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a b s t r a c t

Structures joined by lap-joints can present complex nonlinear dynamic behavior as a
function of the stress to which the lap-joint is subjected, including contact stiffness
variations and softening, along with hysteresis effects related to frictional dissipation at
the contact interface. Considering applications where the use of non-parametric models
that depend only on input and output data is required, this work proposes and details
the GP-NARX model’s use to approximate systems’ dynamics with hysteresis. Initially,
the proposed model’s predictive applicability is evaluated on a numerical application
involving the Bouc-Wen oscillator with hysteretic damping. Then, this work proposes a
GP-NARX model to describe the dynamics of the BERT benchmark, an experimental system
that contains a symmetric double bolted joint that is nonlinearly dependent upon the
applied excitation amplitudes, presenting as a friction joint’s well-known softening effect.
The structure also presents data variation related to the presence of uncertainties in the
measurement process. Thus, to accommodate the experimental variability, the training
step of the GP-NARX model considers several experimental realizations. The results
indicate that GP-NARX can make accurate predictions of the response of both investigated
applications, emphasizing its practical ability, where the confidence intervals of the
proposed model were able to accommodate the noisy experimental data, learning the
nonlinear relation between the input and output data points.

� 2021 Elsevier Ltd. All rights reserved.
1. Introduction

In engineering structural design, the benefits of using assembled structures compared to monolithic ones lie in building
complex, modular geometries, which can reduce the overall weight or even facilitate the replacement of damaged compo-
nents [1]. Nevertheless, the transmission of movement in assembled components may occur nonlinearly due to the frictional
contact between connected interfaces. Such nonlinearities are amplitude-dependent, i.e., their behavior depends upon the
stress level to which the lap-joint is subject, and they are observed as variations in contact stiffness (softening effects)
and damping induced by friction and partial slip (hysteretic effects) [2,3]. Thus, to provide a greater understanding of jointed
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assemblies with the assessment of different vibration environments, predicting such systems’ behavior is still a challenging
topic of interest in the research community [4].

Finite element (FE)models are commonly used on an industrial scale (evenmillions of degrees of freedom) to predict energy
dissipation and stress distribution of assembled structures. However, handling contact problems involves complex nonlinear-
ities governed by micro and mesoscale parameters, e. g., geometry, roughness, and contact pressure [5], which considerably
increases the complexity and computational cost of these numericalmodels. Some other numerical tools have been developed
in recent years to accelerate such simulations, including quasi-static modal analysis (QSMA) [6–8], reduced-order models
(ROMs) [9,10], and substructuring techniques based on the spatial decomposition of the structure in a local basis partitioned
into linear and nonlinear subdomains, with the latter encompasses the region around the lap-type bolted joint [11,12].

Although the advance in FE methods has been significant, some applications involving bolted joints, such as detection of
bolt loosening for structural health monitoring (SHM) purposes [13,14], require predictive models that demand relatively
less-expensive computational cost while only relying on input and output data. Towards this objective, data-based models
that do not depend directly on physical parameters to be identified, so-called black-box models, emerge as an alternative to
model structures assembled by bolted joints, despite that they have been only slightly explored within this context or to
identify hysteretic systems. Worden et al. (2007) [15] conducted a survey on identification techniques structured in grey
and black-box approaches to predict friction effects present in a tribometer device by using, for instance, Nonlinear Autore-
gressive with eXogenous inputs (NARX) and neural networks models. Later, Worden and Barthorpe (2012) [16] proposed
using a NARX structure with model parameters expanded into a non-polynomial basis function to identify the input–output
process of a Bouc-Wen oscillator. Leva and Piroddi (2002) [17] presented a NARX-based modeling strategy to describe hys-
terical dynamic behavior for control purposes of magnetorheological dampers. Although the authors consider an approach
that the NARX model is not polynomial, but that preserves linearity in its parameters, only one-step-ahead predictions were
performed, in which those future output predictions depend on the previously real output measurements of the system
under analysis. Then, to generalize polynomial NARX models for describing systems with hysteresis, Martins and Aguirre
(2016) [18] introduced a new way to construct NARX models by using the concept of bounding functions that seek to encode
the hysteresis loop into the structure of such models for estimating the data produced by a magnetorheological damper. Noël
et al. (2016) [19] proposed a framework to identify the dynamic behavior of a Bouc-Wen model benchmark based on the
nonlinear state-space approach expanded into a nonlinear polynomial basis. However, a potential limitation of black-box
models lies in the fact that the model structure should be carefully selected to reproduce the memory effect of hysteresis
(input–output dependency [20]) while avoiding these models from being restricted to reproduce only output signals with
the same characteristics used during their identification process.

