;unð Þ
g s1; s2; . . . ; sg

� �
is called direct or cross Volterra kernel related to the jth input and is a generalization of the

well-known impulse response function [23]. In order to simplify the notation it is assumed that:
Z
IRg

¼
Z
IR�IR�...IR

¼
Z 1

�1

Z 1

�1
. . .

Z 1

�1|fflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflffl}
gth order
The estimation of each contribution for a MISO system involves a large number of parameters that occur over-
parametrization. However, these kernels can be constructed in a symmetric way, which reduces the number of terms to

be calculated [48], i. e., the term h u1 ;u2 ;...;umð Þ
g s1; s2; . . . ; sg

� �
is considered identical for all the input permutations, for instance

h u1 ;u2ð Þ
2 s1; s2ð Þ ¼ h u2 ;u1ð Þ

2 s1; s2ð Þ. Then, assuming m ¼ 2 the contributions are given by:
y1 tð Þ ¼ y u1ð Þ
1 tð Þ þ y u2ð Þ

1 tð Þ
() y1 tð Þ ¼ RIR1 h u1ð Þ

1 s1ð Þu1 t � s1ð Þds1þR
IR1 h u2ð Þ

1 s1ð Þu2 t � s1ð Þds1

ð26Þ

y2 tð Þ ¼ y u1 ;u1ð Þ
2 tð Þ þ y u2 ;u2ð Þ

2 tð Þ þ y u1 ;u2ð Þ
2 tð Þ

() y2 tð Þ ¼ RIR2 h u1 ;u1ð Þ
2 s1; s2ð Þu1 t � s1ð Þu1 t � s2ð Þds1ds2þR

IR2 h u2 ;u2ð Þ
2 s1; s2ð Þu2 t � s1ð Þu2 t � s2ð Þds1ds2þ

2
R
IR2 h u1 ;u2ð Þ

2 s1; s2ð Þu1 t � s1ð Þu2 t � s2ð Þds1ds2

ð27Þ

þ higher� order contributions
The higher-order FRFs, as well as the linear FRFs, provide an interesting insight into the dynamical properties of nonlinear
systems in the frequency domain [49]. It is important to point out that since the higher-order FRFs are known, these func-
tions can be used to describe the system output for any input with a well-known mathematical expression. The multi-
dimensional Fourier transform of the Volterra kernels for multi-inputs can be calculated by [50,51]:
H up ;uk ;...;unð Þ
g x1;x2; � � � ;xg

� � ¼ Z
IRg

h
up ;uk ;...;unð Þ
g s1; s2; . . . ; sg

� ��Yg

i¼1
e�jxisi ds1ds2 . . . sg ð28Þ
The computation of the higher-order FRFs carried out through the harmonic probing method requires knowledge of the
motion equations such as white-box modelling. For a three-tone input given by:
u tð Þ ¼ A cosx1t þ B cosx2t þ C cosx3t

) u tð Þ ¼ A ejx1 tþe�jx1 tð Þ
2 þ B ejx1 tþe�jx1 tð Þ

2 þ C ejx1 tþe�jx1 tð Þ
2

ð29Þ
the generalized expression for the contributions mapping of g�order is written as [20]:
yg tð Þ ¼ 1
2g

X
NþMþL¼g

ANBMCL Cg
p;q;r;s;v;-

� �
Hp;q;r;s;v;-

g xð Þej Nx1þMx2þLx3ð Þt ð30Þ
where p; q; r; s;v and - are integer values and
Cg
p;q;r;s;v;- ¼ g

p!q!r!s!v!-!
ð31Þ

Hp;q;r;s;v;-
g xð Þ ¼ Hg x1; . . . ;x1|fflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflffl}

p times

;�x1; . . . ;�x1|fflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflffl}
q times

;x2; . . . ;x2|fflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflffl}
r times

;�x2; . . . ;�x2|fflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflffl}
s times

;x3; . . . ;x3|fflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflffl}
vtimes

;�x3; . . . ;�x3|fflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflffl}
- times

0
B@

1
CA ð32Þ
With the generalized series response established for a multi-input case, it is possible to derive the higher-order FRFs for
the motion Eq. (17) described by the nonlinear operator as an equivalent hysteretic system.

3.1. Higher-order FRFs applied on the nonlinear operator

The equivalent systemwith hysteresis defined in Eq. (17) carries the change between the bounding functions according to
sign _u tð Þ½ �, which can be approximated well by a square wave with the same period of _u tð Þ. Thus, Eq. (17) can be rewritten as:
m€y tð Þ þ c _y tð Þ þ ky tð Þ þ u0 tð Þ þ k1y tð Þ þ .y2 tð Þ þ k3y3 tð Þ|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
¼F y tð Þ½ �

¼ u tð Þ ð33Þ
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where the term u0 tð Þ ¼ k0U _u tð Þ½ �, with U _u tð Þ½ � � sign _u tð Þ½ �, is considered as an additional input applied to the equivalent sys-
tem and . is defined as . ¼ k2 . ¼ �k2ð Þ for sgn _u tð Þ½ � < 0 sgn _u tð Þ½ � > 0ð Þ.

Since the nonlinear operator has terms up to the cubic order, it is used m ¼ 3 contributions to compute the higher-order
FRFs. More than three contributions could be used to predict the output, but the complexity to compute other higher-order
FRFs kernels is increased. Fortunately, as highlighted by Lin and Ng (2018) [22], the use of the first three Volterra kernels has
been suitable to deal with polynomial nonlinearities similar to that presented in the Eq. (33), as well as in practical engineer-
ing problems [52].

