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Describing hysteretic systems with a closed-form solution is a challenging task due to
some pitfalls regarding the non-smooth and memory effect mechanisms that do not per-
mit, for example, to apply conventional frequency domain methods. Consequently, it is
necessary to use some previous smoothing scheme to approximate the hysteresis loop.
Thus, this work proposes a new way for approximating the hysteresis loops analytically
using a truncated Taylor series as a simple and effective smoothing procedure to enable
the use of the harmonic balance method. Two benchmark hysteretic systems, which were
not addressed yet by closed-form solutions obtained by the harmonic balance method, are
simulated to demonstrate the benefits of the proposed strategy. The first one is a Bouc-
Wen oscillator and the second one is a LuGre model. The comparison with numerical inte-
grations and other literature methods have shown that the obtained analytical solutions of
the suggested smoothed hysteresis loops are adequate to describe the fundamental
dynamics in both models using a feasible frequency domain approximation.

� 2020 Elsevier Ltd. All rights reserved.
1. Introduction

Engineering systems generally have assembled structures with bolted and viscoelastic joints [1,2], damping devices to
mitigate excessive vibrations [3,4] or even materials that experiment variabilities on their properties according to the oper-
ational conditions [5]. A typical feature of these applications is that they may exhibit nonlinearities in their damping source
due to the hysteresis effect. This hysteresis arises from the nonlinear interaction of three variables named as input, output
and an evolutionary variable that induces a delay and memory dependency among them [6]. The interaction occurs from
different mechanisms and therefore there exist many phenomenological and empirical models accessible in the literature
for explaining hysteretic features, as non-smoothness, multiple solutions, and rate-dependent or rate-independent memory
effects.

The classical Bouc-Wen model [7,8] plays a vital role among the different models used to describe hysteresis due to its
versatility in modeling a wide range of loops from real systems. Additionally, the proposal of closed-form solutions has
begun to gain space because of its adequate applicability for parametric calibration, identification purposes and system
designing [9]. Shen et al. (2005) [10] proposed a comparative analysis between both the equivalent linearization method
and the averaging method, which were used to obtain analytical expressions of a magnetorheological damper in steady-
state regime. The methods achieved a close approximation with experimental data and, besides, they provided an attractive
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physical acumen about how the variations on modeling parameters of the damper device could affect both the responses
curves and the hysteresis loop, which is an advantage of the white-box modeling. Laxalde et al. (2006) [11] examined the
usefulness of a nonlinear hysteretic absorber described by a Bouc-Wen model, which was used as a dissipation source of
the vibratory energy. The periodic solutions predicted by the averaging strategy open the possibility of establishing some
designing criteria to optimize the process of energy dissipation. Various works have already proposed analytical solutions
of the Bouc-Wen oscillator, for example in [12,13].

Nevertheless, the friction-induced hysteresis originated from the relative motion between contact surfaces is also essen-
tial for engineering purposes. Many of the friction features, as memory-dependency, friction force as a function of velocity,
the stick–slip dynamics, and the Stribeck effect, can be observed in tribology [14], mechanical joints [15,16], servo machines
[17] and so on [18]. Another model used is the LuGre model [19]. This model is an attractive alternative to capture the fric-
tion features with the advantage of taking into account the Stribeck effect, which is beneficial to explain the stick–slip
motion accurately [20]. However, as pointed by Huang et al. (2018) [21], leading the steady-state response of frictional mod-
els by numerical integration is, in general, an arduous task due to the significant computational cost required to calculate the
desired response until the transient state vanishes. In this way, the proposing of determining closed-form solutions to avoid
that technical issue seems to be a welcome strategy, and regarding the LuGre model, only a couple of works have been pro-
posed [22,23].

Variants of the harmonic balance method, such as the fast Galerkin method applied on the Bouc-Wen model [24,25] and
the incremental harmonic balance to solve the LuGre model [26], were used successfully, once no laborious mathematical
manipulation was required. In this way, another alternative which may be used to deal with frictional motion described
by the Bouc-Wen and LuGre model is the alternating frequency-time (AFT) method, developed by [27] and successfully
implemented for application in turbomachinery blading with friction interfaces [28].

Indeed, the non-smoothness of both differential models establish a restrictive condition in forming the balance equations,
because it does not permit the explicit expansion of hysteretic forces in terms of the displacement. Also, it is important to
point out that, although this paper address only the Bouc-Wen and the LuGre models, deriving analytical approximations for
other hysteretic systems through the harmonic balance method cannot be performed directly. Consequently, a smoothing
procedure should be performed on the hysteretic systems before deriving the analytical solutions by the harmonic balance
technique. Thus, the present paper proposes to introduce closed-form solutions for the Bouc-Wen and LuGre models assum-
ing a smoothing procedure and then to apply the harmonic balance.