In order to address the above-mentioned technical issues that black-box models may have in capturing hysteresis, this
work aims to examine the GP-NARX model’s benefits to predict the dynamic output signals from structures assembled by
bolted joints. This model combines the machine learning Gaussian Process (GP) regression model with the NARX framework,
providing a representation of the system of interest with natural probabilistic confidence intervals based on the model
uncertainties. Inclusion of the confidence intervals makes the GP-NARX framework very suitable for decision processes, like
those required in SHM applications. One of the main advantages of considering the GP-NARX model over other non-
parametric models is that it considers the Bayesian inference to learn from the available data, which decreases the possibility
of overparameterizing the nonlinear function responsible for mapping the output given a known input. The inference is per-
formed directly over the nonlinear function that describes the input–output relation, and not over model parameters. There-
fore, it is a generalization of the Bayesian inference commonly used to estimate nonlinear models, based on models’
parameters estimation. It is also important to highlight that, still in comparison with other non-parametric models, the
model used in this work does not require prior knowledge of its structure (model order), as the classic approach made by
NARXmodels [21]. This model should help monitor the hysteresis’ fluctuations qualitatively caused by loss of torque applied
in the bolts using indirect measurement data.

The paper is organized into five sections. First, Section 2 introduces an overview of the main aspects present in the
identification of a GP-NARX model. To evaluate the applicability of the model to describe hysteretic systems, Section 3 pro-
vides a numerical application of the GP-NARX model to approximate the outputs and hysteresis loops of the Bouc-Wen
benchmark proposed by Noël and Schoukens (2016) [22]. Then, after establishing a methodology of model identification
for the numerical benchmark with hysteresis, Section 4 presents a practical application of the proposed model to reproduce
the nonlinear dynamic behavior present in the first vibrating mode of a structure with a lap-type bolted joint connection,
named as BoltEd stRucTure (BERT). Finally, Section 5 reports the final remarks, main conclusions, and the path forward
for future enquiry.
2. On the GP-NARX model for nonlinear identification

GP-NARX is a nonlinear model class widely known in the machine learning community, with recent applications for
identification purposes in engineering [23], including the wave force prediction on offshore structures [24] and the identi-
fication of the vertical flow of water in the cascaded tanks benchmark [25,26]. This section begins with a brief description of
the method, presenting the main aspects of identifying the GP-NARX model throughout subSection 2.1. For further details,
the readers are invited to find more information in the literature made accessible. Then, subSection 2.2 outlines the
2
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step-by-step procedure to construct the GP-NARX model used in this work to reproduce the behavior of dynamic systems
with a hysteresis.

2.1. GP-NARX model

A GP regression model is based on the idea of Bayesian inference; however, unlike the inference of the model’s param-
eters used in classic Bayesian regression, the GP model considers the inference directly over functional space [27]. Thus, this
model can be described as a generalization of a Bayesian regression method, in which any two or more observations that one
wants to describe follow a multivariate Gaussian distribution [28]. In this sense, consider a general regression problem to
represent the process observations yi 2 IR as
yi ¼ f ðxiÞ þ eðyÞi ; i ¼ 1;2; . . . ;N samples ð1Þ
where f ð�Þ is a nonlinear function mapping the output to an input xi 2 IRD, and eðyÞi is a stochastic variable representing inher-
ent randomness in the observations. This randomness is assumed to be Gaussian distributed with zero mean
eðyÞi � N eðyÞi j0;r2
y

� �
; ð2Þ
where r2
y is the variance of the Gaussian noise observations.

In this work, in order to map the nonlinear effects related to the hysteresis, the NARX structure is considered as a non-
linear function that predicts the output yi. Thus, the model’s input xi is formed by regression upon the excitation and output
signals
xi ¼ ½yi�1; . . . ; yi�ny ; ui; ui�1; . . . ; ui�nuþ1�T; ð3Þ
where ui represents the oscillatory input signal at the ith sample, and nu and ny are the number of regressors in the input and
output signals, respectively.

Keeping in mind that the regression in Eq. (1) is represented by a Gaussian Process, the NARX structure f ðxiÞ is then
formed by the assumption of a multivariate Gaussian prior distribution of zero mean
f ¼ f ðxiÞ � Nðfj0;KÞ; ð4Þ

resulting in the so-called GP-NARXmodel structure, whereK 2 IRN�N is the covariance matrix whose elements are described
as Ki;j ¼ kðxi;xjÞ. The variable kð�; �Þ is a covariance function, also named a kernel function, that models the dependence
between the function values at different input samples. Due to the versatility in the GP-NARX model, the zero mean is
assumed for simplicity.

The construction of the model function used for the regression process depends directly on the knowledge acquired about
the system of interest. Thus, assuming a set of training data available and making use of a simplified notation, one obtains
D ¼ xi; yið ÞNi¼1 � X;Yð Þ; ð5Þ

where X 2 IRN�D is the regression matrix, and Y 2 IRN is the output vector. Since data observations for training contribute
Gaussian white noise, the joint distribution of the training data and test samples, according to the prior distribution, is given
by [27]
Y

f�

� �
� N

Y

f�
0;

KðX;XÞ þ r2
yI KðX;x�Þ

Kðx�;XÞ Kðx�;x�Þ

" #�����
! 
; ð6Þ
where f� denotes the predicted function at new input samples x�. KðX;XÞ is the covariance matrix computed between the
training input samples each other with elements kðxi;xjÞ;KðX;x�Þ is the covariance matrix computed between the training

and new input samples with elements kðxi;x�Þ and Kðx�;XÞ ¼ KðX;x�ÞT . Finally, Kðx�;x�Þ is the covariance matrix between
the new input samples and I 2 IRN�N is an identity matrix.

