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Abstract

In engineering asset management, accurate failure risk estimation is essential
for averting equipment breakdowns and optimizing risk-based maintenance
strategies. Data quality and model fitting are two critical sources of predic-
tion uncertainty in risk estimation. While much attention has been devoted
to model fitting for risk estimation, the critical role of data quality has of-
ten been overshadowed. To bridge this research gap, this paper presents a
novel data quality management framework tailored for industrial equipment
failure risk estimation. The framework covers the steps from data to model.
It consists of the following main phases: data development, data quality
assessment, data quality requirement decision-making, data quality improve-
ment, and risk estimation model development. The framework provides de-
tailed guidelines that can facilitate data practitioners to build individualized
data quality requirement decision-making models for failure risk estimation
of their equipment. The decision-making model can measure the adequacy
of existing data to build a risk estimation model that meets the specified
requirements and further determines the best risk estimation model given
the available data. A case study using actual data collected during oil well
drilling operations from multiple oil fields demonstrates the practicality and
effectiveness of the framework. In this case study, four risk estimation mod-
els are compared, including two baseline models (mean time to failure and
median time to failure) and two machine-learning models (quantile regres-
sion and hidden Markov model). In addition, a decision tree-based decision
model is developed to determine whether the data quality meets the require-
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ments and the best risk estimation model in case the data quality meets the
requirements.

Keywords: data quality, risk estimate, field data, oil and gas, downhole
tools

1. Introduction

Risk is commonly characterized as the possibility or likelihood of a poten-
tial event occurring(Society for Risk Analysis, 2018). In the specific context
of equipment failure risk estimation within the realm of engineering asset
management, the risk of failure can be defined as the likelihood of a fail-
ure in an industrial system that can lead to costly consequences such as
downtime, maintenance costs, and even safety hazards. By quantifying the
risk of failure associated with industrial equipment, organizations can pri-
oritize maintenance tasks, reduce unplanned downtime, and extend the life
of critical assets(Mart́ınez-Galán Fernández et al., 2022). Therefore, accu-
rate equipment failure risk estimation is critical to making informed asset
management decisions.

With the rapid advancement of Internet of Things (IoT) technology, com-
puter science, and artificial intelligence, failure risk estimation for industrial
equipment has increasingly relied on data-driven models powered by ma-
chine learning algorithms. For instance, (Mazumder et al., 2021) conducted
a comparative study of eight machine-learning algorithms to estimate the
failure risk in steel oil and gas pipelines. (Betz et al., 2023) introduced an
innovative risk estimation model for building equipment, leveraging condi-
tion inspection data and a neural network algorithm. (Wang et al., 2023)
utilized historical failure mode and effect analysis data to predict component
or product failure risk using various machine learning classifiers. In machine
learning applications, three primary sources of prediction uncertainty emerge
scope compliance, data quality, and model fitting (Kläs and Vollmer, 2018).

Scope compliance-related uncertainty arises because of disparities be-
tween the context in which the model is developed and the real-world appli-
cation context. Data quality-related uncertainty stems from limitations in
data quality when applying the model, encompassing issues like missing val-
ues and noisy data. Lastly, model fitting-related uncertainty is a consequence
of the inherent limitations of the learned model.

In the context of equipment risk estimation, scope non-compliance is often
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deemed impossible as the scope is clearly defined – it is to estimate the risk
of equipment failures. Thus, two predominant factors significantly influence
failure risk estimation accuracy: data quality and model fitting. However,
much of the research effort in academia has been focused on solving problems
related to model fit, and little research has been done on data quality (Omri
et al., 2021)(Gitzel et al., 2015)(Jia et al., 2022). In fact, in practical machine
learning applications, a significant amount of time and resources invested are
devoted to data collection, cleaning, and preparation (Press, 2023)(Gupta
et al., 2021). Based on these considerations, this paper proposes an extended
data quality management framework for equipment risk estimation based on
a prior work presented at the IFAC World Congress 2023 (Kang et al., 2023).

The framework aims to address key issues related to data quality in in-
dustrial equipment risk estimation:

1. How can data quality from industrial equipment be assessed? This
question explores indicators for assessing the quality of data collected
from industrial equipment, such as data volume, completeness, accu-
racy, and consistency.

2. How to measure the effect of data quality on the performance of equip-
ment risk estimation models given actual risk are partially known?
Understanding the relationship between data quality and model per-
formance is critical. This question explores techniques to quantify the
effect of data quality on the accuracy of risk estimates.

3. How can it be determined whether data are sufficient for modeling risk
estimates? This question addresses the process of determining whether
the data collected meets the data quality required for modeling.

4. If the data are sufficient, which model is the best for modeling risk es-
timates? This question addresses the decision-making process of model
selection.

5. If the data are substandard and insufficient for modeling risk estimates,
what measures are in place to improve the quality of the data? This
question explores the data quality improvement techniques including
data preprocessing (e.g., missing value imputation, and outlier detec-
tion), and other data management practices.

The several key enhancements compared to previous work are summarized
as follows:
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• Scope expansion: The framework is broadened to encompass equip-
ment risk estimation more broadly, moving beyond its previous con-
finement to electronic systems within downhole tools.

• Decision-making model: A novel decision-making model is intro-
duced within the framework. This model serves the crucial function of
assessing whether the available data quality meets specific requirements
and, equally important, determines the best risk estimation model if
the data meets the requirement.

• Enhanced loss function: The loss function characterizing risk model
performance is improved. It now incorporates a new parameter termed
the ”cost ratio”, which captures the influence of the maintenance cost
difference of different equipment on the loss function.

• Practical guidance: This paper offers in-depth details and compre-
hensive explanations, providing valuable guidelines for data practition-
ers to build data quality management for risk estimates of their equip-
ment.

These extensions enhance the applicability and effectiveness of the data
quality management framework, making it a valuable resource for data pro-
fessionals engaged in risk estimation for a wide range of industrial equipment.

The rest of the paper is organized as follows: Section 2 reviews the ex-
isting data quality management related works. Section 3 presents a compre-
hensive framework for managing data quality in equipment risk assessment,
including data quality assessment, data quality requirement decision-making,
data quality improvement, and risk estimation model development. Section 4
presents a case study to validate the effectiveness of the proposed framework,
utilizing field data collected from real-world drilling operations conducted
globally. Moreover, the validation is restricted to the electronic boards in
drilling tools used for oil well construction. Section 5 summarizes the key
takeaways, highlights the importance of data quality in industrial equipment
risk assessment, and suggests future research directions in this critical area.

2. Related works

2.1. Data quality definitions

Data quality has attracted significant attention and research in various
domains, including, but not limited to, information management, IoT, digital
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manufacturing, healthcare, and prognostics and health management (PHM).
Many definitions of data quality have emerged in these domains. Table 1
briefly summarizes these different definitions.