The discontinuity that occurs with .y2 tð Þ directly impacts on the calculation of the second order Volterra contribution in
the time domain; however, as pointed out in Section 3.2 the discontinuity can be overcome. The changes on U �½ � can be
described by Fourier series:
u0 tð Þ ¼ k0
XNs

k¼1

4 sin 1þ 2 k� 1ð Þ½ �xtf g
1þ 2 k� 1ð Þ½ �p|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

¼U _u tð Þ½ �

() u0 tð Þ ¼ j2k0
p

XNs

k¼1

e�j 1þ2 k�1ð Þ½ �xt � ej 1þ2 k�1ð Þ½ �Þxt

1þ 2 k� 1ð Þ
	 


|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
¼U _u tð Þ½ �

) u0 tð Þ ¼
XNs

k¼1

Ak ej 1þ2 k�1ð Þ½ �Þxt � e�j 1þ2 k�1ð Þ½ �xt
� �

ð34Þ
where
Ak ¼ � j2k0
pþ 2 k� 1ð Þp ð35Þ
and x is the excitation frequency [rad/s], Ns is the number of terms used by the Fourier series and j ¼
ffiffiffiffiffiffiffi
�1

p
. This approxi-

mation states that: if Ns tends to 1, then U _u tð Þ½ � must tends to sign _u tð Þ½ �. Thus, for a single-tone input u tð Þ ¼ Aejxt the fol-
lowing additional input is assumed with Ns ¼ 2:
u0 tð Þ ¼ A1ejxt þ A2ej3xt ð36Þ
The calculation of the higher-order FRF is carried out by assuming the probing harmonic inputs:
u1 ¼ Aejxt u2 ¼ A1ejxt u3 ¼ A2ej3xt ð37Þ

based on the generalized response contributions, the probing expressions of displacement, velocity and acceleration for the
first order y1 tð Þ contribution are:
y1 ¼ AH u1ð Þ
1 xð Þejxt þ A1H u2ð Þ

1 xð Þejxt þ A2H u3ð Þ
1 3xð Þej3xt

_y1 ¼ jxAH u1ð Þ
1 xð Þejxt þ jxA1H u2ð Þ

1 xð Þejxt þ j3xA2H u3ð Þ
1 3xð Þej3xt ð38Þ

€y1 ¼ �x2AH u1ð Þ
1 xð Þejxt �x2A1H u2ð Þ

1 xð Þejxt � 3xð Þ2A2H u3ð Þ
1 3xð Þej3xt
by substituting the responses into Eq. (33), and equating the terms Aejxt
;A1ejxt ;A2ej3xt provides:
H u1ð Þ
1 xð Þ ¼ H u2ð Þ

1 xð Þ ¼ H1 xð Þ () H1 xð Þ ¼ 1
�mx2 þ jxc þ kþ k1ð Þ ð39Þ

H u3ð Þ
1 3xð Þ ¼ H1 3xð Þ () H1 3xð Þ ¼ 1

�m 3xð Þ2 þ j3xc þ kþ k1ð Þ
ð40Þ
the kernel expression H1 xð Þ corresponds to the linear FRF, where xn ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
kþ k1ð Þm�1

p
. The first order contribution y1 tð Þ

holds the superposition principle and, for this reason, its kernel H u3ð Þ
1 3xð Þ presents resonance frequency at

3x ¼ xn ) x ¼ xn=3 due to the harmonic from the input signal ej3xt . Furthermore, the kernels that have been derived

by the single-tone inputs u1 ¼ Aejxt and u2 ¼ A1ejxtwill always show equal expressions for both inputs, for instance
Hu1 ;u1

2 x1;x2ð Þ ¼ Hu2 ;u2
2 x1;x2ð Þ ¼ Hu1 ;u2

2 x1;x2ð Þ. For this reason, the kernel superscripts are omitted as well as the computa-
tion of the kernels that arise from the input u2.

The mapping performed through the nonlinear contributions in the frequency domain requires that the kernel transforms
contains a sum of frequency components x1 þx2ð Þ and x1 þx2 þx3ð Þ for the second and third order contributions, respec-
tively. Moreover, the algorithm developed by Worden et al. (1997) [50] computes the higher-order kernels to analyze
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separately each term that composes the contribution yg tð Þ. This procedure uses a significant reduction of the mathematical
effort to obtain the kernels. The probing inputs to estimate the second order direct-kernels are given by:
u1 ¼ Aejx1t þ Aejx2t ; u3 ¼ A2ej3x1t þ A2ej3x2t ð41Þ

then, the responses y u1 ;u1ð Þ

2 ; _y u1 ;u1ð Þ
2 and €y u1 ;u1ð Þ

2 are:

are :

y u1 ;u1ð Þ
2 ¼ AH1 x1ð Þejx1t þ AH1 x2ð Þejx2t þ 2A2H2 x1;x2ð Þej x1þx2ð Þt

_y u1 ;u1ð Þ
2 ¼ jx1AH1 x1ð Þejx1t þ jx2AH1 x2ð Þejx2t þ j2 x1 þx2ð ÞA2H2 x1;x2ð Þej x1þx2ð Þt

ð42Þ

€y u1 ;u1ð Þ
2 ¼ �x2

1AH1 x1ð Þejx1t �x2
2AH1 x2ð Þejx2t � 2 x1 þx2ð Þ2A2H2 x1;x2ð Þej x1þx2ð Þt
substituting the expressions (42) into Eq. (33) and equating the terms A2ej x1þx2ð Þt the second order Volterra direct-kernel is
given by:
H2 x1;x2ð Þ ¼ �.H1 x1ð ÞH1 x2ð ÞH1 x1 þx2ð Þ ð43Þ

Applying the previous procedure with the outputs y u2 ;u2ð Þ

2 ; _y u2 ;u2ð Þ
2 and €y u2 ;u2ð Þ

2 yields:
H2 3x1;3x2ð Þ ¼ �.H1 3x1ð ÞH1 3x2ð ÞH1 3x1 þ 3x2ð Þ ð44Þ
To obtain the simplified mapping for the second order Volterra cross-kernel, the probing is performed with the inputs

u1 ¼ Aejx1t and u2 ¼ A2ej3x2t . Thus, the output probing expression is given by:
y u1 ;u2ð Þ
2 ¼ AH1 x1ð Þejx1t þ A2H1 3x2ð Þej3x2t þ 2AA2H2 x1;3x2ð Þej x1þ3x2ð Þt

_y u1 ;u2ð Þ
2 ¼ jx1AH1 x1ð Þejx1t þ j3x2A2H1 3x2ð Þej3x2t þ j2 x1 þ 3x2ð ÞAA2H2 x1;3x2ð Þej x1þ3x2ð Þt

ð45Þ

€y u1 ;u2ð Þ
2 ¼ �x2

1AH1 x1ð Þejx1t � 3x2ð Þ2AH1 3x2ð Þej3x2t � 2 x1 þ 3x2ð Þ2AA2H2 x1;3x2ð Þej x1þ3x2ð Þt
The cross-kernel expression is:
H2 x1;3x2ð Þ ¼ �.H1 x1ð ÞH1 3x2ð ÞH1 x1 þ 3x2ð Þ ð46Þ
All the second-order kernel expressions result in a three-dimensional plot figure. For this reason, the analysis of the sur-
faces is a difficult task, which can be overcome considering only the leading diagonal of the higher-order FRFs, since it pro-
vides the key features of the resonance peaks. For x1 ¼ x2 ¼ x, the leading diagonals are expressed as:
H2 x;xð Þ ¼ �.H2
1 xð ÞH1 2xð Þ; ð47Þ