The complete smoothing procedure applied here initially consists of approximating the hysteretic restoring force by
piecewise nonlinear expressions and then to expand them as explicit functions of displacement by the Taylor series
approach, which covers the idea for using the harmonic balance method. Although both models manifest hysteresis in
the input–output map, each one of them has particularities. For example, the hysteresis loop of the Bouc-Wen model can
be broken into four different intervals on the force � displacement plane, admitting to rewrite the restoring force equations
by using the Taylor series approach. On another hand, in the motion equation of the LuGre model does not accept a similar
procedure. Instead of dealing directly with the LuGre motion equation, this paper employs the loading–unloading restoring
force expressions obtained analytically by Naser and Ikhouane (2016) [22] as starting point for the smoothing procedure and,
at last, it aims to apply the Taylor series on these equations. Although the precise expressions derived here are only useful
when the hysteresis is weak, the simplicity in applying the harmonic balance method alongside the Taylor series provides
interesting white-box modeling of hysteretic systems, in addition to the fact that, to our knowledge, similar results were not
illustrated in the previous papers.

The outline of this paper is organized as follows. First of all, Section 2 shows the background to smooth the Bouc-Wen and
LuGre models. The harmonic balance method and the particularities involving its application in hysteretic systems are for-
mulated in Section 3. Next, Section 4 provides numerical applications with the Bouc-Wen and LuGre models to address the
applicability of the proposed method in obtaining analytical solutions through the frequency domain method for both hys-
teretic systems. Finally, the final remarks of the entire work, as well as future research, are highlighted in Section 5.

2. Smoothing of hysteresis

Methods for obtaining approximate solutions are often a quite useful alternative when an explicit solution demands ardu-
ous algebraic manipulations or even it does not exist. Nevertheless, these methods cannot be applied directly to evaluate, for
example, the Bouc-Wen and LuGre models, given that both hysteretic restoring forces cannot be expressed as an explicit
function of the displacement or velocity. In this context, smoothing procedures have become increasingly important to
extend analytical approaches to deal not only with hysteretic systems but also systems with complicated nonlinear stiffness
[29]. Thus, this Section reports in details the smoothing procedure implemented here to the Bouc-Wen and LuGre models.

2.1. Smoothing of the Bouc-Wen model

The so-called Bouc-Wen model used to describe a single-degree-of-freedom system with rate-independent hysteresis is
given by [7,8]:



Fig. 1.
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m€y tð Þ þ c _y tð Þ þ ky tð Þ þ Z y; _yð Þ ¼ u tð Þ ð1Þ
_Z y; _yð Þ ¼ a _y tð Þ � b cj _y tð ÞjjZ y; _yð Þjm�1Z y; _yð Þ þ d _y tð ÞjZ y; _yð Þjm

� �
ð2Þ
where y; _y and €y denote the displacement [m], velocity [m/s] and acceleration [m/s2)], respectively, for an excitation input u
[N]. Regarding the model parameters,m [kg] is the mass constant, c [Ns/m] is the viscous damping, k [N/m] is the linear stiff-
ness. The term Z, which encodes the hysteretic restoring force, obeys the first-order differential equation of _Z, whereas b;a
[N/m], c [m�1], d [m�1] and m control the shape of the hysteresis loop and are known as the Bouc-Wen parameters. Also, this
paper considers the specific case of m ¼ 1. As pointed by [30], the term Z y; _yð Þ does not offer an explicit expansion as a func-
tion of y and _y, which restricts the applicability of the harmonic balance technique or even another white-box method.

Fig. 1(a) illustrates the hysteresis loop exhibited by a Bouc-Wen oscillator in the restoring force � displacement plane.
Many features of the system with hysteresis are displayed in Fig. 1, for instance, the hysteretic force is a multi-valued func-
tion due to the presence of memory dependency, since Z y; _yð Þdepends not only on the instantaneous output y but also on the
history of all previous outputs. Further, one of the main characteristics of the Bouc-Wen oscillator lies on the possibility of
transforming the non-smooth hysteretic force into an equivalent piecewise smooth problem dividing the total hysteretic
restoring force into four different components, named as Z1;Z2;Z3 and Z4 regarding the paths AC;CD;DB and BA, respec-
tively, from the enclosed area ACDB. The switches between the force components occur at a time interval of p

2x when a
bounded harmonic input, defined in a period T 2 0 2p

x

� �
, is applied, where x [rad/s] is the excitation frequency. Fig. 1(b)

depicts the exemplifying hysteretic output y from Fig. 1(a).
Dividing the Eq. (2) by _y and rearranging terms yields:
dZ
dy

¼ a� b Zj j sgn _yZð Þcþ d½ � ð3Þ
Eq. (3) provides an attractive feature about the slope and shape of the hysteresis loop. For instance, a controls the slope of
the restoring force, and it is associated with the linear stiffness k, appearing in the resonance frequency atxn ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
kþ að Þm�1

p
,

whereas if b is null, then the restoring force is linear. Also, c > 0 is responsible for the multiple solutions of the hysteresis
loop, creating the paths DBA and ACD, so-called as loading and unloading regimes of the restoring force, respectively.
Notwithstanding, the possibilities of combining �cþ d produce the hardening or softening characteristics of the hysteresis
loop.