Table 1: Data quality definitions

Domain Reference Definition
Information
management

(Wang and
Strong, 1996)

Data that are fit for use by data consumers.

IoT
(Karkouch
et al., 2016)

How suitable the gathered data (from the
smart things) are for providing ubiquitous
services for IoT users.

(Mart́ın et al.,
2023)

Data quality defines the degree of com-
pliance with the requirements enforced by
data consumers

Digital manu-
facturing

(Wang et al.,
2008)

A measure of the agreement between the
data views presented by an information
system and that same data in the real
world.

Healthcare
(Ehsani-
Moghaddam
et al., 2021)

Data quality is the degree to which a given
dataset meets a user’s requirements.

PHM
(Chen et al.,
2013)

The data quality should reflect the suit-
ability of data to satisfy the modeling for
purposes of failure detection, diagnosis and
prediction.

In addition to the data quality definitions found in research articles, the
international standard ISO 8000 series defines data quality as degree to which
a set of inherent data characteristics fulfills requirements (ISO 8000-2:2022).
Another international standard (ISO/IEC 25012:2008) defines data quality
as degree to which the characteristics of data satisfy stated and implied needs
when used under specified conditions. Moreover, the company IBM defines
that data quality measures how well a dataset meets criteria for accuracy,
completeness, validity, consistency, uniqueness, timeliness, and fitness for
purpose (IBM, 2024).

Although there are various definitions of data quality in different domains,
a common consensus is that data is considered high quality when it is well
suited for the intended purposes in the application context.
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2.2. Data quality metrics

In the research literature, the term “data quality metrics” is synony-
mous with a variety of terms, including “data quality dimensions” (Wang
and Strong, 1996), “data quality indicators” (Wang et al., 2019), and “data
quality characteristics” (Gualo et al., 2021). The data quality metrics are
a set of data quality attributes that represent a single aspect or construct
of data quality (Wang and Strong, 1996). There are two widely recognized
international standards related to data quality. The first one is (ISO/IEC
25012:2008), in this international standard, the data quality metrics are clas-
sified into two categories: inherent and system-dependent.

• Inherent data quality refers to the degree to which quality character-
istics of data have the intrinsic potential to satisfy stated and implied
needs when data is used under specified conditions.

• System dependent data quality refers to the degree to which data qual-
ity is reached and preserved within a computer system when data is
used under specified conditions.

For inherent data quality, five data quality metrics are defined: accuracy,
completeness, consistency, credibility, and currentness. On the other hand,
system-dependent data quality is assessed using three metrics: availability,
portability, and recoverability. Additionally, there are seven metrics that
jointly consider inherent and system-dependent data quality.

The other international standard is (ISO 8000-8:2015). This standard
identifies three categories to measure data quality, which are

• syntactic quality: degree to which data conforms to its specified syntax;

• Semantic quality: degree to which data corresponds to what it repre-
sents;

• pragmatic quality: degree to which data is found suitable and worth-
while for a particular purpose.

In addition to the two international standards, researchers have identi-
fied various data quality dimensions from different perspectives or application
contexts. For instance, In the sensor data streaming environment, (Klein and
Lehner, 2009) adopted a set of five metrics to represent data quality. These
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metrics include accuracy, confidence, completeness, data volume, and timeli-
ness. (Rekatsinas et al., 2015) used metrics such as coverage, accuracy, time-
liness, and position bias to assess the quality of data sources, which are well
suited for applications involving data integration and fusion. (Purnomoadi
et al., 2023) applied six dimensions of data quality for asset health indexing.
The six dimensions are accuracy, completeness, validity, consistency, unique-
ness, and timeliness. (Dı́az Iturry et al., 2021) found that in health records,
most data quality problems are related with completeness, followed by con-
sistency, correctness and accuracy. (Xu et al., 2022) defined five data quality
metrics for imbalanced data in multiple products manufacturing process: free
of error, appropriate amount of data, ease of manipulation, relevance, and
imbalance level. (Merino et al., 2016) proposed the three data quality char-
acteristics for assessing the levels of data quality-in-use in big data projects:
contextual adequacy, operational adequacy and temporal adequacy. From
a product perspective, (Wang, 1998) proposed a comprehensive framework
consisting of four categories of data quality metrics: intrinsic data quality,
contextual data quality, representational data quality, and accessibility data
quality, each of which includes several subcriteria. The framework provides
a detailed taxonomy for assessing data quality from different perspectives.

Given the wide variety of data quality indicators, careful consideration
must be given to selecting these indicators, because not all have uniform
applicability or relevance in different contexts. Similar to the contextual
relevance of data quality, the selection of data quality metrics should be
based on the precise requirements and objectives inherent in the intended
application (Buelvas et al., 2023).

Table 2 summarizes definitions of a few widely used data quality metrics.
It is noteworthy to acknowledge that the enumeration of metrics presented
herein is not comprehensive; rather, it serves to provide a representative
overview of the research endeavors undertaken in this domain.

2.3. Data quality related works in engineering asset management

While the field of data quality management has seen significant develop-
ments, it is worth noting that the majority of research efforts have been di-
rected towards data quality measurements and monitoring within databases
or information management contexts (Batini et al., 2009)(Ehrlinger andWöß,
2022)(Cichy and Rass, 2019). In contrast, the domain of engineering asset
management, which deals with critical industrial systems, has received rela-
tively less attention in terms of data quality management research.
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Table 2: Definitions of widely used data quality metrics

Metric Definition

Accuracy
The degree to which the data values reflect the ac-
tual event state in a specific context of use (ISO/IEC
25012:2008).

Completeness
The ratio of complete elements. An element can refer
to any data unit, e.g., an attribute, a record, or a table
(Batini et al., 2009).

Data volume
The number of raw data items (values) available for use
to compute a result data item (Karkouch et al., 2016).

Consistency
The degree to which the data’s format and value conform
to the predefined schema (Behkamal et al., 2014).

Timeliness
The probability that an attribute value is still up-to-date
(Kaiser et al., 2007).

Currency
Time difference between when data are stored in the sys-
tem and when data are updated in the real world (Batini
et al., 2009).

Relevancy
Extent to which information is applicable and helpful for
the task at hand (Wang and Strong, 1996).

Interpretability
To extend to which data is appropriate languages, sym-
bols, and units and the definition are the clear (Pipino
et al., 2002).

Accessibility
Extent to which information is available, or easily and
quickly retrievable (Wang and Strong, 1996).

