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Abstract. Triple-photon generation (TPG) is based on a third-order nonlinear optical interaction, which
is the most direct way to produce pure quantum three-photon states. These states can exhibit three-body
quantum correlations, and their statistics cannot be reproduced by any Gaussian statistics of coherent
sources or optical parametric twin-photon generator, making them potentially useful for quantum infor-
mation processing tasks such as quantum state distillation, quantum error-correction and universal quan-
tum computing. Furthermore, the generation of entangled photon pairs heralded by the detection of a
third photon can be used in advanced quantum communication protocols. We made the first experimental
demonstration of TPG in 2004 using a bi-stimulation scheme in a bulk KTP crystal, followed by the quan-
tum theory. The new challenges are now to achieve a spontaneous TPG and the corresponding quantum
experiments and protocols using oriented ridge KTP waveguides, which ensures both birefringence phase-
matching and light confinement. The waveguides are cut by a precision dicing saw. We recently performed
their characterization using third-harmonic generation measurements, which showed their good quality. A
rate of about 5 triplets per second is expected when pumping a 5-cm-long waveguide with a 5-W 532 nm
beam in the CW regime. Such a spontaneous TPG exhibits low rate of triple photons, which makes the
certification of quantum features hard. In this article, we review our theoretical and experimental work
on TPG and the associated quantum modeling. We also develop theoretical tools for the certification of
quantum features of spontaneous triple-photon states.

1 Introduction

Twin photons have deeply influenced the history of non-
linear and quantum optics by their wide range of appli-
cations and the paradigmatic place they stand in gener-
ating new quantum states of light [1]. As regards triple-
photon generation (TPG), the story is only starting.
TPG is based on the third-order optical nonlinearity,
i.e., the third-order electric susceptibility χ(3) [2,3]: it
is a process which can directly generate a 3-photon (3P)
state. During TPG, three highly correlated photons at
energies �ω1, �ω2 and �ω3 are created in a nonlinear
medium from the annihilation of a higher energy pho-
ton at �ω0, with the energy conservation being fulfilled:
�ω0 = �ω1+�ω2+�ω3. Four configurations are possible
regarding the level of stimulation of TPG: a stimulated
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TPG over three, two or one modes of the triplet that has
to be generated, or the spontaneous TPG, where there
is no stimulation at all. Figure 1 shows the three last
cases. In the two stimulated cases, the generated pho-
tons come from the triplets as well as from the residual
photons of the stimulation, as shown in Fig. 1a, b.

At the opposite, the spontaneous scheme shown in
Fig. 1c allows to generate a pure 3P state, which corre-
sponds to the third-order spontaneous parametric down
conversion (SPDC). These three configurations are all
interesting from the quantum point of view regarding
the context of continuous or discrete variables. Indeed,
these three configurations will all generate states, which
exhibit quantum features such as entanglement.

In 2004, we made the first experimental demonstra-
tion of a TPG. We considered a two-photon stimulation
scheme, as shown in Fig. 1a, using a phase-matched
bulk KTiOPO4 crystal [4]. More recently, we proposed
a waveguide approach to boost the generation efficiency
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(a) (b)

(c)

Fig. 1 The three schemes of generation of a 3-photon state at energies �ω1, �ω2 and �ω3 in a third-order nonlinear
medium pumped at �ω0: a stimulation over two modes, at �ω2 and �ω3 for example; b stimulation over one mode, at �ω1

for example; c no stimulation. The energy levels are described by continuous lines for the matter and a dashed line for the
electromagnetic field

[5,6]. TPG has also been an active field of research for
many groups around the world [7–15]. This new corpus
has thus opened new exciting opportunities in quantum
optics.

Now we wish to overcome a new obstacle by aiming
at experimentally generating the 3P state of light by
mono-stimulated or spontaneous TPG. This is a real
tour de force given both the low efficiency of these two
configurations and the fact that the efficiency, contrary
to the second-order nonlinear process, increases with
the injection intensity. From this step, it will be then
possible to open new avenues in quantum information.
Indeed, TPG can provide a new powerful resource for
advanced quantum information protocols. For example,
spontaneous TPG can be considered to generate her-
alded two photons states, which can be used in a qubit
amplifier or in a device-independent quantum key dis-
tribution protocol [16]. Our choice for the pump and 3P
wavelengths is directly conditioned by this application
context: λ0 = 532 nm, which corresponds to the second
harmonic of the Nd:YAG laser, and λ1, λ2, λ3 ranging
from 1500 nm to 1600 nm, that is to say in the telecom
range.

This article is organized as follows: we first review our
theoretical and experimental work on TPG in Sect. 2
going from bulk to waveguided configurations, followed
by the review of the quantum modeling of TPG in Sect.
3 where we additionally implement an easily accessible

numerical solution to this problem that has not known
analytical solution. Finally, we propose new tools in
order to characterize quantum features of TPG in Sect.
4, a difficult and important problem under active inves-
tigation in several international teams.

2 Triple-photon generation

2.1 Classical description

2.1.1 Theory

We are considering a practical case where the four inter-
acting waves propagate in the same direction. The cor-
responding wave vectors are then written �ki = ki�s, i
=(0,1,2,3), with ki = 2π

λi
n(λi) where n(λi) is the refrac-

tive index of the wave at λi in the considered direction
�s. The electric fields are taken linearly polarized and
are expressed as �Ei = �eiEi(Z)expj(kiZ) where �ei is
the unit vector, namely the light polarization, Ei(Z)
the complex amplitude, and Z the spatial coordinate of
the laboratory frame along �s.

The resolution of Maxwell equations written at each
angular frequency ωi leads to the following coupled
amplitude equations [17]:
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∂E0(Z)
∂Z

= j · π

n (λ0) λ0 cos2 (ρ0)
χ

(3)
eff E1(Z)E2(Z)E3(Z) exp(−jΔkZ)

∂E1(Z)
∂Z

= j · π

n (λ1) λ1 cos2 (ρ1)
χ

(3)
eff E0(Z)E∗

2 (Z)E∗
3 (Z) exp(jΔkZ)

∂E2(Z)
∂Z

= j · π

n (λ2) λ2 cos2 (ρ2)
χ

(3)
eff E0(Z)E∗

1 (Z)E∗
3 (Z) exp(jΔkZ)

∂E3(Z)
∂Z

= j · π

n (λ3) λ3 cos2 (ρ3)
χ

(3)
eff E0(Z)E∗

1 (Z)E∗
2 (Z) exp(jΔkZ).

(1)

The parameter ρi, with i=(0,1,2,3), is the spatial walk-
off angle in the considered direction of propagation
[18]. χ

(3)
eff is the effective nonlinear coefficient expressed

as χ
(3)
eff = χ(3) (ω0 = ω1 + ω2 + ω3) ::−→e0 ⊗ −→e1 ⊗ −→e2 ⊗ −→e3

where :: stands for the four-rank contracted product.
The parameter Δk is defined by Δk = k0−(k1+k2+k3):
this spatial phase term corresponds to the phase mis-
match between the third-order nonlinear polarization
and the radiated field.