Then, the Bayesian inference strategy is used to condition a posterior predictive distribution pðf�jx�;X;YÞ over f� based
on the new available input, which gives the main relationship for the GP regression [27]
pðf�jx�;X;YÞ � Nðf�jl�;r
2
� Þ; ð7Þ
where the posterior predictive mean is given by
l� ¼ kðx�;XÞ KðX;XÞ þ r2
y I

h i�1
Y; ð8Þ
and the posterior predictive variance is given by
r2
� ¼ kðx�;x�Þ � Kðx�;XÞ KðX;XÞ þ r2

yI
h i�1

KðX;x�Þ: ð9Þ
3
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Using Eqs. (8) and (9), one can predict the new values of the function f� as well as the values of y� taking into account the
model uncertainties, once both predictive distributions are similar. The variance r2

y and the covariance function kð�; �Þ need to
be estimated based on the available data from the system under analysis. Many covariance functions were proposed over the
years, with special attention to RBF, Exponential, Matérn 3/2, Matérn 5/2, Polynomial, Rational Quadratic, among others. The
choice of the best kernel structure depends on the relations between the input/output data and the previous knowledge
available on the system behavior. It is noteworthy that new kernel functions can also be proposed, just by considering a
new formulation or even making use of a combination of existing functions [29]. In the context of this work, which explores
the application of the GP-NARX model to represent hysteretic systems, the best results were achieved, considering the
available data, by selecting a combination of two covariance kernels:

	 Matérn 3/2:
k1ðx;x0Þ ¼ r2
m 1þ

ffiffiffi
3

p
jx� x0j
l

 !
exp �

ffiffiffi
3

p
jx� x0j
l

 !
ð10Þ

where rm is the Matérn kernel variance and l the lengthscale.
	 Cubic polynomial:
k2ðx;x0Þ ¼ r2
p sðxx0Þ þ b½ �3; ð11Þ

where rp is the Polynomial kernel variance, s the scale and b the bias parameter.

Thus, the new additive kernel is given by
kðx;x0Þ ¼ k1ðx;x0Þ þ k2ðx; x0Þ: ð12Þ
Based on the unknown variables in the kernel, a vector of hyperparameters may be defined as H ¼ r2
m; l;r2

p ; s; b;r2
y

h i
and

then estimated by conducting a maximization of the marginal log-likelihood of the observed data [30]
log pðYjX;HÞ ¼ �1
2
log jKþ r2

y Ij �
1
2
YTðKþ r2

y IÞ
�1
y � N

2
logð2pÞ: ð13Þ
Such a maximization procedure is performed using a gradient method, and the optimum model is used to predict new
outputs as a consequence of new inputs. The GP-NARX model can describe a wide variety of structural dynamic behavior,
taking advantage of its capability to consider modeling uncertainties and predicting the trend curves of outputs with
probabilistic confidences.

The GP-NARX model will be used as a surrogate model to predict the hysterical behavior present in complex systems
dynamics. As mentionated previously, the advantage of dealing with the GP-NARX model when compared to the classic
NARX model [21] lies in the possibility of estimating the nonlinear relation between the regressors and the output based
directly on the inference over the training data, which is a feature of GP regression, only by knowing the maximum number
of input/output lags (ny and nu) [24].

2.2. Identification framework

The identification workflow proposed herein may be stated as follows:

	 Step 1: Data acquisition

Systems with hysteresis present more pronounced nonlinear energy dissipation, which can be visualized through the
opening of the hysteresis loops, increasing the response amplitude [6]. Depending on the excitation amplitude applied, these
systems also present changes in their resonant frequencies due to hardening or softening effects. In these circumstances,
identifying the GP-NARX model is conducted considering training data generated by swept sine excitation tests in the
resonant frequency vicinity. These tests were also used in the Model verification step, but considering different excitation
amplitudes from those used during theModel training step. Stationary sinusoidal testing and white noise signals with several
excitation amplitudes were considered to validate the proposed GP-NARXmodel. In numerical simulations it is interesting to

add some synthetic white noise, avoiding overparameterization and making the inversion of the matrix KðX;XÞ þ r2
y I

h i
easier when strongly correlated training data is considered.

	 Step 2: Model training

This step comprises the optimization of hyperparameters H by maximizing the marginal log-likelihood from Eq. (13) and
also the estimation of the maximum number of input/output lags. Based on the training data ðX;YÞ, a surface involving the
4
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number of lags and the output fit measured at each combination of lags is constructed. The model-fit, which corresponds to
the mean relative square error (MSRE) metric, is evaluated by the following formulation
Table 1
Bouc-W

m [k

2

fit ½%� ¼ 100� 1�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXN
i¼1

yexp;i � lðŷiÞ
� 	2
XN
i¼1

y2exp;i

vuuuuuuut

0
BBBBB@

1
CCCCCA; ð14Þ
where yexp;i is the experimental output signal and lðŷiÞ is the model mean output signal, both at the ith instant of time. With
the surface (ny � nu � fit) estimated, the number of lags is chosen in the region that guarantees the best value of fit using a
minimal number of lags. Of course, using a different output signal in the lag estimations from the one used in the model
training step produces a better description of the system’s dynamics.