Existing research work in this area mainly focuses on different data quality
issues in various engineering asset management tasks, including failure detec-
tion, fault diagnosis, degradation assessment, maintenance decision-making,
and structural health monitoring. A comprehensive search of engineering-
related literature published after 2010 was conducted on Scopus using key-
words related to data quality management (e.g., data quality, data require-
ments, data management, data suitability) as well as keywords related to
engineering asset management tasks (e.g., failure detection, failure diagno-
sis, degradation, prognosis, maintenance, risk estimation, RUL prediction).
A total of 243 relevant articles were identified and their abstracts were thor-
oughly researched to further confirm their relevance to data quality manage-
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ment for engineering asset management tasks. Ultimately, 15 articles were
selected as a representative sample from a larger pool of articles. It is worth
noting that this selection was not exhaustive, but rather a screening of rel-
evant literature. Table 3 provides a concise overview of the explored data
quality issues of these data quality-related works.

These works have predominantly focused on specific aspects of data qual-
ity management, with limited discussions regarding comprehensive frame-
works that span the entire data lifecycle from data generation to data-driven
model development. Moreover, there has been relatively less emphasis on
data quality in the context of equipment failure risk estimation.

3. Proposed data quality management framework

The proposed data quality management framework for equipment failure
risk estimation is illustrated in Figure 1. This comprehensive framework is
composed of five phases: data development, data quality assessment, data
quality requirement, data quality improvement, and risk estimation model
development. Each of these phases is explained in detail in the following
subsections.

3.1. Assumptions

There are several key assumptions that should be taken into account
before implementing the framework. These assumptions are detailed below:

• Only the start and end times of life are known for failed equipment;
actual risks of failure over time or health states over time are unknown.

• The studied equipment is assumed to be newly implemented or infre-
quently used, resulting in limited availability of high-quality data.

• The data quality of the studied equipment is assumed not to exceed
the data quality of the similar equipment.

• The data quality of the similar equipment is assumed high.

• Unit failure cost and premature replacement cost per unit time are
known and considered constants for the equipment.
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Table 3: Summary of data quality related works in engineering asset management

Reference Task
Explored data quality
issue

(Jia et al.,
2018);(Zhou et al.,
2021);(Ji et al.,
2022);(Yao et al.,
2023)

Fault diagnosis Data quality assessment

(Omri et al., 2021) Fault diagnosis Data quality requirement

(Xie et al., 2023)
Machinery health
monitoring

Data quality improve-
ment

(Chen et al., 2013) Fault diagnosis
Data quality assessment
and improvement

(Jia et al., 2018);(Jia
et al., 2022)

Fault detection, fault
diagnosis, and degra-
dation assessment

Data quality assessment

(Lukens et al., 2022)
Degradation assess-
ment

Data quality assessment
and improvement

(Lukens et al., 2019)
Maintenance
decision-making

Data quality improve-
ment

(Madhikermi et al.,
2016)

Maintenance
decision-making

Data quality assessment

(Koziel et al., 2021)
Maintenance
decision-making

Investment decision-
making for data quality
improvement

(Makhoul, 2022)
Structural health
monitoring

Data quality metric selec-
tion

(Deng et al., 2023)
Structural health
monitoring

Data quality assessment
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Figure 1: The data quality management framework
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3.2. Data development

As mentioned in the Introduction, the cornerstone of building data-driven
models for estimating equipment failure risk lies in the data, because the
efficacy and usefulness of these models depend heavily on the data quality.
This section on data development outlines the three key steps required to
formulate and process the data, that is, data collection, data preprocessing,
and data labeling.

3.2.1. Data collection

Data-driven equipment failure risk estimation begins with the collection
of data, typically sourced from the computerized maintenance management
system (CMMS) linked to the equipment. A CMMS is a specialized software
that centralizes maintenance information, optimizing the use and availability
of physical equipment (IBM, 2023). The CMMS database holds a wide range
of information, including equipment details, operational data, work orders,
and materials inventory. The operational data encompasses readings from
sensors on the equipment, such as temperature sensors and accelerometers,
which measure temperature and vibration. Work orders cover maintenance,
equipment orders, shipments, and related tasks.

While the CMMS database is rich in data, it is neither practical nor
necessary to use all of it for equipment failure risk estimation. In practice,
specific subsets of data are selectively extracted, focusing on equipment iden-
tity, run history, operational environment data (e.g., temperature, vibration),
and relevant maintenance work orders.

3.2.2. Data preprocessing

Data preprocessing is a process of refining and reshaping raw data into a
format suitable for subsequent risk estimation model training. Traditionally,
this process requires significant engineering effort and is characterized by
iterative improvement through rigorous trial and error handling (Zha et al.,
2023). Fig. 2 illustrates the four essential steps in data preprocessing: data
cleaning, feature extraction, feature transformation, and feature reduction.

Data cleaning Feature extraction Feature
transformation Feature reduction

Figure 2: Data preprocessing steps
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Data cleaning addresses errors like missing values, outliers, and dupli-
cates. Section 3.5 provides detailed insights into missing-value handling,
outlier detection, and data deduplication. Industrial equipment operational
data cleansing often requires additional steps guided by Subject Matter Ex-
perts (SMEs) in fields like reliability, electrical, and chemical engineering.
SMEs contribute specialized knowledge to tasks such as determining stable
operation phases. Unsupervised methods, like those explored by (Mosallam
et al., 2011), can complement SME expertise.

Feature extraction focuses on obtaining discriminative features from the
raw data for failure risk estimation models. Though widely used statistical
features extracted from time-domain, frequency-domain, and time-frequency-
domain can be applied to general-purpose equipment such as gearboxes and
motors (Atamuradov et al., 2017). Specialized equipment, like drilling tools
in the oil and gas industry, requires SME guidance. Despite deep learning’s
feature-learning capabilities, its limited interpretability and computational
complexity in real industrial applications make conventional feature extrac-
tion techniques preferable for interpretability and information sensitivity re-
duction (Fink et al., 2020)(Zha et al., 2023).

Feature transformation enhances model performance by converting orig-
inal features. Common methods include normalization (scaling to [0,1] or
[-1,1]) and standardization (zero mean and unit variance). These techniques
ensure uniform data magnitude, equal feature contribution, and prevent dom-
inance by larger-value features. Additional methods, such as Box-Cox trans-
formation for skewed data, and feature multiplication, are employed for im-
proved representation.

Feature reduction includes two approaches: feature selection and dimen-
sionality reduction. Feature selection is a process that entails the choice of
a subset of input features from a dataset. Feature selection methods can
be classified into two categories: unsupervised and supervised (Cai et al.,
2018). Supervised feature selection methods can be further categorized into
wrapper, filtering, and embedded methods (Meisenbacher et al., 2022). Di-
mensionality reduction aims to transform high-dimensional features into a
low-dimensional space while retaining salient information. One of the most
widely used methods of dimensionality reduction is principal component anal-
ysis.
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3.2.3. Data labeling

Data labeling is an essential process in data development. It involves at-
taching one or more meaningful and informative labels to raw data, usually
time series sensor data, in the context of industrial equipment failure risk
estimation. These labels typically convey information regarding the equip-
ment’s health status (or fault mode) and the underlying failure mechanisms,
enabling data practitioners (e.g., data scientists) to select correct data for
model training.