In order to maximize the derivatives ∂Ei/∂Z in Eq.
(1), which corresponds to the maximization of energy
exchange between the four waves, it is necessary to
maximize the amplitude of χ

(3)
eff and to get Δk = 0,

i.e.,

Δk = 2π

[
n (λ0)

λ0
−

(
n (λ1)

λ1
+

n (λ2)
λ2

+
n (λ3)

λ3

)]

= 0.

(2)

Equation 2 is called the phase-matching relation that
ensures a constructive interference between the non-
linear polarization and the radiated field over the full
interacting length Z. This condition also corresponds
to the full momentum conservation of the photons in
the quantum picture.

Then, the design of an optimal TPG requires to find a
material with a high effective nonlinear coefficient, low
spatial walk-off angles, and allowing phase-matching at
the targeted wavelengths. We identified the biaxial crys-
tal KTiOPO4 (KTP) as the good platform, under two
different technologies: a bulk crystal [4] and a ridge opti-
cal waveguide crystal [6]. Then, the strategy is to per-
form a birefringence phase-matching in both cases.

The phase-matching properties are calculated from
the refractive indices over the full transparency range
of the crystal. For bulk KTP, the best dispersion equa-
tions in the visible and near infrared of the principal
refractive indices nj(λ), with respect to the dielectric
axes, are [19]:

nj(λ) =

√

Aj +
Bj

λ2 − Cj
− Djλ2. (3)

The dispersion coefficients are given in Table 1 for λ
given in (µm).

From Eq. (3) and Table 1, we identified that angle
non-critical phase-matching, i.e., ρ0 = ρ1 = ρ2 = ρ3 =
0, is possible at a pump wavelength λ0 = 532 nm when
the four interacting waves propagate along the x-axis
of the dielectric frame (O,x,y,z), i.e., �s �Ox. According
to Eq. 2, it means that the principle refractive indices
verify ny(λ0)

λ0
−

(
nz(λ1)

λ1
+ ny(λ2)

λ2
+ nz(λ3)

λ3

)
= 0. The cor-

responding phase-matching curve is given in Fig. 2: it
shows that the triplet (λ1, λ2, λ3) is spread over a broad
continuum, from 1000 to 4500 nm, that is to say up to
the infrared cutoff of KTP. This specific feature of TPG
is due to the fact that there are only two coupled rela-
tions, the energy and momentum conservations, for the
determination of three unknown values. Note that it is
completely different from twin photon generation for
which there is a unique couple of solutions for the sig-
nal and idler wavelengths once the pump wavelength
and the direction of propagation are fixed. Actually,
in this well-known case of second-order SPDC, there is
the same number of equations as solutions to be deter-
mined. An alternative to avoid any wavelength spread-
ing, and so any energy spreading, is to fix the value
of the wavelength of at least one photon of the triplet:
that can be done by stimulating at one or two of the
three wavelengths, as in Fig. 1a, b, respectively. Con-
cerning the later scheme, Fig. 2 shows that there exists
a partially degenerate scenario where the two injection
wavelengths are equal, i.e., λ2 = λ3 = 1681 nm for
λ1 = 1449nm, which can be interesting from the exper-
imental point of view as it will be seen in the next sec-
tion. Note that it is also obviously possible to stimulate
over the three wavelengths.

The same kind of calculations can be done in the
case of ridge KTP crystals, knowing that in that case
the refractive index has to be replaced by the effective
index of the optical modes. For a given dimension of
the square waveguide (d × d), the effective index of the
fundamental guided mode is calculated using Comsol
for x-, y- and z-polarized light, by considering wave-
lengths varying between 500 and 3000 nm. Dispersion
equations giving the effective indices are retrieved by
fitting those numerical data assuming a Sellmeier-like
form. The best equation we found is expressed as [20]:
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Table 1 Dispersion coefficients of bulk KTP crystal at
room temperature [19]

j Aj Bj Cj Dj

x 3.0065 0.03901 0.04251 0.01327
y 3.0333 0.04154 0.04547 0.01408
z 3.3134 0.05694 0.05658 0.01682

The indices x, y and z stand for the dielectric axes of the
crystal

Fig. 2 TPG phase-matching curve in a bulk x-cut KTP
crystal pumped at λ0 = 532 nm. The indices x, y and z
stand for the dielectric axes of the crystal, and λ1, λ2 and
λ3 for the triplet wavelengths

(neff)i =

(

Ai × λBi +
Ci

10−6 × λDi − Ei

−Fi × 10−6 × λGi

)Hi

+ Ii, (4)

where the wavelength λ is expressed in nanometer (nm).
The dispersion coefficients depend on the transverse
dimension of the optical waveguide and are given in
Table 2 for d × d = 6 × 6 µm2.

The phase-matching curves of Fig. 3 are calculated
using Eq. (4) and Table 2 . The infrared limit of 3000
nm is fixed by the range of validity of Eq. (4).

Figure 3 shows that phase-matching is possible from
1000 to 3000 nm for the three triplet wavelengths. But
we can expect to have a wider range, up to 4500 nm,
as it is the case in Fig. 2 for bulk KTP, when using
proper dispersion equations beyond 3000 nm. Figure 3
also shows that the partially degenerated configuration
(λ1 = 1550 nm, λ2 = λ3 = 1619 nm) is allowed in this
ridge. It is important to notice that the walk-off angle
is nil along the y-axis, which ensures a perfect spatial
overlap between the interacting waves.

The phase-matching curves calculated for other val-
ues of transverse section (d × d) have all the same
shapes and extensions. They mainly differ by the loca-

Fig. 3 TPG phase-matching curve in a ridge y-cut KTP
crystal pumped at 532 nm with transverse dimension d×d =
6×6µm2. The indices x, y and z stand for the dielectric axes
of the crystal

tion of the intersection point corresponding to the par-
tial degeneracy, e.g. (λ1 = 938 nm, λ2 = 2457 nm)
for d × d = 4 × 4µm2 and (λ1 = 2456 nm, λ2 =
λ3 = 1345 nm) for d × d = 16 × 16µm2, as it is
shown in Fig. 4 where it also appears that the full
degeneracy (λ1 = λ2 = λ3 = 1596 nm) is possible for
d × d = 6.12 × 6.12µm2. Figure 4 shows well that the
geometry of the waveguide is a fine parameter of tun-
ability.