	 Step 3: GP-NARX model verification and validation

Once the model with the lags and hyperparameters has been defined, the model’s predictive capability must be assessed.
The reader will see that when we consider infinite-step-ahead prediction or model predicted output [21], those future output
predictions depend on the previously predicted one that is approximated as a Gaussian random variable, defined by its mean
ly and variance r2

y . As a consequence, the GP-NARX formulation is affected by the backpropagation of the model uncertain-
ties. Depending on the covariance function chosen, the backpropagation of the uncertainties may be computed analytically
[31]. However, for a more general formulation based on the model-predicted output as used in this paper, Monte Carlo
simulations are instead used to propagate all the model uncertainties, using the estimated Gaussian distribution [32].

3. Numerical Assessment of the GP-NARX model: The Bouc-Wen Benchmark

This section introduces the use of the GP-NARX model first in a numerical application involving the Bouc-Wen
benchmark, which is given by [22]
m€yðtÞ þ c _yðtÞ þ kyðtÞ þZðy; _yÞ ¼ uðtÞ; ð15Þ
_Zðy; _yÞ ¼ a _yðtÞ � b cj _yjjZðy; _yÞjm�1

Zðy; _yÞ þ d _yðtÞjZðy; _yÞjm
� �

; ð16Þ
where m [kg], c [Ns/m] and k [N/m] are the mass, damping and stiffness coefficients, respectively, and a [N/m], b; c [m�1], d
[m�1], and m are the Bouc-Wen model parameters. Additionally, €yðtÞ [m/s2], _yðtÞ [m/s], and yðtÞ [m] are the acceleration,
velocity, and displacement, respectively, for an excitation input uðtÞ [N]. Zðy; _yÞ [N] represents the hysteretic restoring force
which obeys the ordinary differential Eq. (16) of _Zðy; _yÞ [N/s]. This model presents challenging issues for conventional sys-
tem identification techniques such as the existence of a hysteretic force with multiple solutions (non-smooth nonlinearity),
memory dependency, the presence of multiple harmonics in the oscillator output, among others. Further details involving
the hysteretic benchmark are also addressed by Bajrić and Høgsberg (2018) [33], Rebillat and Schoukens (2018) [34], Teloli
et al. (2019) [35] and Miguel et al. (2020) [36].

Table 1 shows the model parameters selected according to [22]. All simulations with the benchmark presented in this
work use a sampling frequency of 750 Hz. The oscillator’s responses were obtained through a numerical integration scheme

with the 4th order Runge–Kutta method and variable time-step.
It should be pointed out that the objective herein is to predict the Bouc-Wen oscillator’s response described in Eqs. (15)

and (16) bounded by probabilistic confidence intervals produced by the GP-NARX model. This work is different from that
proposed by Bhattacharyya et al. (2020) [37], who consider a stochastic version of the Bouc-Wen oscillator described by ran-
dom variables and then use the Kriging-NARX model to predict its response. Unlike the GP-NARX version, which takes into
account the inference over functions, the Kriging-NARX model considers the stochastic expansion of the NARX model’s
coefficients and then becomes not useful to describe dynamic systems subject to white noise excitation for predicting
statistically characterized responses.

3.1. Model training

One of the main aspects to be considered in constructing a numerical model is related to the training data and how these
are conditioned to the excitation signal applied in the dynamic system. Some key elements should be highlighted within this
en benchmark parameters [22].

g] c [Ns/m] k [N/m] a [N/m] b c [m�1] d [m�1] m

10 5 � 104 5 � 104 1 � 103 0.8 �1.1 1
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context, such as the system operating range, vibration modes of interest, whether the nonlinearity is amplitude-dependent
or frequency-dependent, and so on. To encode and reproduce this nonlinearity from the hysteretic oscillator, the GP-NARX
model is constructed considering swept sine tests in the resonance frequency vicinity. Such tests provide an attractive, cost-
effective ratio between the excitation level amplitude, frequency control, and testing time (particularly for practical
applications).

Thus, the training data ðX;YÞ used for the GP-NARX model inference and estimation of hyperparameters H consist of a
pair of responses of the Bouc-Wen oscillator for a swept sine test applied from 5 up to 150 Hz, with input amplitude levels of
10 and 80 N (low and high) and both with a frequency increase rate of 
 53 Hz/s. Additionally, to emulate experimental con-
ditions during the training, verification, and validation steps of the GP-NARX model construction, white noise was added to
the response data, considering 10% of the total energy of the response signal for input with the lowest level of excitation
amplitude (10 N).