Maintenance work orders can also be initiated in response to suspected
equipment failures; notably, maintenance technicians rather than mainte-
nance experts often record the failure description and shop analysis provided
in maintenance work order data. As a result, there can be uncertainty re-
garding the accuracy of the failure reports in the maintenance work order
and the identification of the failure root cause.

Labeling industrial equipment sensor data is a complex and costly task,
distinct from more common annotation tasks like image or text annotation.
It requires a profound understanding of equipment operations, maintenance
protocols, and failure mechanisms. SMEs, with their specialized knowledge,
are typically entrusted with this responsibility. They review sensor data,
failure descriptions, and shop analyses in maintenance work order data to
validate failure occurrences and identify root causes. In some cases, failed
equipment may undergo a more extensive investigation at the technology
center for a detailed analysis of the failure and its contributing factors.

3.3. Data quality assessment

Data quality assessment is one of the five key phases in data quality
management. It aims to evaluate the suitability of a dataset for its intended
purpose. Section 2.2 describes widely used quantitative data quality metrics.
These metrics enable data practitioners to calculate values that offer insights
into the data’s fitness for use. The process of data quality assessment consists
of the following two key steps:

Data quality metric selection: This initial step involves identify-
ing and selecting pertinent data quality metrics. The choice of metrics
should align with the specific application context and the data character-
istics. (Heinrich et al., 2018) proposed five requirements for data quality
metrics, namely, the existence of minimum and maximum metric values (R1),
the interval scaling of the metric values (R2), the quality of the configura-
tion parameters, and the determination of the metric values (R3), the sound
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aggregation of the metric values (R4), and the economic efficiency of the
metric (R5). These criteria support both decision-making under uncertainty
and economically oriented data quality management.

Data quality metric calculation: Once the relevant data quality met-
rics are chosen, the next step is to apply these metrics to the dataset. This
step involves calculating the metric values based on the dataset’s character-
istics and the definitions of the selected metrics. For example, completeness
metrics involve calculating the percentage of missing values, while data vol-
ume metrics assess the number of samples.

3.4. Data quality requirement

Once the data quality assessment has been completed, it is necessary to
determine whether the data quality meets the data quality requirements. A
straightforward approach is establishing thresholds for data quality metrics,
but determining these thresholds remains challenging.

This paper proposes a new method for determining if the data quality
meet specific requirements. The method is based on the relationship be-
tween model performance and data quality, and a decision tree model. In
addition, model performance is evaluated based on the average maintenance
cost. Thus, this method for determining data quality requirements takes
costs into account. This section will first present an indicator for assessing
the performance of the equipment risk estimation model and then describe
how to acquire knowledge of the relationship between model performance
and data quality.

3.4.1. Risk estimation model performance metric

When assessing the risk of equipment failure in an industrial environment,
it is often challenging to determine the actual risk of failure over time, which
is especially true for complex equipment with particularly complex failure
mechanisms. In such cases, available data usually only provide information
on when equipment failures occurred.

On the other hand, cost factors play a pivotal role in maintenance de-
cisions guided by risk estimation. Consider the scenario where a critical
component is the primary driver of equipment failures, and this component
cannot be repaired but only replaced. In this case, the risk-based main-
tenance decision-making process involves three principal costs: component
replacement cost, cost associated with undetected failures, and cost asso-
ciated with premature component replacement. The first of these costs is
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often deterministic, while the latter two depend on the accuracy of the risk
assessment model.

Specifically, suppose the risk estimation model can predict the compo-
nent failures accurately. In that case, the components can be replaced at the
optimal time, thus avoiding any losses due to failures or premature replace-
ment. However, if the model predicts the failure too late, it can incur costs
associated with equipment failures. Conversely, if the model predicts failures
too early, it may lead to unnecessary component replacement costs.

Given the above analysis, the authors proposed a loss function for assess-
ing the performance of a risk estimation model in their prior work (Kang
et al., 2023):

ℓ =

N∑
i=1

[
c1I(T̂i ≥ Ti) + c2(Ti − T̂i)I(T̂i < Ti)

]
N

(1)

where

• N : the number of components.

• T̂i: the time when the component i is replaced based on failure risk
estimation, assuming all components’ lives start at time 0; specifically,
the component i is replaced when the failure risk estimate reaches a
certain level.

• Ti: actual life of component i, i.e., the time when the component actu-
ally failed.

• c1: unit failure cost, i.e., the cost caused by one undetected failure.

• c2: premature replacement cost per unit of time.

• I is an indicator function. In other words, T̂i ≥ Ti means the component
i is replaced too late, which incurs failure cost, while T̂i < Ti means the
component i is replaced too early, which incurs premature replacement
cost.

Different components could have different unit failure costs and prema-
ture replacement costs per unit of time. To capture the effect of these cost
differences on the loss function and reduce the number of cost parameters,

16



this paper enhances the loss function by introducing a new parameter called
cost ratio (denoted as r = c1/c2). Firstly, Eq. (1) can be written as Eq. (2).

ℓ = c2

c1
c2

×

N∑
i=1

I(T̂i ≥ Ti)

N
+

N∑
i=1

(Ti − T̂i)I(T̂i < Ti)

N

 . (2)

Then, since the cost parameters c1 and c2 are constants for the component,
Eq. (2) can be further reformulated as Eq. (3) by substituting r for c1/c2.

ℓ ∝ r ×

N∑
i=1

I(T̂i ≥ Ti)

N︸ ︷︷ ︸
term 1

+

N∑
i=1

(Ti − T̂i)I(T̂i < Ti)

N︸ ︷︷ ︸
term 2

. (3)

This new expression consisting of two different terms as shown in Eq. (3).
The first term can be interpreted as the average undetected failures, while the
second term can be interpreted as the average premature replacement time.
Both these terms are influenced by the data quality, while the parameter r is
inherent to the component itself. The inclusion of r is essential as different
components exhibit distinct values for ratio between unit failure cost and
premature replacement cost per unit of time.

3.4.2. Knowledge of data quality vs. model performance

Failure risk estimation of industrial equipment is inherently contextual.
Different types of equipment have different characteristics and monitoring
parameters and, therefore, cannot be cross applied. For example, it would
be unwise to attempt to use a model trained on gearbox data for electronic
boards, because the fundamental nature of these equipment types and their
associated data varies widely. Consequently, the knowledge gained through
simulation studies on publicly available datasets, which are often not corre-
lated with the equipment under study, cannot reflect the true relationship
between the quality of the data from the equipment under study and the
performance of the model.