The system described by Eq. 1 can be analytically
solved using the sn(u|m) and cn(u|m) Jacobi elliptic
functions [21,22]. Given the boundary conditions in
terms of energy at the entrance of the nonlinear medium
(Z=0), this resolution is only feasible if there is a stim-
ulation at the three wavelengths of the triplet, or at
two wavelengths as in the scheme described by Fig.
1a. In this latter case, the boundary conditions are:
E0(Z = 0) �= 0, E1(Z = 0) = 0, E2(Z = 0) �= 0
and E3(Z = 0) �= 0. Knowing that the intensity is
expressed as Ii(Z) = n(λi)

2

√
ε0
μ0

|Ei(Z)|2, it comes for

the four intensities at the exit of the nonlinear medium
of length Z = L:

I0(L) =
I0(0) [γ3 + γ0] cn2(aL | 1 − m)

γ3msn2(aL | 1 − m) + [γ3 + γ0] cn2(aL | 1 − m)

I1(L) =
γ3γ0sn2(aL | 1 − m)

γ3msn2(aL | 1 − m) + [γ3 + γ0] cn2(aL | 1 − m)

I2(L) =
I2(0) [γ3 + γ0] (sn2(aL | 1 − m) + cn2(aL | 1 − m)

γ3msn2(aL | 1 − m) + [γ3 + γ0] cn2(aL | 1 − m)

I3(L) =
I3(0) [γ3 + γ0] (m sn2(aL | 1 − m) + cn2(aL | 1 − m))

γ3msn2(aL | 1 − m) + [γ3 + γ0] cn2(aL | 1 − m)
,

(5)

with

a =
Λ
2

√
γ3 (γ0 + γ2)

Λ =
√

μ0

ε0

4πχ
(3)
eff√

n (λ0) n (λ1) n (λ2) n (λ3)

√
λ1

λ0λ2λ3
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Table 2 Dispersion coefficients at room temperature of a ridge KTP crystal with a transverse dimension d×d = 6×6µm2

[20]

j Aj Bj Cj Dj Ej Fj Gj Hj Ij

x 0.4488 0.01948 0.5288 2.277 0.4939 0.88 1.615 0.07128 0.7808
y 1.017 0.004481 1.47 2.323 0.6407 1.242 1.653 0.07207 0.7373
z 2.236 0.006506 0.8399 2.14 0.1814 0.5619 1.811 0.1125 0.7183

The indices x, y and z stand for the dielectric axes of the crystal

Fig. 4 Partially degenerated (λ1 �= λ2 = λ3) and fully
degenerated (λ1 = λ2 = λ3) TPG phase-matching curve as
a function of the transverse dimension of a ridge y-cut KTP
crystal pumped at 532 nm. The indices x, y and z stand for
the dielectric axes of the crystal

γ0 =
λ0

λ1
I0(0) γ2 =

λ2

λ1
I2(0) γ3 =

λ3

λ1
I3(0)

m =
γ2 (γ0 + γ3)
γ3 (γ0 + γ2)

. (6)

Figure 5 gives the corresponding curves for a propa-
gation along the x-axis of a bulk KTP crystal pumped
at λ0 = 532 nm. The point of partial degeneracy shown
in Fig. 2, i.e., (λ1 = 1449 nm, λ2 = λ3 = 1681 nm), is
taken for the calculation. In that case, the numerical
values of the refractive indices are n(λ0) = ny(λ0) =
1.7902, n(λ1) = nz(λ1) = 1.8182, n(λ2) = ny(λ2) =
1.7345 and n(λ3) = nz(λ3) = 1.8128; from Eq. 3 and
Table 1, the third-order nonlinear effective coefficient
is χ

(3)
eff = 9.0 × 10−22 m2V−2 using Miller’s rule from

the magnitude of the third-order electric susceptibility
coefficient χ

(3)
yzyz given in Ref.[23]. The incident inten-

sities that are used are: I0(0) = 250 GW/cm2 and
I2(0) = I3(0) = 3.25 GW/cm2. These values corre-
spond to the intensities considered in the experiments
described in section 2.1.2.

Figure 5 shows well the periodic character of Jacobi
elliptic functions, with several values of the crystal
length for which there is the full pump depletion, i.e.,
I0(L) = 0. It is then sufficient to consider the first
value, i.e., L = 1.27 cm, for fixing the optimal crys-

tal length, which is suited for an experiment leading to
the extremum I1(L = 1.27 cm) = 91.7 GW/cm2.

The generation at λ1 and the amplification at λ2 and
λ3 are due to the generation of 3P states. Then from
the knowledge of I1 assuming a Gaussian spatial and
temporal shapes under the parallel beam assumption,
it is easy to access to N3P that is the number of triple
photons,

N3P (L) =
1

�ω1

[

I1(L)
(π

2

)3/2 τ1

2
(w1)

2

]

, (7)

where τ1 and w1 are the full-width pulse duration and
radius at 1/e2, respectively. In the example of bulk
KTP, by taking τ1 = 88 ps and w1 = 66µm for exam-
ple, we obtain N3P = 2.57 × 1015 triplets/pulse.

When the TPG efficiency is so weak that the pump
and stimulation fields can be considered as constant
over L, i.e., E0(Z) � E0(0) �= 0, E2(Z) � E2(0) �=
0 and E3(Z) � E3(0) �= 0, the integration of Eqs.
1 is immediate. For Δk = 0, it leads to:

I0(L) � I0(0) I2(L) � I2(0) I3(L) � I3(0)

I1(L) � μ0

ε0

(
2π

λ1

)2

(
χ

(3)
eff L

)2

n (λ0) n (λ1) n (λ2) n (λ3)
×I0(0)I2(0)I3(0). (8)

The comparison of the behavior of I1(L) given in Fig.
5 with that calculated from Eq. 8 using the same bound-
ary conditions is shown in Fig. 6.

It appears that the undepleted pump and stimulation
approximation are valid below a crystal length of about
5 mm, but it underestimates the generated intensity at
the level of the first maximum of the Jacobi elliptic
function and it overestimates the intensity at longer
interacting lengths.