H2 3x;3xð Þ ¼ �.H2
1 3xð ÞH1 6xð Þ; ð48Þ

H2 x;3xð Þ ¼ �.H1 xð ÞH1 3xð ÞH1 4xð Þ ð49Þ

As can be seen, all the second-order kernels are dependent on the loading–unloading cycles that occur along the hystere-

sis loop, since these kernels are affected by the changes on the parameter .. When represented in time domain, the contri-
bution y2 tð Þ must be split into y#2 tð Þ and y"2 tð Þ derived by the kernels computed with . > 0 and . < 0, respectively. The
harmonic interactions that occur between the frequency components from the inputs are clear in the cross-kernel
H2 x;3xð Þ, which shows sub-harmonics at frequencies of 3x and 4x.

The third-order direct-kernels are derived from following probing inputs:
u1 ¼ Aejx1t þ Aejx2t þ Aejx3t ; u3 ¼ A2ej3x1t þ A2ej3x2t þ A2ej3x3t ð50Þ

then, the output probing expression y u1 ;u1 ;u1ð Þ

3 is given by:
y u1 ;u1 ;u1ð Þ
3 ¼ AH1 x1ð Þejx1t þ AH1 x2ð Þejx2t þ AH1 x3ð Þejx3tþ

2A2H2 x1;x2ð Þej x1þx2ð Þt þ 2A2H2 x1;x3ð Þej x1þx3ð Þtþ
2A2H2 x2;x3ð Þej x2þx3ð Þt þ 6A3H3 x1;x2;x3ð Þej x1þx2þx3ð Þt

ð51Þ
where the responses _y u1 ;u1 ;u1ð Þ
3 and €y u1 ;u1 ;u1ð Þ

3 are the first and second derivatives of y u1 ;u1ð Þ
3 with respect to time. Substituting the

response terms into Eq. (33), the algebraic expression for H3 x1;x2;x3ð Þis given by equating the terms A3ej x1þx2þx3ð Þt:
H3 x1;x2;x3ð Þ ¼ H1 x1ð ÞH1 x2ð ÞH1 x3ð ÞH1 x1 þx2 þx3ð Þ�
2.2
3 H1 x1 þx2ð Þ þ H1 x1 þx3ð Þ þ H1 x2 þx3ð Þf g � k3

h i ð52Þ
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The third-order direct-kernel obtained through the probing with y u2 ;u2 ;u2ð Þ
3 ; _y u2 ;u2 ;u2ð Þ

3 and €y u2 ;u2 ;u2ð Þ
3 is:
H3 3x1;3x2;3x3ð Þ ¼ H1 3x1ð ÞH1 3x2ð ÞH1 3x3ð ÞH1 3x1 þ 3x2 þ 3x3ð Þ�
2.2
3 H1 3x1 þ 3x2ð Þ þ H1 3x1 þ 3x3ð Þ þ H1 3x2 þ 3x3ð Þf g � k3

h i ð53Þ
The third-order cross-kernel transform is derived with the probing inputs u1 ¼ Aejx1t þ Aejx2t and u3 ¼ A2ejx3t . These
inputs generate the following response expression:
y u1 ;u1 ;u3ð Þ
3 ¼ AH1 x1ð Þejx1t þ AH1 x2ð Þejx2t þ A2H1 3x3ð Þej3x3tþ

2A2H2 x1;x2ð Þej x1þx2ð Þt þ 2AA2H2 x1;x3ð Þej x1þ3x3ð Þtþ
2AA2H2 x2;x3ð Þej x2þ3x3ð Þt þ 6A2A2H3 x1;x2;3x3ð Þej x1þx2þ3x3ð Þt

ð54Þ
substituting y u1 ;u1 ;u3ð Þ
3 and its derivatives into (33) produces the FRF expression:
H3 x1;x2;3x3ð Þ ¼ H1 x1ð ÞH1 x2ð ÞH1 3x3ð ÞH1 x1 þx2 þ 3x3ð Þ�
2.2
3 H1 x1 þx2ð Þ þ H1 x1 þ 3x3ð Þ þ H1 x2 þ 3x3ð Þf g � k3

h i ð55Þ
Moreover, the third-order cross-kernel from the contribution y u1 ;u3 ;u3ð Þ
3 is given by:
H3 x1;3x2;3x3ð Þ ¼ H1 x1ð ÞH1 3x2ð ÞH1 3x3ð ÞH1 x1 þ 3x2 þ 3x3ð Þ�
2.2
3 H1 x1 þ 3x2ð Þ þ H1 x1 þ 3x3ð Þ þ H1 3x2 þ 3x3ð Þf g � k3

h i ð56Þ
The algebraic expression of the third-order kernels can be reduced considering only the leading diagonals, expressed
as
H3 x;x;xð Þ ¼ H3
1 xð ÞH1 3xð Þ 2.2H1 2xð Þ � k3

� 

; ð57Þ

H3 3x;3x;3xð Þ ¼ H3
1 3xð ÞH1 9xð Þ 2.2H1 6xð Þ � k3

� 

; ð58Þ

H3 x;x;3xð Þ ¼ H1 xð Þ½ �2H1 3xð ÞH1 5xð Þ 2.2 2H1 4xð Þ þ H1 2xð Þ½ �
3

� k3

� �
; ð59Þ

H3 x;3x;3xð Þ ¼ H1 xð Þ H1 3xð Þ½ �2H1 7xð Þ 2.2 2H1 4xð Þ þ H1 6xð Þ½ �
3

� k3

� �
ð60Þ
All the kernels described by Eqs. (57)–(60) show that the term .2 is always greater than zero, which indicates that the
third-order kernels are independent of the regime cycles and maintains the same framework. Moreover, the presence
of sub-harmonics in the third-order kernels is more pronounced. For instance, the cross-kernel H3 x;3x;3xð Þ shows
sub-harmonics at frequencies 3x;4x;6x and 7x. This analysis is simple to carry out when the leading diagonal is
known.
3.2. Total response in time domain