Adding to this challenge is that obtaining large amounts of high-quality
data for newly implemented or infrequently used equipment can be daunt-
ing. This paper proposes a new approach for indirectly acquiring knowledge
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about the relationship between data quality and model performance, as il-
lustrated in Fig. 1. That is, using data from similar equipment, which
have more data than the equipment under study. Based on the data from
similar equipment, knowledge about the relationship between data quality
and model performance can be obtained through simulation studies. In this
paper, this knowledge is succinctly represented as K(Q,Ω, r, ℓ), where Q de-
notes a vector containing data quality metrics, Ω represents risk estimation
models, r is the cost ratio, and ℓ corresponds to the previously defined loss
function in Eq. (3).

The simulation studies are based on carefully processing data from similar
equipment. By selectively removing or modifying data segments, data with
different levels of data quality can be modeled. These synthetic datasets
can train risk assessment models, thus effectively exploring the relationship
between data quality and model performance. Subsequently, using the same
test dataset, these trained models are used to estimate the lifetime of the test
boards, which helps to compare the loss function values. For more robust
assessments of model performances, it is recommended that cross-validation
techniques are used.

3.4.3. Decision model

Once this knowledge is obtained, along with the minimum performance
requirement, it becomes feasible to develop a decision model using the deci-
sion tree algorithm. The choice of the decision tree algorithm in this paper
is motivated by its simplicity, ease of understanding, and the capacity to
visualize the decision model. The decision model can be mathematically ex-
pressed as in Eq. (4). The developed decision model can then determine
whether the data quality of the equipment under study should be improved
and, if not, which risk estimation model is the best.

D = g(C,K(Q,Ω, r, ℓ)), (4)

where C is the minimum performance requirement. It can be determined
based on the average cost requirement thanks to the definition of the loss
function. D is the decision predicted by the decision model.

A detailed case study will be presented in Section 4 to illustrate the
practical application of the method to acquire the knowledge K(Q,Ω, r, ℓ)
and make decision based on the decision model.
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3.5. Data quality improvement

Data quality improvement involves two key steps: analyzing the root
causes of low data quality dimensions and identifying data quality improve-
ment actions.

Root cause analysis of low data quality dimensions: The first step
in the data quality improvement process is to examine the dimensions of
low data quality to discover the root causes of low data quality. This step
requires a comprehensive understanding of the data generation mechanisms
and collection process. The root causes can be grouped into three categories:
hardware-related issues, software-related issues, and human factors. Hard-
ware problems may include insufficient sensor accuracy, capacity limitations
and physical damage of memory storage boards, and communication errors
during data transfer from lower to upper computer systems. These problems
are rooted in the design and infrastructure of the hardware system. Software
issues include data loss or inconsistency due to CMMS system migration or
limitations. In addition, data loss issues may occur during the data collec-
tion process; which often stems from human error; e.g., inadvertent data
overwriting and field engineers neglecting to upload data to the server.

Identification of data quality improvement actions: After thor-
oughly analyzing the root causes of data quality deficiencies, the next step is
to develop corresponding data quality improvement measures. Improvement
measures may include a variety of strategies and initiatives, each aligned with
the specific causes and dimensions of data quality that need to be improved.
Based on the above analysis of the root causes of low data quality, the data
quality of industrial equipment can be improved in the following three area.

• System upgrades: This area focuses on improving data quality from a
hardware and software technology perspective. For example, deploying
enhanced sensors with higher accuracy and upgrading communication
systems can reduce measurement errors and inaccuracies, directly af-
fecting data quality. Choosing a powerful, stable, and mature CMMS
can also help manage equipment data, avoiding data loss or inconsis-
tency caused by frequent CMMS migrations.

• Management improvement: Management improvement centers on opti-
mizing data quality from a management and human factors perspective.
Many data quality issues often stem from human error or negligence.
As analyzed above, data loss can be due to field technicians forgetting

19



to transfer data from the memory board to the hard drive and upload
it to the data cloud. To minimize such issues, increased training and
introduction of Key Performance Indicators (KPIs), such as data col-
lection ratios, for field engineers can increase their awareness of the
importance and responsibility of data collection.

Both technical and management improvements require a significant in-
vestment of time and resources. In addition, they require sustained
commitment and ongoing efforts to significantly improve data quality.
They are essential for continuous data quality improvement but may
not produce immediate results and/or business value.

• Data preprocessing improvements: In contrast, data preprocessing im-
provements offer an immediate and practical approach to improving
data quality. One can quickly resolve some data quality issues by em-
ploying data preprocessing techniques such as deduplication, outlier
detection, and missing value imputation.

– Data deduplication aims to compress data through removing du-
plicated data items and replacing them with a pointer to the
unique remaining copy (Karkouch et al., 2016). Intrinsically, it
reduces the amount of data and affects the data quality of data
volume.

– Outlier detection focuses on finding observations significantly dif-
ferent from most data (Zimek and Schubert, 2017). Outlier de-
tection methods can be categorized into four groups: statistical-
based, distance-based, density-based, and clustering-based meth-
ods (Smiti, 2020). Statistical-based methods rely on statistical
techniques to identify outliers. Distance-based methods assess the
dissimilarity or distance between data points to determine outliers.
Density-based methods focus on the density distribution of data
points. They identify outliers as data points existing in regions of
low data density. Clustering-based methods seek to partition data
into clusters, with outliers being data points that do not conform
to any cluster or belong to small, isolated clusters. For more de-
tails on outlier detection methods, see two review articles (Smiti,
2020) and (Chandola et al., 2009).

– Missing value imputation attempts to replace missing data with
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estimated values. Missing value estimation methods can be cat-
egorized into two types: statistical-based and machine learning-
based methods (Lin and Tsai, 2020) (Hasan et al., 2021). Statistical-
based methods rely on statistical measures and patterns within the
data to impute missing values. Widely used statistical-based tech-
niques include expectation maximization, linear regression, and
imputation using the mean or mode of the available data. Machine
learning leverages algorithms and models to predict and impute
missing values. Typical machine learning-based techniques for
missing value imputation include regression trees, random forests,
support vector regression, and k-nearest neighbor. For more de-
tails on missing value estimation, see the review articles Lin and
Tsai (2020) and Hasan et al. (2021).

3.6. Risk estimation model development

Once it has been determined that the data quality meets the minimum
requirements, developing a risk assessment model can begin. This stage
involves well-defined steps, including model building, testing, deployment,
and monitoring. These critical steps in the model development process are
described in detail below.