2.2 Experimental demonstration of bi-stimulated
triple-photon generation

An example of experimental setup of a TPG stimulated
over two modes is shown in Fig. 7 [22]. The nonlinear
medium was a 2-cm-long bulk KTP crystal cut along
the x-axis. In order to minimize the number of stimu-
lation beams, we choose the partially degenerated case,
i.e., λ2 = λ3, the two corresponding waves being orthog-
onally polarized.
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Fig. 5 Intensities of phase-matched TPG, pumped at λ0 and stimulated at λ2 and λ3, as a function of the crystal length
L of a bulk x-cut KTP crystal pumped at 532 nm

Fig. 6 Intensity generated at λ1 by phase-matched TPG
in a bulk x-cut KTP crystal pumped at 532 nm using the
general modeling (red curve of Fig. 5) and the undepleted
pump and stimulation approximation

It was necessary to use very intense pump and stimu-
lation beams, typically several GW/cm2 because of the
weakness of the amplitude of the third-order nonlinear-
ity. This is why we used the picosecond regime. The
pump beam at λ0=532 nm was the second-harmonic of
a 5 Hz picosecond Ekspla SL312-P Nd:YAG laser. The
stimulation beam at λ2 = λ3 was generated by a home-
made optical parametric oscillator emitting at 1665 nm,
which exactly corresponds to the experimental phase-
matching, i.e., (λ1 = 1474 nm, λ2 = λ3 = 1665 nm),
that had been determined before from the pioneer
experiment thanks to a tunable source for the stimu-
lation beam at λ2 = λ3 [4]. Note that these experi-
mental phase-matching wavelengths are very close to
the calculated values, i.e., (λ1 = 1449 nm, λ2 = λ3 =

1681 nm) according to Fig. 2, the differences being due
to a small inaccuracy of the refractive indices that
are used for the calculation. Using a pump intensity
I0(L = 0) = 250GW/cm2 and a stimulation intensi-
ties I2(L = 0) = I3(L = 0) = 3.25 GW/cm2, which
corresponds to the intensity values taken for plotting
the curves of Figs. 5 and 6, we obtained I1(L =
2cm) = 0.85 GW/cm2 at λ1 = 1474 nm, which cor-
responds to N3P = 3.7 × 1013 triplets/s according to
Eq. (7) [22]. The calculation using Fig. 5 at L = 2 cm
gives N3P = 6.16 × 1013 triplets/s. This small differ-
ence with the measurement has been explained by the
Kerr effect due to the high intensities that are used
[24]. Note also that according to Figs. 5 and 6, a crys-
tal with the optimal length L = 1.27 cm would lead
to I1(L = 1.27 cm) = 91.7 GW/cm2 at λ1 = 1474 nm
and so to N3P = 2.57 × 1015 triplets/s. The triplets
are mixed with residual photons at λ2 and λ3, their
numbers corresponding simply to those at the entrance
of the KTP crystal, i.e., N2(L = 0) = N3(L = 0) =
4.25 × 1014 photons/s, the number of incident pump
photons being N0(L = 0) = 6.15 × 1015 photons/s.

The use of bulk KTP as described above allows the
beams to be strongly confined over a limited length
ranging around one centimeter. Actually, it corresponds
to the typical value of the Rayleigh length associated
with the focusing conditions that are considered. In
order to overcome this limitation, which is a crucial
point in the case of a spontaneous TPG, we proposed
in 2018 to explore the feasibility of a new technology
taking advantage of both birefringence phase-matching
and confinement. The idea is to use ridge waveguides
where the direction of propagation is along a phase-
matching direction of a KTP crystal. By this way, the
pump and triplet waves can exhibit the same propa-
gation modes so that the overlap will be optimal. KTP
ridge waveguides are fabricated using a technique based
on precise diamond blade dicing [6]. A picture of such
a waveguide is shown in Fig. 8.
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Fig. 7 Experimental setup of a phase-matched TPG in a bulk x-cut KTP crystal pumped at 532 nm and stimulated at
λ2 = λ3 = 1665 nm with orthogonal polarizations in the picosecond regime. The dashed lines with double arrows stand for
the direction of polarization of the different interacting beams. The values of pulse durations (τ) and waist radius (w) are
taken at 1/e2

Fig. 8 Electron microscopy image of a KTP ridge waveguide obtained using diamond blade dicing. (x, y, z) is the dielectric
frame of KTP. The total length along the y-axis is equal to 8.6 mm

It is then a step index waveguide, the upper and
side faces being in contact with air and the lower face
being coated with a silica layer. The transverse aver-
age section was found to be of about 38µm2, non-
constant along the ridge axis: it corresponds to an
average square waveguide of side d = 6.17µm. We
performed a preliminary validation of this technology
by achieving high-efficiency third-harmonic generation
(THG: ω + ω + ω → 3ω) in the waveguide depicted
in Fig. 8 [6]. THG is particularly interesting since it
is the exact reverse of TPG that is degenerated in

energy, i.e., 3ω → ω + ω + ω. As a consequence, their
phase-matching properties are exactly the same. But
the advantage of THG is that the conversion efficiency
is higher by several orders of magnitude, leading to a
much easier way to study phase-matching of TPG. The
experiments were carried out using a TOPAS optical
parametric generator to deliver the pump beam, with
a pulse duration of 15 ps, a repetition rate of 10Hz,
and a wavelength that is tunable around 1600 nm. By
measuring the third-harmonic (TH) intensity as a func-
tion of the fundamental wavelength, we found that
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the phase-matching was achieved at λω = 1594 nm
[6]. The calculated value is λω = 1594.2 nm from Eq.
(2), with λ0 = λ3ω and λ1 = λ2 = λ3 = λω , and
using Eq. (4) and Table 1. These two values are very
close and assuredly within the accuracy of measure-
ment that is at ±1 nm. In these phase-matching con-
ditions, we found that the TH energy conversion effi-
ciency was E3ω

Eω
= 3.4% when the fundamental energy

is Eω = 2µJ [6]. The calculation gives 2.6%, which is
a little bit lower than the measurement, but the two
values are sufficiently close for a validation of the mag-
nitude of the nonlinear coefficient that is excited here,
i.e., χ

(3)
xzxz(1594 nm/3) = 8.0 × 10−22 m2V−2 [6]. Thus,

these preliminary measurements of THG allow us to
prepare at best the design of spontaneous TPG experi-
ments in KTP ridge waveguides thanks to the validation
of the dispersion equations of both the effective index
and third-order nonlinear coefficient. The waveguides
of the current generation are 3 cm long.

3 Quantum description

The starting point of the quantum description of
triple-photon generation is the interaction Hamiltonian
describing the nonlinear process, given by