The output response of the systemwith hysteresis (33) described analytically by the Volterra series up to third-order con-
tributions is given by:
y tð Þ ¼ y1 tð Þ þ y2 tð Þ þ y3 tð Þ ð61Þ
splitting the second-order contribution according to the loading–unloading cycles:
y2 tð Þ ¼ 1þU _u tð Þ½ �
2

y"2 tð Þ þ 1�U _u tð Þ½ �
2

y#2 tð Þ ð62Þ
where U _u tð Þ½ � is used to ensure a smooth transition between each load regime. Thus, the polynomial contributions of the
total response y tð Þ described by Volterra series are calculated considering the following input:
u tð Þ ¼ A ejxt þ e�jxtð Þ
2 ;

u tð Þ ¼ A1 ejxt þ e�jxt
� �þ A2 ej3xt þ e�j3xt

� � ð63Þ
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the contributions are given by:
y1 tð Þ ¼ A
2
H1 xð Þejxt þ A1H1 xð Þejxt þ A2H1 3xð Þej3xt þ complex conjugates ð64Þ

y"2 tð Þ ¼ A2

2 H2 x;�xð Þ � 2A2
1H2 x;�xð Þ � 2A2

2H2 3x;�3xð Þþ
A2

4 H2 x;xð Þej2xt þ A2
1H2 x;xð Þej2xt þ A2

2H2 3x;3xð Þej6xtþ
AA1H2 x;xð Þej2xt þ AA2H2 �x;3xð Þej2xt þ AA2H2 x;3xð Þej4xt�
A1A2H2 �x;3xð Þej2xt þ A1A2H2 x;3xð Þej4xt þ complex conjugates

ð65Þ

y#2 tð Þ ¼ �y"2 tð Þ ð66Þ
y3 tð Þ ¼ 3A3

8 H3 x;x;�xð Þejxt � 3A3
1H3 x;x;�xð Þejxtþ

3A2A1
4 H3 x;x;�xð Þejxt þ 3A2A2

4 H3 �x;�x;3xð Þejxt�
3AA2

1
2 H3 �x;�x;3xð Þejxt � 3AA2

2H3 x;�3x;3xð Þejxtþ
3A2

1A2H3 �x;�x;3xð Þejxt � 6A1A
2
2H3 x;�3x;�3xð Þejxtþ

A3

8 H3 x;x;xð Þej3xt þ A3
1H3 x;x;xð Þej3xt�

3A3
2H3 3x;3x;�3xð Þej3xt þ 3A2A1

4 H3 x;x;xð Þej3xtþ
3A2A2

2 H3 �x;x;3xð Þej3xt þ 3AA21
2 H3 x;x;xð Þej3xt�

6A2
1A2H3 x;�x;3xð Þej3xt þ 3A2A2

4 H3 x;x;3xð Þej5xtþ
3AA2

2
2 H3 �x;3x;3xð Þej5xt þ 3A2

1A2H3 x;x;3xð Þej5xt�
3A1A

2
2H3 �x;3x;3xð Þej5xt þ 3AA22

2 H3 x;3x;3xð Þej7xtþ
3A1A

2
2H3 x;3x;3xð Þej7xt þ A3

2H3 3x;3x;3xð Þej9xt

þ complex conjugates

ð67Þ
Remark3.1. Although the harmonics present in the contributions y"2 tð Þ and y#2 tð Þ are from even order such as e0; e2xt ; e4xt

and e6xt , the multiplication in Eq. (62) by U _u tð Þ½ � causes odd harmonics ext ; e3xt ; e5xt , and so on, to appear. Hence, the har-
monic of higher order generated by y2 tð Þmust also be in y3 tð Þ, otherwise, the odd harmonics generated does not match those
in the response of the oscillator. To meet this condition, the number of terms Ns to approximate U _u tð Þ½ � needs to be the same
as the one used to compute the input u0 tð Þ.

The main advantage in estimating the higher-order FRFs is the dependence that they have on the physical parameters of
the system and its linear FRF. Another interesting aspect is that the Volterra kernels provide an approximate overview in
frequency domain about the nonlinear behavior occurring in the oscillator with hysteresis for the applied input condition.
Thus, as long as the higher-order FRFs and the Volterra series are convergent, the outputs in the time and frequency domain
provide a unique mapping from the system dynamics, a characteristic that the short-time Fourier transform has for non-
stationary signals.
4. Numerical application

With the analytical higher-order FRFs derived from the system composed of the nonlinear operator, this section aims to
explore the applicability of these expressions to describe a hysteretic benchmark with a dynamic nonlinearity well approx-
imated by a Bouc-Wen model and recently proposed by Noël and Shoukens (2016) [29] at the Workshop on Nonlinear Sys-
tem Identification Benchmarks. Although the white-box methods have improved their applicability to complex nonlinear
systems, the main contributions in the literature for the Bouc-Wen model or even for the proposed benchmark are with
gray-box and black-box approaches. For instance, Noël et al. (2017) [53] used a framework based on black-box identification
to deal with the hysteresis effect without the requirement of a specific physical model. The algorithm procedure consists of
identifying polynomial nonlinear state-space (PNLSS) models fitted under multisine excitation. Then, to reduce the high
number of terms required to identify the PLNSS model, Esfahani et al. (2018) [30] proposed using the canonical polyadic
decomposition, which rewrites the univariate polynomials in linear combinations of states and inputs.

From the perspective of grey-box modeling, Worden et al. (2018) [33] provided an identification scheme to obtain the
Bouc-Wen model parameters based on an evolutionary optimization algorithm. The procedure has also addressed issues
about the adequate choice of excitation inputs and reference models. In addition, Bajrić and Høgsberg (2018) [31] used
stochastic output-only subspace methods to identify the poles of an equivalent linear damper model parametrized according
to the excitation amplitude, frequencies, and benchmark model parameters. Furthermore, the work provides interesting
physical insight about the benchmark behavior under different forcing conditions, since the equivalences considered to
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construct the linear system were based on intrinsic characteristics from slow and fast motion regimes of the Bouc-Wen
oscillator.