The defined integral of Eq. (3), which depends upon the signs assumed by _y and Z, divides the hysteresis loop into four
different paths:

� path (i): _y 6 0;Z P 0
Z1 ¼ a
b d� cð Þ 1� e�b d�cð Þ y�y0ð Þ� � ð4Þ
� path (ii): _y 6 0;Z 6 0
Z2 ¼ � a
b dþ cð Þ 1� eb dþcð Þ y�y0ð Þ� � ð5Þ
Illustrative example of the hysteresis loop of a Bouc-Wen model. represents the path described by Z1, is for Z2, represents Z3 and is Z4.
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� path (iii): _y P 0;Z 6 0
Z3 ¼ � a
b d� cð Þ 1� eb d�cð Þ yþy0ð Þ� � ð6Þ
� path (iv): _y P 0;Z P 0
Z4 ¼ a
b dþ cð Þ 1� e�b dþcð Þ yþy0ð Þ� � ð7Þ
where the paths (iii) and (iv), with _y P 0, compose the loading regime of the hysteresis loop, whereas the paths (i) and (ii),
with _y 6 0, are the unloading one, and in addition, since the paths start at Z ¼ 0, then y0 is called as threshold displacement
and corresponds to the points B and C in Fig. 1. Moreover, the transition between each restoring force path is continuous,
exemplifying Z4 y p

2x

� �
; _y p

2x

� �� � ¼ Z1 y p
2x

� �
; _y p

2x

� �� �
where this continuity relation is valid on all time interval, and the hysteresis

loop is symmetric in relation to the coordinate ymaxþymin
2 ;0

� �
on the y and Z axes, respectively. Therefore, the piecewise func-

tions that represent the hysteresis loop allows the expansion into finite terms of the Taylor series approach around y0:
Z1 � a
b d� cð Þ 1�

X1
n¼0

�b d� cð Þ½ �n y� y0ð Þn
n!

" # !
ð8Þ

Z2 � � a
b dþ cð Þ 1�

X1
n¼0

b dþ cð Þ½ �n y� y0ð Þn
n!

" # !
ð9Þ

Z3 � � a
b d� cð Þ 1�

X1
n¼0

b d� cð Þ½ �n yþ y0ð Þn
n!

" # !
ð10Þ

Z4 � a
b dþ cð Þ 1�

X1
n¼0

�b dþ cð Þ½ �n yþ y0ð Þn
n!

" # !
ð11Þ
Therefore, the piecewise functions (8)–(11) are rewritten as a smooth polynomial function of the displacement of y, ren-
dering it possible to apply the harmonic balance method. The method is executed admitting a combination of the paths
regarding their valid time interval. Although there exist other available methods to approach the piecewise restoring forces
through polynomial functions, the Taylor series provides the required condition for expanding the polynomial coefficients as
a function of the physical parameters and, in addition, the series guarantees satisfying results using only a few terms, as will
be addressed in Section 4.

2.2. Smoothing of the LuGre model

The LuGre model [19] was proposed initially to describe limit cycles that occur due to the presence of friction in control
applications [31]. The friction effect has an abrupt transition between the stick–slip states, which evidences the non-
smoothness in the nonlinear restoring force, as other hysteretic systems. The model equation is given by:
m€y tð Þ þ ky tð Þ þ Z _yð Þ ¼ u tð Þ ð12Þ

where the term Z _yð Þ [N] is the hysteretic restoring force of the LuGre model and obeys the following relation:
Z _yð Þ ¼ r0t _yð Þ þ r1 _t _yð Þ þ c _y tð Þ ð13Þ

where c [Ns/m] is the linear damping, r0 [N/m] and r1 [Ns/m] denote the microstiffness and microdamping coefficients,
respectively. The terms t _yð Þ [m] and _t _yð Þ [m/s] are microdisplacement and velocity, respectively, where the latter follows
the nonlinear differential equation:
_t _yð Þ ¼ _y tð Þ � r0
_y tð Þj j
G _yð Þ t _yð Þ ð14Þ
The model is an enhancement of the Dahl model [32], since it is suitable to achieve effects which depend on the velocity
magnitude [33]. These effects can be achieved by the term G _yð Þ written as:
G _yð Þ ¼ F c þ F s � F cð Þ exp � _y tð Þ
Vs

	 
2 !
ð15Þ



Fig. 2. Loading and unloading regimes exemplified on the hysteresis loop. , the unloading regime, whereas is the loading one.
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where F c [N] and F s [N] are the friction parameters, and Vs [m/s] is the switching velocity related to change of the nonlinear
restoring force, and known as the Stribeck velocity.