Ĥnl = i�κ(â0â
†
1â

†
2â

†
3 − â†

0â1â2â3). (9)

where â†
1, â†

2 and â†
3 refer to the creation operators

corresponding to the three modes and â†
0 the creation

operator of the pump mode. The nonlinear coefficient
κ is proportional to the effective third-order nonlinear
susceptibility. The evolution of the quantum system is
given in the Heisenberg picture, where the operators
follow

dâl

dt
=

i

�
[Ĥnl, âl], (10)

which reduces to

dâl

dt
= κâ0â

†
mâ†

n, (11)

using the Hamiltonian described by Eq. (9). This set
of equations is equivalent to the classical ones given in
Eq. (1). However, from the quantum mechanics point of
view, they have no known analytical solution. We have
instead considered numerical methods using the QuTiP
package [25,26]. This approach is convenient as long as
a small number of photons are considered in order to
keep the computation time reasonable, due to the repre-
sentation of the states and the operators in the Hilbert
space of Fock states. To have a significant effect, it is
thus necessary to compensate the low pumping field
with a higher nonlinear interaction efficiency κ. Indeed,
considering the results obtained in [23] and reported in
section B, we can infer κ|α0| ∼ 1.75×10−6 � 1, a rather

negligible value. As we are limited in the photon num-
ber used in the quantum approach, the expected effects
during the interaction described by Eq. (10) will not be
observed. In our approach and to gain insights on the
quantum properties of TPG, we will instead consider
κ = 0.02, corresponding to χ(3) ∼ 1 × 10−18 m2V−2,
a value far above the third-order nonlinearities we can
reach in present materials. With this value, a pump field
with an average 100 photons is sufficient to observe sig-
nificant evolution of the quantum system. In the follow-
ing, we will thus consider TPG evolution under Hamil-
tonian given by Eq. (9) with a pump field in a coherent
state |α0〉, where |α0|2 = 〈n0〉 = 100. Such a coherent
state has a Poisson distribution and can be expanded in
the Fock-basis up to 200 with very good fidelity. As the
generated modes are far weaker, we have used a Fock
representation with an expansion up to 50, keeping the
calculation times reasonable.

We start our analysis with the double seeding config-
uration, where two of the triplet modes are excited with
a coherent state containing in average 〈n〉 = |α0|2 = 5.
The quantum system is then in the initial state |ψin〉 =
|α0, 0, α, α〉. Next, we consider the single seeding con-
figuration |ψin〉 = |α0, 0, 0, α〉, and finally the spon-
taneous triple-photon generation for which the initial
state is |ψin〉 = |α0, 0, 0, 0〉. Before proceeding further,
it is worth noting here that the double stimulation case
describes indeed a displacement operator acting on the
mode which is initially in vacuum, under the assump-
tion of a classical undepleted pump in the Hamilto-
nian Eq. (9). In the single stimulation case and under
the classical pump approximation too, the Hamiltonian
Eq. (9) reduces to the one describing the well-known
spontaneous-parametric down conversion.

Figure 9 shows the evolution of the different modes
computed numerically considering the three initial
states. In the travelling wave configuration, the space
evolution can be inferred from the time evolution of
Eq. (10) by multiplying the time by the speed v of the
propagating modes in the nonlinear material. For sim-
plicity, we considered in our analysis that v = 1 and we
integrated Eq. (10) up to t = 1. It is very interesting
to notice that the amplification of the mode which is
initially in vacuum depends on the number of seeded
modes. Indeed in the case of the double seeding config-
uration, at t = 1, the mean photon number for mode
1 is 〈n〉 = 1.76, whereas it is lower, 〈n〉 = 0.27, for
modes 1 and 2 in the single seeding regime. These val-
ues represent the number of triple photons generated
during the interaction. Indeed, we have checked that for
the excited modes, the added photon number is exactly
Δn = 1.76 at modes 2 and 3 for the double seeded
case, and Δn = 0.27 at mode 3 for the single seeded
interaction.

A similar analysis with a weaker seeding, |α|2 = 1,
shows that the generated mean photon numbers are
even smaller, indicating that the generation rate of
triple photons depends not only on the strength of
the pumping excitation, but also on the number and
strength of the modes excited prior to the interaction.
This is unlike the behavior of optical twin-photon para-
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Fig. 9 Top: Evolution of the average photon number of the different modes under TPG. Bottom : Corresponding quadra-
ture variances. For this analysis, κ = 0.02, |α0|2 = 100, and |α|2 = 5

metric amplification. In the spontaneous configuration,
the mean photon number generated is about 〈n〉 � 0.04,
even lower, and it obviously only depends on the pump
intensity and the nonlinear coefficient κ. This is the rea-
son why, despite the fact that more than 1014 triplets
are generated in the double seeded configuration as
observed in [22], the spontaneous TPG emission has
not yet been reported.

Figure 9 shows also the associated quantum fluctu-
ations of the different triple-photon modes. For each
mode, we have calculated the variances 〈Δq̂2〉 and
〈Δp̂2〉 of the two quadratures q̂ = (â + â†) and p̂ =
i(â− â†). For coherent states and vacuum, which are at
the shot noise limit, the variances are 〈Δq̂2〉 = 〈Δp̂2〉 =
1. Our analysis shows that in the case of TPG, the
three modes have excess noise and all the variances are
greater than unity. Moreover, in the case of the double
seeded interaction, the quantum fluctuations are not
equally distributed, being larger along the q̂ than the p̂
quadrature.

Now, we consider the case of a triple-seeded configu-
ration where the three modes are excited by a coherent
state with a mean photon number |α|2 = 5. In this
particular situation, we should also consider the rel-
ative phase between the pump and the triple modes
given by Δφ = |ψ1 + ψ2 + ψ3 − ψ0|. For sake of sim-
plicity, we take φ0 = 0 and φ1 = φ2 = φ3 = φ. Our
analysis reveals two interesting situations: an amplifi-
cation for φ = π/2, 7π/6 and 11π/6, where the pump
photons are converted into triplets; an attenuation for
φ = π/6, 5π/6 and 3π/2, which corresponds to a regime
where the triple photons are converted back into pump
photons. These behaviors are depicted in Fig. 10, rep-
resenting in the left plot the evolution of mean photon
number for φ = π/2 (blue) and for φ = π/6 (red).
The inset is the mean photon number at t = 1 as a
function of the phase in a polar plot. In the plot on
the right, we have reported the quantum fluctuations
of the two conjugate quadratures q̂ and p̂. The blue

curves represent the variances in the case of amplifi-
cation, and the red ones correspond to the attenua-
tion case. Like in the partially seeded configurations,
the quantum fluctuations are always above the shot
noise limit. Moreover, as depicted in the contour plot,
they exhibit a phase dependence, similar to the one of
the mean photon number. The behavior of the fully
seeded TPG is comparable to the phase-sensitive twin-
photon parametric interaction. It has a dependency to
the relative phase between the pump and the generated
modes and it exhibits noisy modes, which makes them
robust against optical losses. The differences between
the twin-photon and triple-photon states are related
to the dependence on the seeding intensity and more
importantly to the non-Gaussian nature of their statis-
tics. This point will be addressed in the next section.

The generation of triple photons fulfills two con-
ditions: the energy and momentum conservations, as
explained in Sect. 2. In the case of spontaneous emis-
sion, where only the pump is fixed through its optical
frequency ω0 and its k0 wave-vector, we end up with two
equations with three unknown parameters: ω1, ω2 and
ω3. The system has thus an infinity of triplet solutions
as already mentioned in Sect. 2.