Model building: The foundation of risk assessment lies in building the
model. In this initial phase, data scientists use the features and data labels
from the data development phase to create a robust, accurate model that
effectively captures the relationship between input data and risk estimates.
The risk estimation model can be formulated as in Eq. (5).

Risk = Ω(X,y), (5)

where X are the extracted features from the data development phase, and
y are the data labels. It is important to note that the data labels here are
not the equipment’s failure risk, because the actual risk is often difficult to
access, as described earlier. The data label here is more of a failure mode or
failure mechanism analysis for each device, which helps data scientists select
the right data.

Model testing: Rigorous testing is critical to assess the performance
and reliability of the model. In this phase, the model built above is delivered
for field testing to a small group of users who apply the model to new unseen
data. Testing helps to identify any issues, such as over- or under-fitting, and
ensures that the model generalizes well to the new data.
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Model deployment: Once the model has performed satisfactorily dur-
ing testing, the machine learning engineer or software engineer can deploy it
into a production environment, including integrating the model into a sys-
tem or application for real-time or batch processing of risk estimates. Factors
to consider when deploying include scalability, reliability, and ensuring the
model is synchronized with the latest data. It is critical to monitor the per-
formance of the model in the production environment to identify and address
performance drift over time.

Model monitoring: Model monitoring is a continuous process to ensure
that models continue to perform accurately and reliably in the production
environment, including tracking KPIs, detecting deviations from expected
behavior, and initiating corrective action where necessary. Monitoring may
also include periodically retraining the model with new data to adapt to
changing patterns and maintain its prediction accuracy. To monitor the
performance of the risk estimation model, KPIs such as mean time between
repair, average maintenance cost, and number of service quality events can be
tracked on a monthly or quarterly basis. In the event of significant changes in
the KPIs, it is necessary to investigate the underlying factors and potentially
retrain the model.

In summary, developing a risk estimation model is a comprehensive pro-
cess involving multiple players, starting with sufficiently good-quality data
and then building, testing, deploying, and monitoring the model. Each of
these steps is critical to ensure that the model performs well in the initial
stages and maintains its validity and fairness in real-world applications.

4. Case study

The drilling system shown in Fig. 3 is used for oil well construction and
consists of a drilling rig, a drillpipe, and a bottomhole assembly. The bot-
tomhole assembly is a crucial part of the drilling system. Oftentimes the
assembly includes a drill bit, a rotary steering system tool, a measurement-
while-drilling tool, a logging-while-drilling tool, and other mechanical com-
ponents such as drill collars, and stabilizers. (SLB, 2023).

The drilling tools in the bottomhole assembly contain many electronic
boards to enable them to achieve the required functions such as data acqui-
sition, signal processing, operation control, and data storage. The equipment
under study is the central processing unit (CPU) board of a specific logging-
while-drilling tool as shown in Fig. 4. The similar equipment chosen to
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Bottom Hole Assembly

Drillpipe

Rig

Figure 3: Drilling system schematic

Figure 4: Logging-while-drilling tool

build the knowledge K(Q,Ω, r, ℓ) is the CPU board of a particular rotary
steerable system tool as shown in Fig. 5. Both CPUs achieve similar func-
tions and have the same measured parameters to characterize the operational
environment: temperature, shock, and vibration.

4.1. Data development

The raw data used in this case study were collected during drilling oper-
ations in multiple fields worldwide. These drilling operations varied in terms
of duration and operating environment. Specifically, operating environment
data of 554 failed CPU boards of the rotary steerable system (similar equip-
ment) were collected. The lifetimes of these boards span a range from 500

Figure 5: Rotary steerable system tool
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to 3000 hours. For the CPU board of the logging-while-drilling tool (equip-
ment under study), data were gathered from 18 failed boards. These boards
had lifetimes ranging from 700 to 3700 hours. Among these, 12 boards were
utilized as training data, while the remaining six boards, which had nearly
complete data, were designated for use as test data. All the boards men-
tioned have been confirmed as failed by SMEs, and their raw data are stored
in the CMMS.

The data preprocessing steps are adapted from the authors’ previous work
in (Kang et al., 2022). However, due to space limitations and data prepro-
cessing is not the core of this paper, the authors will not delve into the details
of data preprocessing here. Interested readers can refer to (Kang et al., 2022)
for a comprehensive understanding of how features are extracted from the
raw time series data of temperature, shock, and vibration for the CPU board.

4.2. Data quality assessment

As mentioned earlier, the selection of data quality metrics should align
with the specific application context and the characteristics of the data. In
this case study, the equipment failure risk estimation is conducted offline,
meaning it occurs after the tool has been pulled up from the oil well and is
not during drilling operations. Therefore, metrics related to timeliness and
currency are not crucial. Additionally, the sensors in the tool are assumed
to be robust, and the readings are considered correct. As a result, there
is no need to specifically evaluate the accuracy of the raw data. Instead,
the operational environment data of the drilling tool may have missing val-
ues. Moreover, data volume is typically considered important for data-driven
models. Hence, in this case study, the selected data quality metrics are com-
pleteness (denoted as Comp) and data volume (denoted as n). Data volume
is the number of failed CPU boards, while completeness is the life cycle data
coverage (computed as operation time with data collected/total operation
time) of the board.

Based on these two metrics, the data quality of the training data for the
equipment under study is calculated to be Q = [12, 0.76]. Similarly, the data
quality of the test data for the equipment under study is calculated to be
Q = [6, 1], where Q = [n,Comp].
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4.3. Data quality requirement

4.3.1. Acquire the knowledge

The procedures for acquiring the knowledge K(Q,Ω, r, ℓ) are shown in
Algorithm 1. In this case study,

• the number of simulations m = 60,

• the data volume sequence L1 = [2, 3, 4, . . . , 30],

• the completeness sequence L2 = [0.50, 0.55, 0.60, . . . , 1.00],

• the cost ratio sequence L3 = [50, 100, 200, 400, 500, 1000, 1500, 2000, 3000,
4000, 5000, 6000],

• the number of test boards ntest = 50.

Four models are compared in this case study, namely, mean time to failure
(MTTF), median time to failure (MeTTF), quantile regression (QR), and
hidden Markov model (HMM). When calculate the loss function values for
MTTF, the test CPU board is replaced when it reaches the mean time to
failure of training boards/data; for MeTTF, the test CPU board is replaced
when it reaches the median time to failure of training boards; for QR, the
test CPU board is replaced when the predicted remaining lifetime is less than
200 hours; for HMM, the test CPU board is replaced when the estimated risk
level reaches the highest risk level.

Table 4 gives an excerpt of the acquired knowledge K(Q,Ω, r, ℓ). One can
also store the average undetected failure, i.e., first term in Eq. 3, and prema-
ture replacement time, i.e., second term in Eq. 3 to preserve the knowledge
and then calculate the loss using Eq. 3. This way, one can save storage
space.