The Bouc-Wen benchmark model parameters are shown in Table 1 and were selected according to [29]. First, this section
starts with a numerical example of the nonlinear operator shown in the motion Eq. (17) to describe a hysteretic system.
Thus, through the higher-order FRFs framework applied to the nonlinear operator, the analytical output from the system

with hysteresis is calculated and compared to the output obtained by the numerical integration with 4th order Runge–Kutta
method. The Volterra contributions and the higher-order kernel surfaces are also provided.
4.1. Numerical example of the nonlinear operator

Some numerical simulations are carried out to evaluate the nonlinear operator proposed to describe hysteretic systems.
All simulations with the benchmark presented in this work used a sampling frequency equal to 750 Hz and N ¼ 214 samples

with the parameters listed in Table 1. The numerical integration was solved through the 4th order Runge–Kutta method with
a variable time step. A convergence analysis based on the terms selected to be used in the Taylor series expansion consid-
ering a varying number of terms from the Fourier series is carried out to illustrate that the framework of the nonlinear oper-
ator, defined in Eq. (17), is suitable to deal with the Bouc-Wen benchmark. The error is calculated by the Normalized Mean
Square Error (NMSE) [%] between the responses from the Bouc-Wen oscillator and from the system in (17):
Table 1
Bouc-W

m [k

2

NMSE ¼ 100�
��Z y; _yð Þ � F y tð Þ½ ���2��Z y; _yð Þ��2 % ð68Þ
Fig. 2 depicts four different cases of the NMSE in function of the excitation amplitudes considering a quasi-static
harmonic input u tð Þ ¼ A cos 2ptð Þ. Regardless of the number of terms used in the Fourier series are used, the NMSE in
Fig. 2(a) indicates that the nonlinear operator fails to describe the hysteretic restoring force when it assumes less than
three terms in the Taylor series expansion. For expansions from the 3rd order on, Figs. 2(b)-(d) show that the nonlinear
operator reaches the convergence, with values below of 2:5%, if Ns P 2. In conclusion, since the framework of the
nonlinear operator provides an interesting cost-effective ratio between accuracy and algebraic complexity of the
higher-order FRFs, the third-order polynomial form in the bounding functions with Ns ¼ 2 is adequate to describe and
reproduce the benchmark hysteresis loop.

Fig. 3 shows the simulated response of the Bouc-Wen model described in Section 2.2 considering a quasi-static harmonic
input with amplitude of A ¼ 120 N selected based on [29]. Under this excitation condition, the model with RIH property
draws a single hysteresis loop bounded between loading and unloading regions. The restoring force obtained through
numerical integration of the Eqs. (4) and (5) is plotted in Fig. 3(a) by considering null initial conditions. Fig. 3(b) shows
the restoring force� displacement graphic, where it is possible to clearly note that the continuous hysteresis loop is bounded
over the output amplitudes �Y ;Y½ � and the symmetric loading and unloading regimes of the restoring force.

The displacement amplitudes Y and y0 obtained are 0:9502 mm and 0:2536 mm, respectively. These two amplitudes were
used to compute the bounding functions coefficients through the Eqs. (20)–(23). The absolute values obtained are
k0 ¼ 13:88 N, k1 ¼ 5� 104 N/m, k2 ¼ 1:0941� 107 N/m2 and k3 ¼ 3:0665� 1010 N/m3. By solving numerically the motion
Eq. (17), the equivalent restoring force from the nonlinear operator is able to reproduce the force Z y; _yð Þ properly, as can
been seen in Fig. 3(a). Furthermore, the enclosed area of the hysteresis loops depicted in Fig. 3(b) is almost the same for both
restoring forces, which means that these systems have the same energy dissipation [Nmm].
4.2. The Bouc-Wen benchmark

A harmonic quasi-static input u tð Þ ¼ A cos 2ptð Þ with amplitude of A ¼ 40 N was used and the system outputs were
obtained through numerical integration of the motion Eqs. (4) and (5) based on the 4th order Runge-Kutta method. For
quasi-static input conditions, the selected amplitude A ¼ 40 N reproduces a weak hysteresis loop. Amplitudes of
Y ¼ 0:3641 mm and y0 ¼ 0:0445 mm were obtained to compute the coefficients k0; k1; k2 and k3 used in the higher-order
FRFs.

The parametersm; c; k and a from Table 1 were used to calculate the kernelsH1 xð Þ and H1 3xð Þ over a frequency range of
0� 71:30 Hz with an incremental step of 0:046 Hz. Fig. 4 shows the first order FRF both in terms of its magnitude (Fig. 4) and
phase (Fig. 4(b)). The resonance peaks are 35:58 and 35:6

3 Hz, which means that the resonances occur at xn, which is
en benchmark parameters [29].

g] c [Ns/m] k [N/m] a [N/m] b c [m�1] d [m�1] m

10 5 � 104 5 � 104 1 � 103 0.8 �1.1 1



Fig. 2. Convergence analysis of the nonlinear operator representing the hysteretic restoring force of the Bouc-Wen benchmark. represents Ns ¼ 1,
represents Ns ¼ 2, represents Ns ¼ 3 and is for Ns ¼ 4.

Fig. 3. Comparison between the restoring forces obtained from the Bouc-Wen oscillator and through the nonlinear operator. for the Bouc-Wen’s
response and is for the nonlinear operator. The NMSE obtained is 2:15% and the dissipated energy of both hysteretic loops is � 42:35 N mm.
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associated with the linear dynamic of the model, and at 3x ¼ xn ) x ¼ xn
3 , associated with the third order harmonic from

the additional input.
In the case of an equivalent system that does not hold the principle of superposition, its response presents the frequency

components from the input as well as multiple harmonics from the nonlinear behavior. The interactions between the fre-
quency components that the system presents are clear in the second and third order FRFs equations, with components of
5x;6x and 7x order, among others. Thus, Figs. 5 and 7 show themagnitude and phase surface of each kernel, whereas Figs. 6
and 8 are their leading diagonal.

Figs. 5(a) and (b) present the surfaces fromH2 x1;x2ð Þ on the componentsx1 andx2, whereas Figs. 6(a) and (b) show the
leading diagonal inx1 ¼ x2 ¼ x, where f 1 ¼ x1

2p and f 2 ¼ x2
2p. These plots evidence the resonance peaks at 35:58 and 17:79 Hz

(2x ¼ xn), which refer to the linear and secondary resonances. Although the total output does not have quadratic compo-
nents, the FRF framework provides knowledge about the bounding functions nonlinearity. Furthermore, the changes in k2



Fig. 4. Frequency Response Functions. represents the kernel H1 xð Þ, whereas is for the kernel H1 3xð Þ.

Fig. 5. Second-order Volterra kernels.
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Fig. 6. Leading diagonals of the second-order Volterra kernels. represents the kernels with k2 > 0, whereas is for the kernels that have k2 < 0.
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influence on the phase plot, as shown in Fig. 6, whereas the surfaces depicted in Fig. 5 exemplify only the second order FRFs
that have k2 > 0.