Fig. 2(a) illustrates the steady-state hysteresis loop generated by the LuGre model. As the Bouc-Wen model, the hysteretic
force is also a multi-valued function with memory dependency. Further, the figure depicts two different paths on the restor-
ing force� displacement plane, which is known as loading and unloading regimes of the hysteresis loop. The switch between
these regimes occurs according to the sign of the velocity, in that if sign _y tð Þ½ � > 0, then the hysteretic force is on the loading
regime. Otherwise, the hysteretic force is on the unloading regime. As seen in Fig. 2(b), which illustrates the output y tð Þ from
the hysteresis loop in Fig. 2(a), the switch between the regimes occurs at a time interval of p

x when subjected to a bounded
harmonic input fixed in a period T 2 0 2p

x

� �
, where x is the excitation frequency.

The application of the harmonic balance method on the LuGre model exhibits challenging issues. For example, regarding
the multi-valued hysteretic force, one observes two different regimes of motion depend on the term _t _yð Þ, which cannot be
written as an explicit function of _y. A smoothing procedure on the LuGre restoring force used here is based on the equations
derived by Naser and Ikhouane (2015) [22]. These equations were obtained after employing the concepts of consistency and
strong consistency in the LuGre motion equation. These equations split the hysteretic force into two smooth functions of y tð Þ
given by:
Z" yð Þ ¼ . 1� ke�
r0
. y�yminð Þ

h i
þ r2 _yini ð16Þ
Z# yð Þ ¼ . ke�
r0
. ymax�yð Þ � 1

h i
þ r2 _yini ð17Þ
where Z" yð Þ [N] is the loading regime and Z# yð Þ [N] is the unloading regime, such that when combined, they form the hys-
teresis loop. Besides, ymax and ymin are the maximum and minimum steady-state displacements, respectively, _yini is the initial
velocity, . is the initial value of the function G _y t ¼ 0ð Þð Þ and k is described as:
k ¼ 2

1þ e
r0 ymin�ymaxð Þ

.

ð18Þ
Although the Eqs. 16,17 are smooth, they are a couple of transcendental equations with a significant difficulty level to
approach by the Fourier analysis. Hence, an expansion by Taylor series around y ¼ 0 is suggested, which is the symmetry
point between the maximum and minimum displacement outputs at the steady-state regime. Thus, the functions Z" yð Þ
and Z# yð Þ can be written as:
Z" yð Þ � . 1� k
X1
n¼0

e
r0ymin

. rn
0y

n tð Þ �1ð Þn
n!.n

 ! !
þ r2 _yini ð19Þ
Z# yð Þ � . k
X1
n¼0

e�
r0ymax

. rn
0y

n tð Þ
n!.n

 !
� 1

 !
þ r2 _yini ð20Þ
With the loading and unloading forces rewritten as polynomial functions that depend explicitly on y tð Þ, the main pitfalls
associated with the application of the harmonic balance are solved, remaining only mathematical adaptations of the method
to the piecewise smooth cases, which are presented after this. Also, the expressions proposed by Naser and Ikhouane (2015)
[22] are valid only for quasi-static forcing conditions.
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3. Harmonic balance method

There are different alternatives to approximate the output of nonlinear systems by analytical descriptions, e.g., by decom-
posing the total response into linear and nonlinear components [34,35], or even using the class of perturbation methods [36].
When a mono–harmonic input is applied to a nonlinear system, usually, due to the presence of higher-order harmonics as a
result of existing nonlinearities, its response exhibits waveform distortions. Thus, the fundamental premise of the harmonic
balance method is to represent the system response through the Fourier series, decomposing the higher-order harmonic
components as a sum of sines and cosines. In this context, the harmonic balance method is utilized to derive the closed-
form solutions for the solution of hysteretic systems after employing the Taylor series approach as smoothing procedure
of the hysteretic restoring forces. To achieve this, some assumptions demand to be done. Indeed, the harmonic balance
method provides an adequate framework to deal with strong nonlinearities, e. g. [37], but in this work scenario, the method
is valid for forcing conditions which guarantees a weak hysteresis force or, in other words, for forcing conditions in which the
system output admits an approximation by the Fourier series. Further, the implementation scheme of the harmonic balance
for hysteretic systems has particularities that are explained throughout this section since the analysis by Fourier series
requires to analyze the piecewise expressions of the hysteretic restoring force.