We should thus reconsider our quantum approach by
taking into account this broadband generation. A more
suitable approach in this case is to consider the space
evolution under the nonlinear momentum

Ĝnl = �

∫ ∫ ∫

dω0dω1dω2Γ(ω0, ω1, ω2)

â†
0â1â2â3e

−iΔkz + H.c, (12)

where

Γ(ω0, ω1, ω2)

=
�χ(3)

4ε0c2S

√
ω0ω1ω2(ω0 − ω1 − ω2)

n(ω0)n(ω1)n(ω2)n(ω0 − ω1 − ω2)
, (13)
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Fig. 10 Left: Evolution of the average photon number of the different modes under TPG interaction when all modes are
seeded and when the phase of the seeding is π/2 (blue) and π/6 (red). For this analysis, κ = 0.02, |α0|2 = 100, and |α|2 = 5.
The horizontal dashed black line indicates the initial mean photon number |α|2 = 5. The inset shows 〈n〉 at t = 1 in a
parametric plot as a function of the seeding phase ψ. The dashed black circle indicates once more the initial mean photon
number |α|2 = 5. Right: The corresponding quadrature variances for the same seeding phase. The horizontal dashed black
line shows the shot noise. The inset is the q̂ and p̂ variances at t = 1 as a function of the phase of the seeding. The shot
noise is highlighted by the black dashed circle

and Δk = k(ω0)−k(ω1)−k(ω2)−k(ω0−ω1−ω2), where
we have replaced the frequency ω3 of the third photon
by ω3 = ω0 − ω1 − ω2 using the energy conservation
condition. In the following, a reasonable assumption is
to consider that the pump spectral bandwidth is very
narrow in comparison with the bandwidth of the triple
photons, especially if a CW laser is used. We can also
consider that the pump is strong and undepleted and
can be treated as a complex classical amplitude. We
obtain the following evolution equations

∂âl(ω)
∂z

= −i

∫

dωtΓ(ω0, ω, ωt)A0â
†
m(ωt)â†

n

(ω0 − ω − ωt)e+iΔkz, (14)

where A0 is the real amplitude of the pump electric
field. Moreover, considering a weak interaction, which
is reasonable for spontaneous TPG, we can solve Eq.
(14) to the first-order of the Baker–Hausdorff expan-
sion, which gives

âl(ω, z) = âl(ω, 0)

−i

∫

dωtψ(ω0, ω, ωt)â†
m(ωt, 0)â†

n(ω0 − ω − ωt, 0),

(15)

where ψ = Γ(ω0, ω, ωt)LA0sinc(ΔkL/2)e+iΔkL/2.
It is now easier to calculate the mean photon number

defined as 〈n〉 = 〈ψin|â†â|ψin〉. With the initial state in
vacuum, |ψin〉 = |0, 0, 0〉, we obtain:

〈ni(ω,L)〉 =
∫

dωt|ψ(ω0, ω, ωt)|2. (16)

This indicates that the mean photon number at mode
i = 1, 2, 3 at frequency ω is the integral over all the

contributions of triple photons that fulfill the phase-
matching condition and the energy conservation. For
example, in the KTP waveguides, these two conditions
are fulfilled over almost the full transparency window of
the nonlinear crystal as shown in Fig. 3. Figure 11 shows
the spectral density distribution |ψ(ω0, ω, ωt)|2 as a
function of λ1 and λ2. It is obtained for the KTP waveg-
uide considered in Fig. 3 and using the corresponding
dispersion relations of the effective index Eq. 4.

Integrating |ψ(ω0, ω, ωt)|2 over λ2-axis, we obtain the
mean photon number 〈n1(ω,L)〉 per second as a func-
tion of λ1. Similar calculations can be hold to compute
〈n2(ω,L)〉 and 〈n3(ω,L)〉. The expected mean photon
number is higher than the one calculated by the sin-
gle mode model described by the Hamiltonian given by
Eq. (9). The total mean photon number that we expect
is further estimated by integrating Eq. (16) over the full
spectrum, i.e.,

N3P (L) =
∫

dω〈ni(ω,L)〉. (17)

Indeed, considering the full phase-matching bandwidth
of the KTP ridge waveguide as shown in Fig. 3, i.e.,
from 1 to 3µm, and a CW pump power of 5 W at
532 nm, we estimate N3P (L = 5cm) � 4.9 triplets/s.
Such a pump level is a reasonable target regarding the
expected improvements of the losses and surface quality
of the waveguides. Note that the rate of triplets remains
the same in the pulsed regime than in the CW regime
if the average power is kept at the same value. But
the number of triplets per pulse will depend on both
the pulse duration and repetition rate. For example a
pump of 5W at 532 nm with a pulse duration of 11.3 ps
and a repetition rate of 88 MHz, gives N3P (L = 5cm) =
4.9 triplets/s, corresponding to 5.6×10−8 triplets/pulse.
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Fig. 11 Spectral density distribution |ψ(ω0, ω, ωt)|2 as a
function of the phase-matching wavelengths λ1 and λ2

4 Non-classical features of TPG

We now focus on spontaneous TPG, and we consider
the non-degenerate case where the Hamiltonian is

Ĥnd = iξ(â†
1â

†
2â

†
3 − â1â2â3) (18)

and the degenerate case characterized by the following
Hamiltonian:

Ĥd = iξ(â†3 − â3). (19)

In both cases, we consider a pump with a high photon
number so that it can be treated as a classical state.
We also define ξ = κα0 where |α0| is the amplitude of
the pump.

The generation of TPG quantum states has been per-
formed in the double-seeded configuration in [24], and
in the single seeded and spontaneous cases in [15]. In
those experiments, the authors show strong evidence
that the states are generated by a TPG; however, the
experimental demonstration of quantum features for
such states remains, up to our knowledge, to be done.
In this section, we develop the theoretical tools that
allow to demonstrate the different quantum features of
the states generated by all the possible configurations of
TPG, i.e., stimulation over one, two or three modes, as
well as no stimulation. We first note that all quantum
features can be inferred from the density matrix of the
state or equivalently from a phase space distribution.
In the present case, we expect 4.9 triplets per second,
which makes a full quantum tomography totally out
of reach. We thus focus on tools which require a min-
imum information about the state but are still able to
conclude about quantum features. In the first part, we
focus on the states generated by the Hamiltonian (18)
and propose tools to demonstrate genuine multipartite
entanglement (GME) of such states using homodyne
measurement. We then focus on the state generated by
the Hamiltonian (19) and build tools in order to demon-
strate non-classical features of such states.