Figs. 5(c) and (d) illustrate the second-order cross-kernel surfaces that highlight the interaction between frequency com-
ponents with the inputs. Additionally, Figs. 6(c)-(d) show the amplitude and phase of the leading diagonals, thus evidencing
the main resonance at 35:58 and the secondary resonances at 11:86 and 8:89 Hz, corresponding to the harmonics of 3x ¼ xn

and 4x ¼ xn, respectively. Finally, the plot of surfaces in Figs. 5(e) and (f) with their leading diagonals in Fig. 6(e) and (f)
shows the direct kernel calculated with the additional input evidencing the resonance peaks at 11:86 and 5:93 Hz
(6x ¼ xn), which is an interaction that the third-order harmonic input holds in the second order kernel.

The framework of the third-order kernels plotted in Fig. 7 shows surfaces on the frequency componentsx1;x2 and sliced
at x3 ¼ xn

3 . Visualizing the presence of sub-harmonics and resonance peaks, as well as phase jumps in these surfaces, is not
trivial and it needs the support of each leading diagonal, which is plotted in Fig. 8. All the third-order kernels have in their
leading diagonal, depicted as amplitude and phase plots, weak resonances in secondary sub-harmonics, indicating the influ-
ence that quadratic nonlinearities have on these kernels. Nevertheless, the peaks with major amplitude are regarded as ter-
tiary sub-harmonics, which highlight the domain of cubic nonlinearity over the frequency response. Although the calculation



Fig. 7. Third-order Volterra kernels.
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of kernels was carried out for a specific input condition, their framework in the frequency domain will remain the same for
other conditions, experiencing changes only with respect to their amplitudes, since the first-order kernels still maintain
same values due to the linear physical parameters.



Fig. 8. Leading diagonals of the third-order Volterra kernels.
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Having the higher-order FRFs, the analytical polynomial contributions y1 tð Þ; y2 tð Þ and y3 tð Þ are estimated in time domain
through the Eqs. (64)–(67) with frequencyx ¼ 2p. Fig. 9 presents a comparison between the output generated by numerical
integration and the analytical one, which demonstrates a good match between the results. Fig. 10 shows a close-up view of



Fig. 9. Output of the identified Volterra model in a close-up view over 6� 18 seconds. represents the response of the Bouc-Wen oscillator by numerical
integration and is the response of the proposed Volterra model. The value of NMSE computed between the outputs is 2:7%.

Fig. 10. Comparison between the outputs spectrum. represents the output spectrum simulated from the Bouc-Wen and is the spectrum predicted by
the proposed Volterra model.

872 Rafael de O. Teloli, S. da Silva /Mechanical Systems and Signal Processing 121 (2019) 856–875
the response spectrum over a frequency range of 0� 8 Hz, evidencing the excitation frequency at 1 Hz and also the third,
fifth and seventh-order harmonics at 3;5 and 7 Hz, respectively. Welch’s periodogram with a rectangular window over a fre-
quency range of 0� 70 Hz was used to attain this. The Volterra model can reproduce up to the fifth-order harmonic compo-
nent (5 Hz), but more terms in the series expansion are necessary to predict higher-order components. However, the number
of terms included in this work is sufficient to deal with the Bouc-Wen model subjected to weak excitation inputs.

The nonlinear contributions y2 tð Þ þ y3 tð Þ oscillate with a phase shift in comparison with the linear contribution, which
highlight the nonlinear damping that arises from the hysteresis effect. Even with the presence of the second-order contri-
bution y2 tð Þ, the total response of the Volterra model has only odd harmonics, as discussed in Remark 3.1. In addition,
Fig. 11 depicts the linear and nonlinear contributions of the total response in time domain (Fig. 11) and each output spec-
trum (Fig. 11(b)), which is a demonstration of Remark3.1, since the second-order contribution has components at 1;3 and
5 Hz, as well as the third-order contribution. With the influence of the additional input, the linear output y1 tð Þ has compo-
nents at 1 and 3 Hz.

The odd harmonics presented in the response spectrum are not enough to conclude if the analytical output describes well
the hysteresis loop since other nonlinearities could show the same behavior [54]. Fig. 12 shows the comparison between the
Fig. 11. Representation of the Volterra model contributions. , y1 tð Þ; , y2 tð Þ and , y3 tð Þ.



Fig. 12. Comparison between the hysteresis loop responses with excitation amplitude of A ¼ 40 N. represents the restoring force of the Bouc-Wen model
and is the restoring force estimated through the Volterra model output.

Fig. 13. Bouc-Wen hysteresis loop for different forcing amplitudes. represents the restoring force calculated through numerical integration and is the
restoring force by the Volterra model output.
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smoothed hysteresis loop obtained with the Volterra model and by numerical integration, whose loops dissipate
2:61% Nmm and 2:5% Nmm respectively, demonstrating that the analytical response is able to reproduce with a reasonable
agreement the Bouc-Wen oscillator hysteresis loop.

Fig. 13 illustrates the hysteresis loop obtained through the Volterra model for different forcing amplitudes and the same
excitation frequency. In the case of low amplitude with A ¼ 1 N, as plotted in Fig. 13(a), the analytical output can reproduce
the hysteresis loop with a good match, which is almost closed and the restoring force is linear. However, when the input
amplitude gets higher, as seen in Fig. 13(b) with A ¼ 60 N, the Volterra model starts presenting convergence problems,
for instance, the dissipated energy by the analytical model is 4:52 Nmm, whereas the value of 3:75 Nmm is obtained from
the numerical integration. In fact, although the mathematical framework helps overcome difficulties to represent disconti-
nuities and multiple solutions on the hysteresis loop, the Volterra series is adequate to describe hysteretic systems under
Fig. 14. Comparison between the response amplitudes for a sweep sine input. represents the numerical response from the Bouc-Wen and is the
spectrum predicted by the proposed Volterra model.
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weak excitation amplitudes and conditions where the hysteresis loop is almost closed. The methodology presented in this
work can be an alternative tool of an algorithm to perform a modal analysis on a hysteretic system.