3.1. General harmonic balance

The system analyzed here to exemplify the harmonic balance method is the symmetric Duffing oscillator with a smooth
stiffness nonlinearity [38]:
m€y tð Þ þ c _y tð Þ þ ky tð Þ þ k3y3 tð Þ|fflfflfflffl{zfflfflfflffl}
¼Fnl yð Þ

¼ u tð Þ ð21Þ
where F nl yð Þ [N] is the nonlinear restoring force. The trial solution of the nonlinear system when subjected to a harmonic
input u tð Þ ¼ A sin xtð Þ is assumed to be written as a Fourier series:
y tð Þ ¼ a0 þ
Xj
n¼1

an cos nxtð Þ þ bn sin nxtð Þ½ � ð22Þ
where an and bn are the coefficients of the series and j corresponds to the number of harmonics considered to approach the
desired solution. After substituting the series of y tð Þ in the motion Eq. (21), the nonlinear restoring force is also formulated as
the Fourier series:
F nl yð Þ ¼ A0

2
þ
Xj
n¼1

An cos nxtð Þ þ Bn sin nxtð Þ½ � ð23Þ
where An and Bn are the coefficients of the series of the restoring force. As the term F nl yð Þ is continuous over all the oscil-
lation period established in 0; 2px

� �
, the classical Fourier analysis can properly expand it [39–42]:
An ¼ x
p

Z 2p
x

0
F nl tð Þ cos nxtð Þdt ð24Þ

Bn ¼ x
p

Z 2p
x

0
F nl tð Þ sin nxtð Þdt ð25Þ
Substituting Eqs. (22)–(25) into the motion Eq. (21) yields:
A sin xtð Þ ¼ �mx2
Xj
n¼1

n2 an cos nxtð Þ þ bn sin nxtð Þ½ �
( )

þcx
Xj
n¼1

n �an sin nxtð Þ þ bn cos nxtð Þ½ �
( )

þk a0 þ
Xj
n¼1

an cos nxtð Þ þ bn sin nxtð Þ½ �
( )

þA0
2 þ

Xj
n¼1

An cos nxtð Þ þ Bn sin nxtð Þ½ �

ð26Þ
Balancing the equal harmonic terms from Eq. (26) results in the following system of equations:
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Xj

n¼1
�m xnð Þ2an þ c nxð Þbn þ kan þAn

h i
|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

cosine terms

¼ 0

�m xð Þ2b1 � cxa1 þ b1kþ B1�|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
first order sine terms

¼ A

Xj

n¼2
�m xnð Þ2bn � c nxð Þan þ kbn þ Bn

h i
|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

sine terms

¼ 0

ka0 þA0

2|fflfflfflfflfflffl{zfflfflfflfflfflffl}
remaining terms

¼ 0

ð27Þ
Thus, it is demanded to solve all the series coefficients that minimize the set of equations in (27). There are constraints
to handle this task, e. g., a particular frequency range where multiple solutions exist. Here, the Newton–Raphson method is
utilized for solving Eq. (27).

3.2. Particularities of the harmonic balance method for hysteretic system

As discussed before, the method can be realized directly in a smooth nonlinear system since the restoring force is con-
tinuous on the oscillation period [43,44]. However, the piecewise smooth equations from both Bouc-Wen and LuGre models
require modifications in the Fourier approach meaning to describe each restoring force term properly in its valid time inter-
vals. In sum, the harmonic balance generates an average hysteretic restoring force based on splitting the coefficients of the
seriesA and B according to the valid oscillation period of Z1 y; _yð Þ;Z2 y; _yð Þ;Z3 y; _yð Þ and Z4 y; _yð Þ for the Bouc-Wen model, and
Z" yð Þ and Z# yð Þ for the LuGre model. The particularities involved in these both models are similar to the strategy required to
deal with the Coulomb friction law, which decomposes the friction force into the stick and slip intervals [45].

3.2.1. Fourier analysis of the Bouc-Wen model
The hysteretic restoring force of the Bouc-Wen model was split into four motion intervals, where each of them is valid on

a quarter of the total oscillation period, as exposed in Fig. 1. Then, the general expression of the average restoring force in
steady-state is constituted as:
Z ¼
Xj
n¼1

An cos nxtð Þ þ Bn sin nxtð Þ½ � ð28Þ
where the Fourier expansion of the coefficients is given by:
An ¼ x
p

R p
2x
0 Z1 cos nxtð Þdt þ R p

x
p
2x
Z2 cos nxtð ÞdtþR 3p

2x
p
x

Z3 cos nxtð Þdt þ R 2p
x
3p
2x

Z4 cos nxtð Þdt

0
B@

1
CA ð29Þ

Bn ¼ x
p

R p
2x
0 Z1 sin nxtð Þdt þ R p

x
p
2x
Z2 sin nxtð ÞdtþR 3p

2x
p
x

Z3 sin nxtð Þdt þ R 2p
x
3p
2x
Z4 sin nxtð Þdt

0
B@

1
CA ð30Þ
The Bouc-Wen hysteresis loop is symmetric regarding each regime of motion. Consequently, the Fourier terms related to
asymmetric motion are null.

3.2.2. Fourier analysis of the LuGre model
Unlike the hysteretic restoring force of the Bouc-Wenmodel, the hysteresis loop of the LuGre model is classified into load-

ing and unloading regimes, as observed in Fig. 2, whereas the switch between the regimes occurs at one-half of the total
period. As the hysteresis loop of the model is symmetric in the steady-state regime, its general expression of the averaging
restoring force is equal to Eq. (28), whereas its coefficients are provided by:
An ¼ x
p

Z p
2x

� p
2x

Z" cos nxtð Þdt þ
Z 3p

2x

p
2x

Z# cos nxtð Þdt
 !