4.3.2. Build the decision model

Based on the acquired knowledge, one can decide which model is the best
by comparing the loss function values if the data volume, completeness, and
cost ratio are known. For example, based on the acquired knowledge shown
in the first row of Table 4, it can be inferred that the best model is MTTF
when the data volume, the completeness, and the cost ratio are 5, 0.5, and
400, respectively, because MTTF obtains the minimal loss function value
among the four models. Fig. 6 shows the best model under different data
volumes, completeness, and cost ratios. The figure indicates that the QR
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Algorithm 1 Knowledge K(Q,Ω, r, ℓ) acquisition

Input: entire dataset of the CPU in the rotary steerable system tool, the
number of simulations m, sequence L1 containing the numbers of training
CPU boards, sequence L2 containing the completeness of each training CPU
board, sequence L3 containing the cost ratios, the number of test boards ntest

Output: K(Q,Ω, r, ℓ)

1: for i ∈ {1, 2, 3, . . . ,m} do
2: sampling observations of ntest boards from the entire dataset without

replacement as the test data
3: for n in L1 do
4: sampling observations of n boards from the remaining data with-

out replacement as temporary dataset Temp
5: for Comp in L2 do
6: remove some observations from Temp to make the complete-

ness of each board equal to Comp, use the data after removal
operation as the training data

7: train the four candidate risk estimation models Ω using the
training data

8: predict the replacement time of test boards using the models
Ω

9: for r in L3 do
10: calculate the loss function and store the result in

Ki(Q,Ω, r, ℓ)
11: end for
12: end for
13: end for
14: end for
15: calculate the average loss over m simulations, i.e., K(Q,Ω, r, ℓ) =

1
m

∑m
i=1Ki(Q,Ω, r, ℓ)
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Table 4: Excerpt of the acquired knowledge K(Q,Ω, r, ℓ)

n Comp r ℓHMM ℓMTTF ℓMeTTF ℓQR

5.00 0.50 400.00 618.04 479.89 507.74 783.38
5.00 0.50 500.00 652.42 538.09 559.49 798.96
5.00 0.50 1000.00 824.29 829.14 818.24 876.88
5.00 0.50 1500.00 996.17 1120.18 1076.99 954.79
5.00 0.50 2000.00 1168.04 1411.22 1335.74 1032.71
5.00 0.50 3000.00 1511.79 1993.30 1853.24 1188.54
5.00 0.50 4000.00 1855.54 2575.39 2370.74 1344.38
5.00 0.50 5000.00 2199.29 3157.47 2888.24 1500.21
5.00 0.50 6000.00 2543.04 3739.55 3405.74 1656.04
5.00 0.55 50.00 455.13 276.16 326.61 656.34
5.00 0.55 100.00 472.76 305.26 352.49 667.06

model tends to perform best when the data volume or the cost ratio is high,
the HMM model excels when the completeness is high, and MTTF is favored
when the completeness and the cost ratio are low. MeTTF emerges as the
top choice in very few scenarios. To enhance precision in model selection, a
decision tree is constructed on top of the information presented in Fig. 6. The
decision model for determining the best model without minimal performance
requirement is shown in Fig. 7. In this figure, the term ”unused” in the legend
denotes that the class exists in the training data for training the decision tree
model. However, its amount is so minimal that it exerts negligible influence
on estimating decision tree model parameters. The node on the split indicates
that the corresponding class is the dominant one at that specific split point
in the decision tree. In other words, it signifies that the majority of data
points at that split belong to that particular class. The decision process
follows the left branch if the condition on the node is true, and the right
branch otherwise. The node on the leaf (i.e., the most bottom) represents
the final decision in the decision tree model. These meanings also apply to
the subsequent visualizations of decision trees.

Furthermore, if the minimum model performance requirement is also
given, e.g., a requirement that the loss must be not greater than C, then
the data quality must be improved if the ℓ∗ > C (ℓ∗ is the loss function
value of the best model). Otherwise, the best model can be determined. For
instance, if the minimum model performance requirement C is set at 500,
then referring to the information in the initial row of Table 4, it can be de-
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Figure 6: Best model under different data volume, completeness, and cost ratio
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Completeness >= 0.68

r < 1250

Completeness < 0.88

Volume < 11
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HMM

HMM

QR
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MTTF
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QR

MTTF QR

yes no

HMM
MeTTF (unused)
MTTF
QR

Figure 7: The decision model for determining the best model without minimal performance
requirement

duced that MTTF is the best model when the data volume, the completeness,
and the cost ratio are 5, 0.5, and 400, respectively. This is because MTTF
achieves the minimum loss function value among the four models, and its loss
is below 500. However, in cases where the data volume, the completeness,
and the cost ratio are 5, 0.5, and 500, respectively, as indicated in the sec-
ond row of the table, then the decision is to improve the data quality. This
is because MTTF obtains the minimum loss function value among the four
models, but its loss exceeds the specified threshold C of 500.

The decision models for several values of C are illustrated in Fig. 8
through 12. In these figures, ”Improve DQ” means ”Need to improve data
quality”. Additionally, it is observed that for small values of C, the prevailing
decision tends to be ”Improve DQ.” Conversely, when C is significantly large,
the decision model tends to align with the decision model that does not
impose a minimum performance requirement. This observation is logical
because, with small C values, all four models typically fall short of meeting
the minimum performance standard. In contrast, with large C values, at
least one of the four models satisfies the minimum performance requirement.

4.4. Make the decision and act

To facilitate a comparison of model performance before and after data
quality improvement, 10 boards are utilized as training data before data
quality enhancement. The average completeness score for these 10 boards is
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r >= 150

Completeness < 0.93

Volume < 17

Volume < 22

r >= 75

Improve DQ

Improve DQ

Improve DQ

Improve DQ
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QR
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Figure 8: The decision model under C = 250

r >= 450

Completeness < 0.88

Volume < 11

Improve DQ

Improve DQ

MTTF

MTTF

QR

MTTF QR

yes no

Improve DQ
MTTF
QR

Figure 9: The decision model under C = 500

0.76. Then, all 12 boards are used as training data after data quality improve-
ment by filling in the missing data using mean imputation. Consequently, the
data quality metrics before data quality improvement can be represented as
Q = [10, 0.76]. In contrast, the six test boards remain unchanged, ensuring
the models are tested on the same dataset.