In the lag optimization procedure, the GP-NARX model is estimated several times, considering different combinations of
nu and ny. In contrast, the model performance is measured using Eq. (14), taking into account the same swept sine test, with
an input amplitude level of 50 N (medium). Using a different amplitude signal improves the procedure, ensuring that the
number of lags will be satisfactory in different motion regimes. Fig. 1 presents the lags optimization surface with emphasis
on the optimal values found, which correspond to the regression order of ny ¼ 20 lags in the output and nu ¼ 17 lags in the
input for a fit of 92:4%. Then, having defined the model structure, the next step lies in verifying its performance to reproduce
the Bouc-Wen oscillator’s responses by assuming sweep sine signals with the same characteristics and several excitation
amplitudes.
3.2. GP-NARX model verification and validation

Throughout this subsection, all the model statistics were estimated considering the backpropagation of uncertainties
through Monte Carlo simulations with 1024 samplings, ensuring that all the model uncertainty is considered in the predic-
tions. Additionally, all figures consider 99% statistical confidence bounds.

Fig. 2 presents the assessment of the GP-NARX model, considering a low level of excitation amplitude (10 N). Figs. 2(a)
and (b) depict the model-predicted output in direct comparison with the displacement response of the Bouc-Wenmodel. The
results show that the confidence bounds were able to accommodate the model’s response, with a narrower band in the res-
onance region than near the end of the signal (
 1.5 and 2 s), primarily due to signal-to-noise. Fig. 2(c) shows a close-up view
of the power spectrum density (PSD) of responses over a frequency range of 5–150 Hz, evidencing that the model-predicted
output carries the same frequency content as the Bouc-Wen oscillator response. All spectra presented throughout this sub-
section for sweeping sine tests have been calculated with the Welch’s periodogram considering a rectangular window over
the entire signal length. Fig. 2(d) exhibits the numerically integrated hysteresis loop compared to the predicted one.
Although the hysteresis loop is almost closed to a low level of excitation amplitude, the black-box model can accommodate
the system’s accuracy with hysteresis, having the model mean output enclosing substantially the same area as the Bouc-Wen
oscillator in the restoring force versus displacement plane.

Figs. 3 and 4 exhibit the model-predicted output with 99% of statistical confidence in comparison with Bouc-Wen data for
two levels of excitation amplitude, medium (50 N) and high (80 N), respectively. From these figures, note that the GP-NARX
model can reproduce the dynamics of the Bouc-Wen’s oscillator even at higher excitation amplitudes, where the effects of
nonlinear energy dissipation are evidenced through the pronounced opening of hysteresis loops. A comparison between the
Fig. 1. Lags optimization surface ny � nu � fit. The optimal value of the lags ( ) corresponds to 20 lags in the output and 17 lags in the input for a fit of 92.4
%.
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Fig. 2. Verification of the GP-NARX model for low excitation amplitude (10 N) considering a swept sine test. represents the 99% model-predicted output
confidence bands, is the model response mean and represents the Bouc-Wen data obtained by numerical integration.
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spectra of Figs. 2(c), 3(c) and 4(c) shows that the model is able to follow the hardening effect present in the Bouc-Wen oscil-
lator (cþ d < 0) [38], which is characterized by increasing the resonance frequency for higher response amplitudes.

It is also important to note that the confidence bounds for a higher excitation level are narrower about the mean predic-
tion. This is due to the lower signal-to-noise in higher amplitude signals and the fact that the model uncertainty is lower in
regions close to the training data.

In general, the construction of black-box models may involve some pitfalls. One of them is that these models can be over-
conditioned by the training data used in their construction, such as the Kriging-NARX model proposed by Bhattacharyya
et al. (2020) [37]. In other words, this might mean that a model identified to describe a nonlinear system based on sinusoidal
inputs as training data may only be able to reproduce the responses of such a system that feature the same characteristics in
the input. In this context, this subsection discusses the robustness and validity of the GP-NARX model in reproducing the
hysterical behavior of the Bouc-Wen benchmark assuming inputs different from those used in its construction, such as a sta-
tionary sinusoidal and a random phase multi-sine excitation [22] for low (10 N), medium (50 N) and high (80 N) amplitude
levels.

Figs. 5–7 provide an overview of the model-predicted outputs in comparison with Bouc-Wen data for three levels of exci-
tation amplitude, low (10 N), medium (50 N) and high (80 N), respectively, for a sinusoidal input uðtÞ ¼ A sinð2pxntÞ with
excitation frequency at the linear resonance xn ¼ 35:59 Hz. On the one hand, for a low excitation amplitude, Fig. 5 depicts
that the Bouc-Wen system operates with reduced severity of nonlinear effects, showing through the Fig. 5(c) that the spec-
trum of responses has no contributions of odd higher-order harmonics, e.g., third, fifth and seventh-order harmonics.
Welch’s periodogram with a Hanning window every N ¼ 29 samples was used to reveal this. On the other hand, for medium
and high excitation amplitudes, Figs. 6(c) and 7(c) emphasize the GP-NARX model’s ability to reproduce nonlinear distor-
tions present in the Bouc-Wen’s system response while accommodating the odd harmonics of the output within the confi-
dence bands.