ð31Þ

Bn ¼ x
p

Z p
2x

� p
2x

Z" sin nxtð Þdt þ
Z 3p

2x

p
2x

Z# sin nxtð Þdt
 !

ð32Þ
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The equations presented here are valid for a generic case with harmonics of j-order and n terms of Taylor series
approach. It is remarkable that the more harmonics and terms are used to calculate the analytical solution, the higher the
mathematical complexity to acquire the coefficients of the series will be. In contrast, since the hysteresis admitted in this
work is weak, only a few terms are required to achieve adequate results. Next section illustrates the harmonic balance
method implemented to two common benchmark hysteretic systems. Then, the analytical output and the one obtained
by numerical integration are both examined. Finally, it was used the open source solver wxMaxima1 to perform all the nec-
essary algebraic manipulations.

4. Numerical application

The analysis of the harmonic balance to deal with hysteretic systems begins with the Bouc-Wen oscillator. The model
parameters considered in this work were extracted from the benchmark recently proposed by Noël and Shoukens (2016)
[46] at the Workshop on Nonlinear System Identification Benchmarks. The hysteretic benchmark was addressed with differ-
ent identification strategies, for instance, the polynomial nonlinear state-space models [47,48], evolutionary optimization
algorithms [49], stochastic subspace methods [50] and harmonic probing methods [51], but no attempts were handled with
the harmonic balance method. First, a numerical analysis is executed to select carefully how many terms are required for
expanding the Eqs. (8)–(11) into the Taylor series approach. Therefore, with the analytical representations of the piecewise
functions well established, it is possible to calculate the coefficients of the series and to predict the output, as well as the
hysteresis loop of the Bouc-Wen model by the harmonic balance method. The frequency response curve is also provided.

The LuGre model used here was first proposed as a benchmark by deWit et al. (1995) [19] and since then it has been used
for testing identification methods and to approximate experimental setups [52–54]. Although only a few white-box models
of the LuGre oscillator exist in the literature, this work bridges the gap between analytical description through series
approaching and non-smooth systems, providing a helpful alternative to analyze dynamic features of the friction effect
under the steady-state regime of motion. As done for the Bouc-Wen case, to deal with the LuGre model it is essential to
define the number of terms used into the Taylor series approach of Eqs. 19,20 and then obtain the coefficients of the series
corresponding to the average restoring force by the Fourier analysis.

4.1. Numerical application for the Bouc-Wen model

The Bouc-Wen model parameters are displayed in Table 1. Before starting to derive analytical expressions for the coef-
ficients of the series, some numerical simulations are handled to establish how many terms are required to expand the
Eqs. (8)–(11) using the Taylor series approach.

The bar graph in Fig. 3 shows the normalized mean square error (NMSE) between the hysteresis loop approached by Tay-

lor series expansion with regard the loop obtained through numerical integration of Eqs. 1,2 considering the 4th order
Runge–Kutta method with variable time step. The NMSE is defined as:
1 http
NMSE ¼ 100� jjZ y; _yð Þ � Z
�

y; _yð Þjj2
jjZ y; _yð Þjj2

% ð33Þ
where Z
�

y; _yð Þ is the hysteretic restoring force described by the Taylor series expansion.
The error analysis provides a convergence criterion for selecting the order of the Taylor series approach which can

describe adequately the numerically integrated hysteresis loop, considering different excitation amplitudes for a quasi-
static harmonic input u tð Þ ¼ A sin 2ptð Þ and varying the number of terms n. From Fig. 3, it can be concluded that upper than
n ¼ 4 terms the Taylor series expansion reaches the convergence, with the NMSE values above 2:5%. Fig. 4 shows a direct
comparison between the hysteretic restoring force numerically integrated, and the paths Z1;Z2;Z3 and Z4 expanded using
n ¼ 4 terms in the Taylor series approach for the input amplitude of A ¼ 160 N.

As observed, four terms in the Taylor series are enough to approach the hysteresis loop of the model benchmark properly
under a high level of excitation amplitude, providing a close match within the responses and enclosing the same area of the
hysteresis loop obtained by numerical integration, which is � 83:1 mJ per cycle. Although n ¼ 4 terms provide reasonable
results, it is necessary to point out that n may change according to the shape of the hysteretic curve, having in mind that
the higher the complexity in a hysteresis curve, the more terms need to be included. Having defined the framework of
the piecewise hysteretic restoring force, the next step is to propose trial responses and later to compute the coefficients
of the Fourier series using the Newton–Raphson method.