Finally, Fig. 14 shows the comparison between the response amplitudes estimated through numerical integration and by
Volterra model for a sweep sine test with constant input amplitude of A ¼ 20 N over a normalized frequency range
x
xn

2 0:1 1:6½ �. The proposed smooth nonlinear operator has quadratic terms that are taken into account to compute the
second-order kernels and, for this reason, the amplitude of the second-order contributions increase when x

xn
¼ 0:5, whereas

the Bouc-Wen output does not present this sub-harmonic. In addition, around the linear resonance frequency range
x
xn

2 0:75 1:2½ �, the analytical Volterra model is absolutely inaccurate. The result clearly details that the response predicted
by the Volterra model is only suitable for a narrow-banded input conditions.
5. Final remarks

This work presents the use of the Volterra series to represent hysteretic systems based on the analytical higher-order FRFs
estimated through the harmonic probing method. Initially, the existence of bounding functions was discussed by the poly-
nomial form to approximate independently each loading regime that occurs along the hysteresis loop. The combination of
these functions into an equivalent system allowed the application of the harmonic probing method for multi-input systems,
and to derive expressions for the higher-order FRFs. The proposed methodology includes the hysteresis memory effect in the
output predicted through the Volterra model by considering an additional input that depends on the input signal rate of
change and guarantees multiple solutions to the analytical higher-order FRFs. The effectiveness of the proposed solution
was tested using a benchmark involving the Bouc-Wen model. The results obtained show that for narrow-banded input con-
ditions with weak excitation amplitudes, the Volterra series can provide an adequate analytical approximation. With repre-
sentation proposed using Volterra kernels, it is possible to identify all the parameters from the higher-order FRFs using
experimental data in future works.
Acknowledgments

The authors are thankful for the financial support provided by São Paulo Research Foundation (FAPESP) Grant No.
2016/21973-5 and 2017/15512-8 and CNPq Grant No. 307520/2016-1. Additionally, the authors would like to thank the
anonymous reviewers and the Associate Editor for their relevant comments and useful suggestions.
References

[1] A. Visintin, Differential Models of Hysteresis, 111, Springer Science & Business Media, 2013.
[2] B.F. Spencer, S.J. Dyke, M.K. Sain, J.D. Carlson, Phenomenological model of a magnetorheological dampers, J. Eng. Mech. 123 (3) (1996) 230–238.
[3] S.J. Dyke, B.F.S. Jr, M.K. Sain, J.D. Carlson, An experimental study of MR dampers for seismic protection, Smart Mater. Struct. 7 (5) (1998) 693, URLhttp://

stacks.iop.org/0964-1726/7/i=5/a=012.
[4] Y. Peng, J. Yang, J. Li, Parameter identification of modified Bouc-Wen model and analysis of size effect of magnetorheological dampers, J. Intell. Mater.

Syst. Struct. 29 (7) (2017) 1464–1480, https://doi.org/10.1177/1045389X17740963, arXiv: https://doi.org/10.1177/1045389X17740963.
[5] A. Dominguez, R. Sedaghati, I. Stiharu, Modeling and application of MR dampers in semi-adaptive structures, Comput. Struct. 86 (3) (2008) 407–415,

https://doi.org/10.1016/j.compstruc.2007.02.010, Smart Structures.http://www.sciencedirect.com/science/article/pii/S004579490700082X..
[6] H. Ahmadian, H. Jalali, Generic element formulation for modelling bolted lap joints, Mech. Syst. Signal Process. 21 (5) (2007) 2318–2334, https://doi.

org/10.1016/j.ymssp.2006.10.006, URLhttp://www.sciencedirect.com/science/article/pii/S0888327006002263.
[7] H. Ahmadian, H. Jalali, F. Pourahmadian, Nonlinear model identification of a frictional contact support, Mech. Syst. Signal Process. 24 (8) (2010) 2844–

2854, https://doi.org/10.1016/j.ymssp.2010.06.007, URLhttp://www.sciencedirect.com/science/article/pii/S0888327010001998.
[8] F. Pourahmadian, H. Ahmadian, H. Jalali, Modeling and identification of frictional forces at a contact interface experiencing micro-vibro-impacts, J.

Sound Vib. 331 (12) (2012) 2874–2886, https://doi.org/10.1016/j.jsv.2012.01.032, URLhttp://www.sciencedirect.com/science/article/pii/
S0022460X12001022.

[9] F. Ikhouane, J. Rodellar, Systems with Hysteresis: Analysis, Identification and Control Using the Bouc-Wen Model, John Wiley & Sons, 2007.
[10] V. Hassani, T. Tjahjowidodo, T.N. Do, A survey on hysteresis modeling, identification and control, Mech. Syst. Signal Process. 49 (1) (2014) 209–233,

https://doi.org/10.1016/j.ymssp.2014.04.012, ULRhttp://www.sciencedirect.com/science/article/pii/S0888327014001186.
[11] R. Bouc, A mathematical model for hysteresis, Acta Acustica united with Acustica 24 (1) (1971) 16–25, URLhttp://www.

ingentaconnect.com/content/dav/aaua/1971/00000024/00000001/art00004.
[12] Y.-K. Wen, Method for random vibration of hysteretic systems, J. Eng. Mech. Div. 102 (2) (1976) 249–263.
[13] N. Okuizumi, K. Kimura, Multiple time scale analysis of hysteretic systems subjected to harmonic excitation, J. Sound Vib. 272 (3) (2004) 675–701,

https://doi.org/10.1016/S0022-460X(03)00404-8, URLhttp://www.sciencedirect.com/science/article/pii/S0022460X03004048.
[14] F. Ikhouane, J. Rodellar, On the hysteretic Bouc-Wen model, Nonlinear Dyn. 42 (1) (2005) 79–95, https://doi.org/10.1007/s11071-005-0070-x.
[15] Y. Shen, M.F. Golnaraghi, G.R. Heppler, Analytical and experimental study of the response of a suspension system with a magnetorheological damper, J.

Intell. Mater. Syst. Struct. 16 (2) (2005) 135–147, https://doi.org/10.1177/1045389X05048330, arXiv: https://doi.org/10.1177/1045389X05048330.
[16] H. Jalali, An alternative linearization approach applicable to hysteretic systems, Commun. Nonlinear Sci. Numer. Simul. 19 (1) (2014) 245–257, https://

doi.org/10.1016/j.cnsns.2013.05.020, URLhttp://www.sciencedirect.com/science/article/pii/S1007570413002220.
[17] S. Cafferty, G. Tomlinson, Characterization of automotive dampers using higher order frequency response functions, Proc. Inst. Mech. Eng. Part D: J.

Automobile Eng. 211 (3) (1997) 181–203, https://doi.org/10.1243/0954407971526353.
[18] I. Tawfiq, T. Vinh, Contribution to the extension of modal analysis to non-linear structure using Volterra functional series, Mech. Syst. Signal Process. 17

(2) (2003) 379–407, https://doi.org/10.1006/mssp.2002.1499, URLhttp://www.sciencedirect.com/science/article/pii/S0888327002914998.
[19] A. Chatterjee, N.S. Vyas, Non-linear parameter estimation with Volterra series using the method of recursive iteration through harmonic probing, J.