The Bouc-Wen model carries the rate-independent hysteresis property, which means that for the same excursion interval
of the output bounded between amplitudes ymin 6 yðtÞ 6 ymax, the restoring force ZðtÞ of the system will present the same
hysteresis loop when it is excited by a T-periodic input signal with a loading–unloading regime defined in a period T 2 IRþ

[39,35]. Therefore, note that the excursion intervals on displacement present in the hysteresis loops of Figs. 5(d), 6(d) and 7
(d) are approximately the same presented in Figs. 2(d), 3(d) and 4(d), respectively; this shows that the GP-NARX model is
7



Fig. 3. Verification of the GP-NARX model for medium excitation amplitude (50 N) considering a swept sine test. represents the 99% model-predicted
output confidence bands, is the model response mean and represents the Bouc-Wen data obtained by numerical integration.
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able to reproduce the rate-independent hysteresis property through the model-predicted outputs for input signals with a
harmonic characteristic, also representing both system responses with a similar confidence bands, e. g., Figs. 5(d) and 2(d).

The model-predicted outputs for a random phase multi-sine excitation [22,19] over a frequency range of 5–150 Hz are
shown in Figs. 8–10, considering low (10 N), medium (50 N) and high (80 N) excitation amplitudes, respectively. As the
model is used to predict the system behavior for random characteristics that are substantially different from the data
observed in training, it should be stressed that the further away from the training data region one wants to make predictions
using the model estimated (e.g., using a random excitation), more uncertainty will be present in the model’s output. This
means that the model will not necessarily make wrong predictions far from the training data, but the forecasts will be more
uncertain, and in some situations, the mean prediction value may become unrepresentative. For all the levels of excitation
considered, the confidence bands of the model-predicted outputs accommodate the responses from the Bouc-Wen oscillator.
4. Experimental Assessment of the GP-NARX Model: The BoltEd stRucTure (BERT) Benchmark

4.1. Description of the experimental setup

This section considers the BoltEd stRucTure (BERT) benchmark1 shown in Fig. 11 as a bolted jointed structure to test the
robustness of the GP-NARX model when dealing with experimental hysteretic systems. The experimental setup consists of two
aluminum beams assembled in a clamped-free boundary condition, each with dimensions of 270� 25:4� 6:35 mm and con-
nected by two M5 bolts, spaced along a length of 40 mm, with a tightening torque of 5 Nm. An electromagnetic Modal Shop
2400E shaker is placed at 85 mm from the clamped end to minimize shaker-structure interaction [40]. For observability pur-
poses, since this work considers the first mode of vibration of the structure in interest, all measurements considered herein were
made at the free end of the assembled beam by a laser vibrometer Polytec OFV-525/5000S. The data acquisition was performed
by an LMS SCADAS system using a sampling frequency of 1024 Hz. The input signals applied to excite the structure were con-
ducted, assuming different voltage amplitude levels applied to the shaker amplifier, from low to high values (0.05, 0.10, 0.15 and
0.20 [V]). Further details regarding the excitation are addressed in the following subsections. Fig. 11 shows the schematic top
view of the test-rig.
1 Data available on https://github.com/shm-unesp/DATASET_BOLTEDBEAM
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Fig. 4. Verification of the GP-NARX model for high excitation amplitude (80 N) considering a swept sine test. represents the 99%model-predicted output
confidence bands, is the model response mean and represents the Bouc-Wen data obtained by numerical integration.
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Fig. 12 illustrates a preliminary analysis of the nonlinear behavior of the BERT benchmark through the frequency response
curves around its first resonant frequency (
 18.8 Hz). Fig. 12(a) corresponds to the magnitude plot of the receptance, which
was estimated from the structures’ response to the swept sine test from 0 up to 40 Hz (sweep rate of 5 Hz/s) collected with
16384 samples and a burst of 50 %, regarding low (0.05 V), medium (0.10 V) and high (0.20 V) levels of amplitude. One can
verify that the FRFs do not overlay for different input levels, exhibiting distortions, changes in resonance frequency, and a
more significant attenuation of vibration amplitude for higher excitation levels.

In a complementary way, Fig. 12(b) exemplifies the frequency response curve of the assembled structure obtained from
stepped sine tests sweeping up from 3 to 23 Hz, with incremental steps of 0.1 Hz and 32 s of oscillations to ensure steady-
state condition at each excitation frequency. It is noteworthy that, as well as several bolted jointed structures, the BERT
benchmark presents amplitude-dependent nonlinearity, with a decrease in the value of its resonant frequency when increas-
ing the input amplitude. This illustrates the fact that the lap-joint inevitably softens the total rigidity of the system. Recently,
Teloli et al. (2021) [41] demonstrated that the behavior of the benchmark around its first mode of vibration could be well
approximated by a stochastic version of the Bouc-Wen oscillator.

Fig. 13 exemplifies the data fluctuation on frequency response curves considering several experimental measurements
and is shown with 99% statistical confidence bounds. The experimental measurements were conducted over different days,
and only the tightening torque in the joint connection was controlled after each experimental realization.
4.2. Model training

Following the same identification framework discussed in Section 2.2 and exemplified on the numerical benchmark of
Section 3, the training data set ðX;YÞ used for the GP-NARX model inference and estimation of hyperparameters H consist
of a pair of experimental responses collected from the BERT system for the swept sine test described previously and consid-
ering amplitude levels of 0:05 and 0:20 V (low and high), respectively. In this work, the shaker amplifier’s voltage signal is
used as input data for training, verification, and validation of the GP-NARX model. This approach is considered as excitation
once this signal is constant over a frequency range [42].