The frequency response curves obtained analytically and through numerical integration are shown in Fig. 5. The curves
were estimated with a constant amplitude input A ¼ 10 N over a normalized frequency range x

xn
2 0:11:8½ �, examining as trial

solutions for applying the harmonic balance method the fundamental harmonic (j ¼ 1) and the sum of the fundamental plus
the third harmonic (j ¼ 3). The resonance frequency shifts up due to the hardening characteristic of the hysteretic restoring
force, with the analytical responses capturing the jump phenomena between different amplitude solutions. Around the jump
s://wxmaxima-developers.github.io/wxmaxima/

https://wxmaxima-developers.github.io/wxmaxima/


Table 1
Bouc-Wen model parameters proposed by Noël and Shoukens (2016) [46].

m [kg] c [Ns/m] k [N/m] a [N/m] b c [m�1] d [m�1] m

2 10 5� 104 5� 104 1� 103 0:8 �1:1 1

Fig. 3. Comparative error between different numbers of terms used in the Taylor series for approaching the hysteresis loop of the Bouc-Wen model.
represents n ¼ 2 terms, represents n ¼ 3 terms, represents n ¼ 4 terms and represents n ¼ 5 terms.

Fig. 4. Comparison between the hysteretic restoring forces of the Bouc-Wen model obtained from numerical integration of Eqs. 1,2 and through the four
different paths approached by the Taylor series. is the Z y; _yð Þ term response by numerical integration, whereas represents Z1, represents Z2,

represents Z3 and is Z4.
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resonant region, x
xn

2 1:1251:25½ �, the choice of the initial conditions for estimating the coefficients of the harmonic compo-
nents by the Newton–Raphson method require to be handled carefully. Moreover, the trial solution regarding the fundamen-
tal and third harmonic can predict well the subharmonic at frequency x ¼ xn

3 , whereas only the fundamental harmonic
cannot, as observed in Fig. 5(b).

Fig. 6 presents the normalized mean square error between the integrated numerical solution and the analytical responses
for all the frequency interval. The error decreases on almost all the frequency spectrum for using the fundamental and the
third harmonic as a trial solution, whereas only the first harmonic deviates from that calculated by the numerical integra-
tion. Also, the error achieves maximum values around the jump region, because the integrated numerical solution does not
reproduce the jump effect.

Fig. 7 shows the hysteresis loop for different forcing conditions to assess the accuracy of the analytical solution with the
fundamental and the third harmonic in predicting the Bouc-Wen response. It was considered three levels of amplitude 10;20
and 40 N, applied for two different excitation frequencies of x ¼ xn

3 and x ¼ xn. The hysteresis loops predicted analytically
through different amplitudes at x ¼ xn

3 shown in the Figs. 7(a), 7(c) 7(e) present substantially the same enclosed area, for
instance, the dissipated energy from both the hysteresis loops in Fig. 7(e) is � 3:35 mJ per period of oscillation. Figs. 7(b),
7(d) 7(f) show the comparison between both analytical and numerical loops when the excitation frequency is at x ¼ xn.
For all cases with this excitation frequency, the area contained by the analytic hysteresis loop is smaller, for instance, in



Fig. 5. Comparison between the frequency response curves of the Bouc-Wen model obtained with numerical integration and through harmonic balance
method considering an input level of 10 N. is the numerical integrated response, whereas – is the fundamental harmonic and is the fundamental
added to the third harmonic.

Fig. 6. Normalized mean square error between the numerical integrated solution and the analytical responses. – is the error between the fundamental
harmonic and the numerical integrated curve, whereas is the error derived from the fundamental harmonic added to the third harmonic. The straight
line corresponds to the threshold error value of 5%.
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Fig. 7(f) the analytic loop dissipates � 72:4 mJ per period of oscillation, whereas the integrated numerical one corresponds to
� 87:9 mJ. Generally speaking, although there exist differences between the responses, the analytical solution is more con-
servative and, for this reason, it could help design purposes. Finally, Figs. 8 and 9 exemplify the responses in the time domain
of the Figs. 7(e) and 7(f), respectively.
4.2. Numerical application for the LuGre model

The LuGre model parameters are addressed in Table 2. As performed for the Bouc-Wen application, the first step is to
define the number of the terms that form the piecewise restoring forces from Eqs. (19) and (20). To achieve this purpose,

a harmonic excitation u tð Þ ¼ A sin 2ptð Þ is considered, and the system output was also estimated by 4th order Runge–Kutta
method with variable time step.

Once again, the convergence analysis depicted in Fig. 10, which is based on the normalized mean square error between
the numerically integrated hysteresis loop with regard the loop approached by the Taylor series, indicates that the NMSE
remains above 2:5% for different input amplitudes when it is used upper than n ¼ 4 terms. Fig. 11 displays a comparison
among the hysteresis loop obtained by numerical integration and through Z" yð Þ and Z# yð Þ when approached by the Taylor
series with n ¼ 4 terms, evidencing a close match between the loops.