As previously mentioned, the decisions made by the decision tree-based
model depend on the knowledge K(Q,Ω, r, ℓ) and the minimum performance
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Figure 10: The decision model under C = 1000
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Volume >= 18
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Volume < 11
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Figure 11: The decision model under C = 2000

requirement C. To rigorously validate the proposed framework, confusion
matrices are generated to compare the predicted decisions and actual deci-
sions. The predicted decisions are derived from the decision models based
on decision tree models. On the other hand, the actual decisions are in-
ferred from the test results on the test data. Specifically, the four trained
models are applied to the test data, and the model losses are calculated and
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Figure 12: The decision model under C = 3000

compared to the minimum model performance requirement C. If the loss
of all four models is greater than C, then actual decision is “Improve DQ”,
otherwise, the corresponding model with the smallest loss is the best model.
These comparisons are made under varying cost ratios r and C. The cost
ratios used in this subsection are the same as defined above in the sequence
L3, while the values of C are consistent with the decision models shown in
Fig. 8 through 12

The result of the confusion metrics under different C is shown in Table
5. From the table, the average decision accuracy can be computed, that is,

10 + 9 + 10 + 9 + 9 + 10

12× 6
× 100% = 79.17%, (6)

which proves the effectiveness of the framework.
Given the cost ratio and minimum model performance requirement, the

need to improve data quality can be determined with the help of the cor-
responding decision model. As an example, suppose the minimum model
performance requirement C is fixed at 1000. The authors examine two sce-
narios involving the cost ratio r of the equipment under study.

In the first scenario, when the cost ratio r is set at 1000, the decision model
depicted in Fig. 10 suggests that the data quality (i.e., Q = [10, 0.76]) does
not require improvement, and as a result, the HMM is chosen to construct
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Table 5: Confusion metrics under no minimal performance requirement and different C

No minimum performance requirement
Actual decision

Improve DQ HMM MeTTF MTTF

Predicted decision
HMM 7
MeTTF
MTTF 2 3

C=250

Predicted decision

Improve DQ 9 3
HMM
MeTTF
MTTF

C=500

Predicted decision

Improve DQ 7 1
HMM
MeTTF
MTTF 1 3

C=1000

Predicted decision

Improve DQ 4 1
HMM 2
MeTTF
MTTF 2 3

C=2000

Predicted decision

Improve DQ 1 1
HMM 5
MeTTF
MTTF 2 3

C=3000

Predicted decision

Improve DQ
HMM 7
MeTTF
MTTF 2 3
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(a)

(b)

(c)

𝑟 = 2000 𝑟 = 1000

Figure 13: Decision derivation process for two scenarios (r = 2000 and r = 1000) with C
fixed at 1000 and [Volume, Completeness] = [10, 0.76]

the risk estimation model.
In the second scenario, with the cost ratio is r set at 2000, the deci-

sion model indicates that the data quality needs enhancement. The decision
derivation process for both scenarios is illustrated in Fig. 13.

Additionally, Fig. 14 showcases the model’s performance before and after
the data quality improvement, achieved by including two additional failed
boards and addressing missing values.The data quality after data quality
improvement is Q′ = [12, 1]. From the figure, it can be seen that the data
quality improvement leads to a reduction in losses, especially when the cost
ratios are large.

5. Conclusions and future works

This paper introduces an innovative framework for managing data quality,
which is specifically tailored for estimating the risk of industrial equipment
failure. This comprehensive framework encompasses data development, data
quality assessment, decision-making for data quality requirements, data qual-
ity enhancement, and model development. It furnishes valuable guidance for
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Figure 14: Comparisons of the best model and loss before and after data quality improve-
ment under different cost ratios

data practitioners seeking to manage the data quality for risk estimation.
Noteworthy advancements in this framework include incorporating a deci-
sion tree-based model for evaluating data quality compliance and selecting
the best risk estimation model. Additionally, it introduces an improved loss
function featuring a “cost ratio” parameter, enabling the model to accom-
modate equipment with varying failure costs versus early replacement costs.

The efficacy of this framework is exemplified through a case study utiliz-
ing actual data from oil well drilling operations. The proposed framework’s
practical utility is showcased by comparing four risk estimation models, in-
cluding baseline and machine learning. The framework’s validation employs
a confusion matrix across different cost ratios and minimum performance
requirements, revealing an average decision accuracy of 79.17%, confirm-
ing the effectiveness of the decision-making approach in this framework. In
real-world situations, the decision-making model aids data practitioners in
making informed decisions, enabling them to determine if data quality meets
specific criteria and if not, guiding improvements. The presented case study
results underscore the tangible advantages of enhancing data quality, espe-
cially when the cost ratio is substantial.
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In conclusion, this paper delivers a robust data quality management
framework that includes decision-making, empowering data practitioners in
engineering asset management to make well-informed decisions regarding
data quality and risk estimation models.

While the proposed framework has provided valuable insights into risk
estimation, there are still several promising avenues for future research that
warrant exploration.

• Extend to repairable system: The proposed loss function for eval-
uating the performance of a risk estimation model is presently con-
strained to non-repairable systems, such as electronic systems, with
validation limited to electronic boards of drilling tools. To expand the
scope of the data quality management framework and its application
to a wider range of systems, future work could involve extending the
loss function to repairable systems as well.

• Incorporating economic considerations: One key direction for im-
provement is the integration of cost and gain considerations related to
data quality enhancement within the decision-making model. Under-
standing the economic implications of data quality improvements can
lead to the development of more cost-effective data quality manage-
ment strategies. This approach can help organizations make informed
decisions about allocating resources for data improvement.

• Assessing data label quality: The quality of data labels, especially
those related to failure modes and causes, significantly affects the ac-
curacy of risk estimation. Investigating the influence of label quality
on model performance is essential. In practical engineering asset man-
agement scenarios, obtaining accurate labels can be a complex and
resource-intensive process, especially when dealing with complex equip-
ment. Addressing this challenge is crucial for more realistic data quality
management.

• Diverse data formats: Real-world data quality management often
involves dealing with diverse data formats including time series, ta-
bles, text, images, and more. Expanding the current understanding of
methodologies and frameworks for assessing data quality across these
heterogeneous formats is vital. Each format poses unique challenges,
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and future research should aim to develop versatile quality assessment
techniques to handle this diversity effectively.

• Feature extraction improvement: Feature extraction remains a
critical aspect of the risk estimation model, profoundly affecting model
performance. When a risk estimation model performs poorly, prioritiz-
ing the refinement of feature extraction methods should be considered.
Improving the model by extracting more informative features can lead
to more meaningful insights. Consequently, focusing on feature extrac-
tion enhancement may take precedence over data quality management
efforts in some cases.

• Deep learning-based data augmentation: In addition to the three
data preprocessing approaches mentioned—outlier detection, missing
value handling, and data deduplication—deep learning methods, such
as generative adversarial network (Li et al., 2022), can be employed to
generate synthetic data and in turn improve the data quality. These
methods can further enhance data quality and expand the repertoire
of data quality improvement strategies.
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