Also, to take into account the data fluctuation observed in Fig. 13 during the construction of the GP-NARX model, the
training data consider data points randomly chosen from 50 available experimental realizations, using only samples of
the time data acquired around the region of maximum response amplitudes due to the presence of resonance. This procedure
is performed to reduce the computational cost necessary in theModel training step, considering only the part of the data that
9



Fig. 5. Validation of the GP-NARX model for low excitation amplitude (10 N) considering a sinusoidal input with excitation frequency at the linear
resonance xn ¼ 35:59 Hz. represents the 99% model-predicted output confidence bands, is the model response mean and represents the Bouc-
Wen data obtained by numerical integration.
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has the most predominating dynamics. Additionally, using this strategy, the model can predict the experimental uncertainty
related to the variability from one realization to another.

Fig. 14 presents the surface ny � nu � fit [%] resulting from the GP-NARX model lags optimization procedure considering
signals from the swept sine test for an input amplitude of 0.10 V, which was used to improve the model performance, as
mentioned above. It was found that optimal values of 16 lags in the output and 10 lags in the input produced a fit of 96:1%.
4.3. GP-NARX model verification and validation

To ensure convergence in estimating the model’s statistical properties, all practical application results assume the back-
propagation of the uncertainties considering 4096 Monte Carlo simulations.

The model verification is presented through Figs. 15–17 whereby the GP-NARX model-predicted outputs are com-
pared to the BERT benchmark’s experimental results for low (0.05 V), medium (0.10 V) and high (0.20 V) levels of exci-
tation amplitude, respectively. The black-box model presents good agreement with the experimental measurements
since the model training step was conducted regarding these curves. The confidence bands accommodate several exper-
imental realizations, which indicates that the model can make accurate predictions of the structure’s behavior and
response, even in the presence of nonlinear effects and data variability. Figs. 15(c), 16(c) and 17(c) show that even with
the increase in the excitation amplitude, an accurate fit of the frequency components of the experimental responses is
achieved by the model.

Nevertheless, special attention is given to Figs. 15(d), 16(d) and 17(d), which present a comparison between the hys-
teresis loops obtained from the model response and those obtained from the experimental data. It can be seen that the
mean response of the model can capture the evolution of the experimental data in the restoring force � displacement
plane. It should be stressed that the restoring force considered in this comparison represents the projection of all non-
linear forces actuating on the first vibrating mode of the assembled structure around the resonance region (maximum
amplitude).

Different input conditions are then tested from data that were not used to infer the model’s parameters to validate the
proposed model. Fig. 18 depicts the model-predicted output considering the swept sine test with excitation amplitude at
0.15 V. For this excitation with intermediate amplitude between medium and high levels, the model showed it was able
to reproduce the experimental measurements well. Although some points regarding the experimental realizations have
10



Fig. 6. Validation of the GP-NARX model for medium excitation amplitude (50 N) considering a sinusoidal input with excitation frequency at the linear
resonance xn ¼ 35:59 Hz. represents the 99% model-predicted output confidence bands, is the model response mean and represents the Bouc-
Wen data obtained by numerical integration.
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exceeded the limits of the confidence bounds, which is apparent in the 18(d) concerning the hysteresis loops, there are no
regions where the dynamics visualized in the experiment are different from that predicted by the model.

Furthermore, in the context of model validation, the GP-NARX model-predicted output for a sinusoidal excitation with an
amplitude level of 0.15 V and conducted close to the first resonance frequency (18 Hz) of the test-rig is shown in Fig. 19.
From the PSD of the experimental response of the bolted structure present in Fig. 19(c), note that the numerical model
can reproduce in its response the presence of multiple harmonics (2 and 3 times the fundamental frequency) that are also
found in the experimental response. Although it overestimates the third-order harmonic component, the model is suitable to
represent the nonlinearities of even and odd harmonic order associated with the assembled structure’s behavior. Then, the
GP-NARX model brings forward the hysteresis curves predicted in Fig. 19, which illustrates that almost the same energy dis-
sipation is predicted compared to the experimental measurements. Besides, the hysteresis loop’s asymmetry concerning the
zero axes of the displacement has been well-captured by the model.

Fig. 20 depicts the model’s performance in reproducing the behavior of the experimental structure for a white noise input
conducted over the frequency range of 0� 110 Hz with an amplitude level of 0:30 V. As expected, since data with random
characteristics are distant from those used for model training, the more uncertain is the model’s predictions. This is reflected
through the larger confidence bands. Another factor contributing to the more significant uncertainty of the model is related
to the influence of noise on the experimental response since the maximum response amplitude for the random input is illus-
trated in Fig. 20(b) is less than 2 mm. In this condition, the system still operates close to the linear regime of motion, and the
mean response of the model fits well the experimental realization. Fig. 20(c) presents the frequency components of both
signals through their estimated PSDs, showing that the identified model can adequately predict the experimental results.
5. Final remarks

In this work, a GP-NARX model was used to approximate the response of nonlinear systems characterized by hysteresis
effects. This work’s motivation arises from the need to represent the dynamics of complex dynamic systems in several oper-
ating regimes, such as structures joined by bolted joints that experience transient and operational steady-state regimes of
motion, using only input and output data to construct the model. The identification framework of the GP-NARX model
was based on the steps of data acquisition, training, verification, and validation.
11



Fig. 7. Validation of the GP-NARX model for high excitation amplitude (80 N) considering a sinusoidal input with excitation frequency at the linear
resonance xn ¼ 35:59 Hz. represents the 99% model-predicted output confidence bands, is the model response mean and represents the Bouc-
Wen data obtained by numerical integration.