Sound Vib. 268 (4) (2003) 657–678, https://doi.org/10.1016/S0022-460X(02)01537-7, URLhttp://www.sciencedirect.com/science/article/pii/
S0022460X02015377.

http://refhub.elsevier.com/S0888-3270(18)30765-9/h0005
http://refhub.elsevier.com/S0888-3270(18)30765-9/h0005
http://refhub.elsevier.com/S0888-3270(18)30765-9/h0010
http://stacks.iop.org/0964-1726/7/i=5/a=012
http://stacks.iop.org/0964-1726/7/i=5/a=012
https://doi.org/10.1177/1045389X17740963
https://doi.org/10.1016/j.compstruc.2007.02.010
http://www.sciencedirect.com/science/article/pii/S004579490700082X
https://doi.org/10.1016/j.ymssp.2006.10.006
https://doi.org/10.1016/j.ymssp.2006.10.006
http://www.sciencedirect.com/science/article/pii/S0888327006002263
https://doi.org/10.1016/j.ymssp.2010.06.007
http://www.sciencedirect.com/science/article/pii/S0888327010001998
https://doi.org/10.1016/j.jsv.2012.01.032
http://www.sciencedirect.com/science/article/pii/S0022460X12001022
http://www.sciencedirect.com/science/article/pii/S0022460X12001022
http://refhub.elsevier.com/S0888-3270(18)30765-9/h0045
http://refhub.elsevier.com/S0888-3270(18)30765-9/h0045
https://doi.org/10.1016/j.ymssp.2014.04.012
http://www.sciencedirect.com/science/article/pii/S0888327014001186
http://www.ingentaconnect.com/content/dav/aaua/1971/00000024/00000001/art00004
http://www.ingentaconnect.com/content/dav/aaua/1971/00000024/00000001/art00004
http://refhub.elsevier.com/S0888-3270(18)30765-9/h0060
https://doi.org/10.1016/S0022-460X(03)00404-8
http://www.sciencedirect.com/science/article/pii/S0022460X03004048
https://doi.org/10.1007/s11071-005-0070-x
https://doi.org/10.1177/1045389X05048330
https://doi.org/10.1016/j.cnsns.2013.05.020
https://doi.org/10.1016/j.cnsns.2013.05.020
http://www.sciencedirect.com/science/article/pii/S1007570413002220
https://doi.org/10.1243/0954407971526353
https://doi.org/10.1006/mssp.2002.1499
http://www.sciencedirect.com/science/article/pii/S0888327002914998
https://doi.org/10.1016/S0022-460X(02)01537-7
http://www.sciencedirect.com/science/article/pii/S0022460X02015377
http://www.sciencedirect.com/science/article/pii/S0022460X02015377


Rafael de O. Teloli, S. da Silva /Mechanical Systems and Signal Processing 121 (2019) 856–875 875
[20] A. Chatterjee, N.S. Vyas, Non-linear parameter estimation in multi-degree-of-freedom systems using multi-input Volterra series, Mech. Syst. Signal
Process. 18 (3) (2004) 457–489, https://doi.org/10.1016/S0888-3270(03)00016-5, ULRhttp://www.sciencedirect.com/science/article/pii/
S0888327003000165.

[21] A. Chatterjee, Identification and parameter estimation of a bilinear oscillator using Volterra series with harmonic probing, Int. J. Non-Linear Mech. 45
(1) (2010) 12–20, https://doi.org/10.1016/j.ijnonlinmec.2009.08.007, URLhttp://www.sciencedirect.com/science/article/pii/S0020746209001632.

[22] R. Lin, T. Ng, Higher-order FRFs and their applications to the identifications of continuous structural systems with discrete localized nonlinearities,
Mech. Syst. Signal Process. 108 (2018) 326–346, https://doi.org/10.1016/j.ymssp.2018.02.033, URLhttp://www.sciencedirect.com/science/article/pii/
S0888327018300980.

[23] O. Scussel, S. da Silva, The harmonic probing method for output-only nonlinear mechanical systems, J. Braz. Soc. Mech. Sci. Eng. 39 (9) (2017) 3329–
3341, https://doi.org/10.1007/s40430-017-0723-y.

[24] A. Chatterjee, Structural damage assessment in a cantilever beam with a breathing crack using higher order frequency response functions, J. Sound Vib.
329 (16) (2010) 3325–3334, https://doi.org/10.1016/j.jsv.2010.02.026, URLhttp://www.sciencedirect.com/science/article/pii/S0022460X10001495.

[25] C. Cheng, Z. Peng, W. Zhang, G. Meng, Volterra-series-based nonlinear system modeling and its engineering applications: a state-of-the-art review,
Mech. Syst. Signal Process. 87 (2017) 340–364, https://doi.org/10.1016/j.ymssp.2016.10.029, URLhttp://www.sciencedirect.com/science/article/pii/
S0888327016304393.

[26] S. Boyd, L. Chua, Fading memory and the problem of approximating nonlinear operators with Volterra series, IEEE Trans. Circuits Syst. 32 (11) (1985)
1150–1161, https://doi.org/10.1109/TCS.1985.1085649.

[27] Q. Ran, M.L. Xiao, Y.X. Hu, Nonlinear vibration with Volterra series method used in civil engineering: the Bouc – Wen hysteresis model of generalized
frequency response, in: Advances in Measurements and Information Technologies, Vol. 530 of Applied Mechanics and Materials, Trans Tech
Publications, 2014, pp. 561–566, https://doi.org/10.4028/www.scientific.net/AMM.530-531.561.

[28] G. Manson, K. Worden, Higher-Order Frequency Response Functions for Hysteretic Systems, Springer International Publishing, Cham, 2016, https://doi.
org/10.1007/978-3-319-29739-218, pp. 191–201.

[29] J. Noël, M. Schoukens, Hysteretic benchmark with a dynamic nonlinearity, in: Workshop on Nonlinear System Identification Benchmarks, Brussels,
Belgium, 2016, pp. 7–14.

[30] A.F. Esfahani, P. Dreesen, K. Tiels, J.-P. Noël, J. Schoukens, Parameter reduction in nonlinear state-space identification of hysteresis, Mech. Syst. Signal
Process. 104 (2018) 884–895, https://doi.org/10.1016/j.ymssp.2017.10.017, URLhttp://www.sciencedirect.com/science/article/pii/
S0888327017305502.
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