4.1 Entanglement

A state is said to be GME if it cannot be written as a
biseparable state for any bipartition. A general bisepa-
rable state is a mixture of states that are product states
for some bipartition, i.e., a partition of all modes into
two groups. Formally, it is given by:

�bisep =
∑

G1|G2

p(G1|G2) ρG1|G2 . (20)

Here, the sum runs over all 3 partitions G1|G2 of the
3 parties where G1 ∪ G2 = {1, 2, 3} and G1 ∩ G2 = ∅.
The probabilities of different partitions sum up to one,∑

G1|G2
p(G1|G2) = 1, and ρG1|G2 is a separable state

with respect to the partition G1|G2. We aim to demon-
strate entanglement using homodyne detection, so that
we define a general homodyne measurement on the
mode i as X̂θ

i = (â†eiθ + âe−iθ)/2 and write X̂
π/2
i = p̂i

and X̂0
i = q̂i. Our first attempt to describe the quantum

properties of triple photons, especially their three-body
quantum entanglement, was in 2018 [27] using the exist-
ing tools dedicated to characterize the inseparability of
multi-body quantum states. Our analysis is based on
P. van Loock and A. Furusawa non-separability crite-
rion S [28], relying on the evaluation of the quantum
fluctuation of the generalized quadratures

û =
3∑

i=1

hip̂i, v̂ =
3∑

i=1

giq̂i, (21)

where hi and gi are arbitrary real numbers. Thus, the
non-separability criterion is easily accessible experimen-
tally using standard balanced homodyne detections.
The criterion is defined as S = 〈Δû2〉 + 〈Δv̂2〉. We can
show that when S < 2min(|hkgk| + |hlgl + hmgm|) for
any permutation of k, l,m = 1, 2, 3, the triplets exhibit
genuine entanglement. However, when S > 2 (|hkgk| +
|hlgl| + |hmgm|), the system is completely separable.
Surprisingly, we found that the spontaneous triple pho-
tons do not exhibit three-body quantum entanglement
in the continuous variable (CV) regime, always fulfill-
ing the last inequality. Entanglement has only been
predicted in the different seeded cases as depicted in
Fig. 12. The different results are obtained following the
analysis reported in our work [27].

In fact, TPG is a third-order nonlinear process with
non-Gaussian statistics. This statement is obvious in
the degenerate case when â1 = â2 = â3 and the Hamil-
tonian (18) becomes (19). It will be shown hereafter
in Fig. 16 that the Wigner function exhibits interfer-
ences and negativities, which is a clear signature of the
non-Gaussian nature of the triple-photon mode a. In
the non-degenerate case (Hamiltonian (18)), we have
recently shown that even though the Wigner function
associated with each mode looks Gaussian, the quadra-
ture probability distribution is super-Gaussian [29]. The
S criterion is thus not anymore a relevant parameter to
analyze and reveal the entanglement properties of the
triple-photon states. Indeed, the S criterion is based
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Fig. 12 Evolution of the entanglement criterion S for dif-
ferent interactions TPG configurations. Red: fully seed TPG
with a relative phase of π/2. Blue: double-seed TPG. Green:
One mode seeding configuration and S calculated for the
two unseeded modes. |α|2 is the mean photon number per
second of each seeding beam

on the second-order moments, i.e., variances, which are
sufficient to describe a Gaussian distribution. When at
least one of the triplet modes is seeded, the statistics
become again Gaussian, and hence, using Furusawa and
Van Loock criterion, S is sufficient. The failure of the
S criterion to describe the entanglement in the case
of spontaneous TPG due to its super-Gaussian nature
pushed us to further explore the entanglement nature
of the triplet, in order to claim that the triple photons
are indeed entangled despite the results based on S.
Hence, we have used the logarithmic negativity defined
as EN = ln ||ρTi ||, where ρ is the density matrix of
the triple photons and ρTi is its partial transpose over
mode i = 1, 2 or 3 [29,30]. A quantum system is said
to be entangled whenever EN > 1. Figure 13 shows the
calculated EN in the case of spontaneous TPG, start-
ing from the Hamiltonian Eq. (9) and using a numeri-
cal approach to solve the Heisenberg equation. For this
simulation, we considered a coherent pump field with a
mean photon number 〈n0〉 = 10. The logarithmic nega-
tivity EN increases with the nonlinear parameter κ|α0|,
reaching EN � 2 for κ|α0| = 1, which clearly demon-
strates the three-body entanglement of the triple pho-
tons. In the same figure, we have also reported the evo-
lution of 〈n0〉 and 〈n3P 〉, respectively, the pump and
triplets mean photon numbers.

Even though the logarithmic negativity has the abil-
ity to reveal the entanglement of a quantum system,
it is very hard to measure in practice, as it requires
a full tomography of the state. One instead can use a
witness of genuine entanglement, i.e., an observable Ô
such that 〈Ô〉 ≤ 0 for all biseparable state. As stated
before, the state |ψ3〉 associated with non-degenerate
TPG has non-Gaussian entanglement, which implies
that a witness of entanglement (or GME) for the state
|ψ3〉 requires at least a third-order field operator. The
authors of [31] derive a non-Gaussian witness of GME,
which allows the demonstration of genuine entangle-

Fig. 13 Red: logarithmic negativity of the spontaneous
TPG excited by a coherent pump with a mean photon num-
ber |α0|2 = 10. Black: Evolution of the pump mean photon
number. Blue: Evolution of the mean photon number of the
generated triplets

ment for the state |ψ3〉. Moreover, their witness failed to
detect entanglement in the seeded configuration, which
highlights the difference between the two states. We
briefly review their witness. The authors of [31] show
that any biseparable state satisfies

|〈â1â2â3〉| ≤
√

〈n̂1〉〈n̂2n̂3〉 +
√

〈n̂2〉〈n̂1n̂3〉
+

√
〈n̂3〉〈n̂2n̂1〉 (22)

where n̂i is the number operator for mode i. The state
|ψ3〉 does not satisfy (22) and is thus GME. We want
to formulate a relaxation of this witness only in terms
of local homodyne measurement. In order to formulate
our relaxation, we first note that (22) implies that any
biseparable state satisfies:

|〈â†
1â

†
2â

†
3〉| ≤

√
〈n̂1〉〈n̂2n̂3〉 +

√
〈n̂2〉〈n̂1n̂3〉

+
√

〈n̂3〉〈n̂2n̂1〉. (23)

By summing (22) and (23) and using the triangular
inequality, we end up with

|〈â†
1â

†
2â

†
3〉 + 〈â1â2â3〉|

2
≤

√
〈n̂1〉〈n̂2n̂3〉 +

√
〈n̂2〉〈n̂1n̂3〉

+
√

〈n̂3〉〈n̂2n̂1〉 (24)

which holds for all biseparable states. Interestingly, the
left-hand side of this previous equality can be measured
using local homodyne measurement , i.e.,

â†
1â

†
2â

†
3 + â1â2â3 = −2(X̂

π
2
1 X̂

π
2
2 X̂0

3 + X̂0
1 X̂

π
2
2 X̂

π
2
3

+X̂
π
2
1 X̂0

2 X̂
π
2
3 − X̂0

1 X̂0
2 X̂0

3 ).
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Fig. 14 GME certification parameter w with respect to
the efficiency η for ε = ξtint = 10−2