Fig. 8. Validation of the GP-NARX model for low excitation amplitude (10 N) considering a random phase multisine excitation. represents the 99%
model-predicted output confidence bands, is the model response mean and represents the Bouc-Wen data obtained by numerical integration.
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Fig. 9. Validation of the GP-NARX model for medium excitation amplitude (50 N) considering a random phase multisine excitation. represents the 99%
model-predicted output confidence bands, is the model response mean and represents the Bouc-Wen data obtained by numerical integration.

Fig. 10. Validation of the GP-NARX model for high excitation amplitude (80 N) considering a random phase multisine excitation. represents the 99%
model-predicted output confidence bands, is the model response mean and represents the Bouc-Wen data obtained by numerical integration.
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Fig. 11. BERT setup and the schematic representation illustrating the clamped-free beam conveying a bolted joint connection.

Fig. 12. Frequency response curves for different excitation amplitudes: is low (0.05 V), medium (0.10 V), and high (0.20 V) amplitude levels.
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At first, attention was placed on Bouc-Wen’s benchmark. The model’s training to reproduce the oscillator behavior
was done using swept sine tests with different excitation amplitude levels. It is argued that from these data obtained
in a transient regime around the resonant region of the system, the black-box model is trained to take into consideration
the main aspects present in the dynamics of Bouc-Wen’s oscillator, for example, the increase of the resonant frequency
and pronounced opening of the hysteresis loops as one increases the excitation amplitudes. While the model verification
was carried out assuming data of the same character as those used for training, the validation of the GP-NARX consid-
ered data originated in a different way, such as sinusoidal excitation in a steady-state regime applied at the linear res-
onant frequency of the system and the random phase multi-sine excitation. In contrast, in both cases, several levels of
excitation amplitude were tested. Although the GP-NARX model’s predictions have become more uncertain for condi-
tions distant from the training data, the results indicate that the model has an adequate capacity to make the Bouc-
Wen oscillator response predictions.

Next, the work addressed the model’s performance in reproducing the BERT benchmark’s behavior, taking into
account uncertainties that result from the data acquisition procedure based on several experimental realizations. The
experimental results were successfully correlated with predictions obtained from the GP-NARX model, assuming the
experimental variability. Further to the observations that have already been made for the numerical application case,
it is encouraging to note that in addition to inferring the model prediction uncertainties, the confidence bounds can also
14



Fig. 13. Variation of the Frequency Response Function calculated for different excitation amplitudes with 99% of confidence bands. represents the
confidence bands, whereas is the mean values.

Fig. 14. Lags optimization surface ny � nu � fit. The optimal value of the lags ( ) corresponds to 16 lags in the output and 10 lags in the input for a fit of
96:1 %.
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accommodate uncertainties related to the experimental measurement process, highlighting the advantage of using the
GP-NARX model.

This work paves the way to explore the GP-NARXmodel’s use in reproducing the behavior of more complex real engineer-
ing structures involving the presence of fastened joints. The results presented exemplify the model’s application for an avail-
able tightening torque applied to the experimental structure. Future work lies in exploring the use of the black-box model to
reproduce the behavior of the structures with uncertainties in the measurement process for several levels of tightening tor-
que and, from that, explore features present in the response of the GP-NARX model for structural health monitoring (SHM)
purposes that aim to detect the loss of tightening torque.
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Fig. 15. Verification of the GP-NARX model for low excitation amplitude (0.05 V) considering a swept sine test. represents the 99% model-predicted
output confidence bands, is the model response mean and represents ten experimental realizations.

Fig. 16. Verification of the GP-NARX model for medium excitation amplitude (0.10 V) considering a swept sine test. represents the 99% model-predicted
output confidence bands, is the model response mean and represents ten experimental realizations.
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Fig. 17. Verification of the GP-NARX model for high excitation amplitude (0.20 V) considering a swept sine test. represents the 99% model-predicted
output confidence bands, is the model response mean and represents ten experimental realizations.

Fig. 18. Validation of the GP-NARX model for medium excitation amplitude (0.15 V) considering a swept sine test. represents the 99% model-predicted
output confidence bands, is the model response mean and represents ten experimental realizations.
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Fig. 19. Validation of the GP-NARX model for a high excitation amplitude (0.15 V) considering a sinusoidal amplitude with excitation frequency at 18 Hz.
represents the 99% model-predicted output confidence bands, is the model response mean and represents ten experimental realizations.

Fig. 20. Validation of the GP-NARX model for an excitation amplitude of 0.30 V considering a white noise input. represents the 99% model-predicted
output confidence bands, is the model response mean and represents the experimental data.
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