The fundamental added to the third harmonic are assumed as a trial response to compute the coefficients of the Fourier
series for the friction model. Fig. 12 show the hysteresis loop of the LuGre model considering an amplitude of excitation
A ¼ 1:2 N and varying the excitation frequency in 0:1 and 1 Hz. For these forcing conditions, the response obtained by
the harmonic balance method presents satisfactory agreement with the integrated numerical solution. The dissipated energy
by both loops in Fig. 12(a) is � 0:0125 mJ per period of oscillation, whereas in Fig. 12(b) the value is � 0:0131 mJ.



Fig. 7. Direct comparison between the hysteresis loop obtained by numerical integration and through the harmonic balance method considering different
forcing conditions applied on the Bouc-Wen oscillator. is the numerical integrated response, whereas corresponds to the analytical response.

Fig. 8. Output identified by the harmonic balance method considering as input u tð Þ ¼ 40 sin xn
3 t
� �

, in zoom between 11:15 and 11:5 seconds. is the
integrated numerical response, whereas corresponds to the analytical response.

L.P. Miguel et al. /Mechanical Systems and Signal Processing 143 (2020) 106842 11
Figs. 13 and 14 illustrate the time domain responses of Figs. 12 and 13, respectively. These two figures depict well one of
the principal contributions proposed by this paper: the possibility of describing analytically the LuGre model operating in
steady-state regime using few terms in the harmonic balance method and a much lower computational cost when compared
with the numerical integration methods, since numerous periods are needed to reach the steady-state response.



Table 2
The LuGre model parameters proposed by Padthe et al. (2006) [20].

m [kg] k [N/m] r0 [N/m] r1 [Ns/m] c [Ns/m] F c [N] F s [N] Vs[m/s]

1 2 105 ffiffiffiffiffiffiffiffi
105

p
0:4 1 1:5 0:001

Fig. 10. Comparative error between different numbers of terms used in the Taylor series for approaching the hysteresis loop of the LuGre model.
represents n ¼ 2 terms, represents n ¼ 3 terms, represents n ¼ 4 terms and represents n ¼ 5 terms.

Fig. 11. Comparison between the hysteretic restoring forces obtained from numerical integration the LuGre model and through the loading and unloading
regimes approached by the Taylor series. is the integrated numerical response; represents Z" yð Þ and is Z# yð Þ.

Fig. 9. Output identified by the harmonic balance method considering as input u tð Þ ¼ 40 sin xntð Þ, in zoom between 11:15 and 11:5 seconds. is the
integrated numerical response, whereas corresponds to the analytical response.
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Fig. 12. Hysteresis loops of the LuGre model. is the numerically integrated LuGre model response, whereas is the analytical solution.

Fig. 13. Output in steady-state regime of the LuGre model identified by the harmonic balance method considering as input u tð Þ ¼ 1:2 sin 0:2ptð Þ, in zoom
between 4:0045� 105 and 4:0075� 105 seconds. is the numerically integrated LuGre model response, whereas is the analytical solution.

Fig. 14. Output in steady-state regime of the LuGre model identified by the harmonic balance method considering as input u tð Þ ¼ 1:2 sin 2ptð Þ, in zoom
between 2:9973� 104 and 2:9976� 104 seconds. is the numerically integrated LuGre model response, whereas is the analytical solution.
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5. Final remarks

This work presents an analytical strategy of both the Bouc-Wen and LuGre hysteretic models through the harmonic bal-
ance method. The framework to rewrite the hysteretic restoring forces as piecewise smooth functions was performed using a
simple Taylor series approach to expand them as explicit functions of the displacement. Further, the central particularities to
use the harmonic balance method and then to determine balancing equations to calculate the coefficients of the Fourier ser-
ies were discussed. As each piecewise expression is valid only at a specific frequency interval, the Fourier series has to be
integrated by parts producing an average hysteretic restoring force based on splitting the coefficients of the series. A numer-
ical application concerning the Bouc-Wen and the LuGre models, which are two challenging hysteretic models, was proposed
to examine the accuracy of the proposed closed-form solutions. The harmonic balance method could predict the frequency
response curve of the Bouc-Wen oscillator and to predict, excluding the jump resonant region, the hysteresis loop of the sys-
tem. In the case of the LuGre model, the harmonic balance predicted with a close match the response of the friction model
when subjected to a quasi-static harmonic input. Besides, the analytical solution could be an adequate alternative to obtain
the steady-state response in a quick and practical step.

Although there exist criticism about the use of the harmonic balance method to describe analytically systems with hys-
teresis in the literature, this present paper proffered a new and simple way to approach the Bouc-Wen and LuGre models
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using only the first three harmonics in the trial solution. In this way, this work opens up the possibility to propose, for future
research, to extend the method for problems involving Finite Element based models and model updating with experimental
data from practical engineering problems which present weak hysteresis. Also, expanding the algorithm of the harmonic bal-
ance method for systems with multiple-degrees-of-freedom, the methodology could be a welcome alternative to analyze the
nonlinear normal modes of hysteretic systems. All these points can be addressed in further works.
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