The terms n̂in̂j being hard to measure experimentally,
we bound them according to

∀{i, j} ∈ {1, 3} 〈n̂in̂j〉 ≤ 1
2
(〈n̂2

i 〉 + 〈n̂2
j 〉) (25)

where 〈n̂2
i 〉 can be measured locally by combining

second- and fourth-order moments of phase average
field quadrature, that is to say:

n̂2
i =

16
6

(∫
1
2π

dθ (X̂θ
i )4 − 1

2

∫
1
2π

dθ (X̂θ
i )2

)

. (26)

We define the quantity

Ci,j,k =

√

〈n̂i〉ρT P G(η)(
1
2
(〈n̂2

j 〉ρT P G(η) + 〈n̂2
k〉ρT P G(η))

(27)

where 〈.〉ρT P G(η) is the expectation value of ′′.′′ on the
state ρTPG. We can certify the presence of GME for the
state ρTPG if the quantity

w =
|〈â†

1â
†
2â

†
3〉ρT P G(η) + 〈â1â2â3〉ρT P G(η)|

2
−(C1,2,3 + C2,1,3 + C3,2,1) (28)

is positive. We plot in Fig. 14 w with respect to the
efficiency η. We see a violation even for low efficiency,
which makes the detection of GME for the state ρTPG

robust against losses when homodyne detection is used.

4.2 A hierarchy of quantum features for single
mode of light

We focus on the degenerate state |ψ〉, which we take to
be the outcoming state created by the process associ-
ated with the Hamiltonian of Eq. (19), and which we

assume to be single mode. There exists a hierarchy of
quantum features for a single mode of light in Fig. 15.

The first layer of quantum features is the non-
classicality, which is defined using the Glauber–
Sudarshan (GS) or P distribution [32,33]. Any state
ρ can be written in terms of coherent states |α〉 as fol-
lows:

ρ =
∫

dα2P (α)|α〉〈α|. (29)

A state is classical if its GS distribution P (α) can
be interpreted as a classical probability distribution
[34]. Non-classicality is a necessary feature for a state
to exhibit any quantum advantage, for example in
quantum metrology where any advantage over classi-
cal metrology requires non-classicality.

The second layer of quantum features is quantum
non-Gaussianity (QNG). A Gaussian state is by defi-
nition a state with a Gaussian Wigner function. Hud-
son’s theorem [35] stipulates that all non-Gaussian pure
states are Wigner negative; nevertheless, it is not the
case for mixed states. Any pure Gaussian state can
be generated by the action of the squeezing operator
Ŝ(s) = eâ2s∗−â†2s following by displacement operator
D(α) = eαâ†−α∗â on the vacuum : |s, α〉 = S(s)D(α)|0〉.
Also, any state can be written in terms of Gaussian
states, i.e.,

ρ =
∫

p(α, s)|s, α〉〈s, α|. (30)

A state is Gaussian if p(α, s) can be interpreted as a
probability distribution. Non-Gaussian quantum states
are essential to a variety of quantum information pro-
cessing tasks such as quantum state distillation [36],
quantum error-correction [37] or quantum computa-
tional speedup [38].

The third layer of quantum features is Wigner neg-
ativity. The Wigner function is a representation of a
single mode state ρ in terms of the a quasi-probability
distribution given as [39]:

Wρ(α) =
2
π

Tr(D(α)(−1)a†aD(α)† ρ). (31)

Wigner negativity is arguably the strongest form of
quantum feature for a single mode state and is a neces-
sary condition to perform efficient quantum computing
using CV states [40]. We plot in Fig. 16 the Wigner
function of state |ψ〉 as a function of its canonical
quadratures q and p.

We can observe different areas of negativities in the
Wigner function, which implies that the TPG state is
Wigner negative, non-Gaussian and non-classical. We
note that this function is not phase-invariant, and as
a consequence the presence of such negativities can-
not be detected by only photon counting strategies.
The reconstruction of the Wigner function requires a
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Fig. 15 Hierarchy of quantum features for single mode state of light

Fig. 16 Wigner function W of the state |ψ〉 as a function
of the canonical quadratures q and p. The positivity plane
(colored in lighter color) divides the Wigner function axis
between positive and negative values

high number of experimental runs, which is not avail-
able in the present experiment. Witnesses of Wigner
negativity can be systematically derived using hierar-
chy of semi-definite programs [41], but those witnesses
require again a number of measurement runs that is
much higher than the one available in our case, and for
those reasons we proceed by focusing on non-classicality
and non-Gaussianity only.

4.3 Witnessing non-classicality of the degenerate
state |ψ〉
A witness of non-classicality can be represented by an
observable Ŵ together with the maximum expectation
value of Ŵ on a classical state. The most widely used
witness of non-classicality is probably the second-order
correlation function g2(0) [42] together with its classi-
cal bound 1. Several criteria that analyze matrices of
moments of annihilation and creation operators have
also been derived [43–45]. In this section, we focus on
the setup of Fig. 17 and derive a witness tailored to the
state |ψ〉 and that is based on photodetection events.
We consider a single-mode case for the sake of clar-
ity. The results are holding in the multimode case and,
since i) the detector cannot distinguish between differ-

Fig. 17 Experimental setup consisting of three balanced
beam-splitters (t = r = 1/2) and four detectors D1-4

ent modes and ii) the setup in Fig. 17 does not allow
us to acquire information about the coherence terms of
|ψ〉, then we can consider a single-mode state with the
same number of photons than that of the expected mul-
timode state in order to correctly model our experiment
(see Appendix A).

In Fig. 17, an input state ρi of the ith experimen-
tal run is split into four spatially separated modes
using three balanced beam splitters and sent to four
non-photon number resolving (NPNR) detectors. We
do not want to make assumptions about the efficiency
of the NPNR detectors, so we consider perfect detec-
tion and that any inefficiencies can be mapped into the
input states ρi. A NPNR detector with unit efficiency
can be modeled by a two element positive operator-
valued measure (POVM) as the set {E•, E◦} = {1 −
|0〉〈0|, |0〉〈0|}, corresponding to the single detector events
click and no click, respectively.

The set of non-classical states is convex (29), so that
the set of the different probabilities of clicks achieved by
classical states is also convex, by linearity of the trace.
We can thus consider a linear combination of probabil-
ity operators corresponding to the events of click and
no click on the detector arrangement,

Ŵ (θ) =
∑

ciP̂i, (32)

where P̂i are the POVM elements of the arrangement,
which correspond to the event where i detectors click
while the others do not click, as for example: P̂4 =
E

(1)
• E

(2)
• E

(3)
• E

(4)
• = (1 − |0〉〈0|)⊗4, and represent an
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event where all four detectors click. The coefficients ci

are parametrized such that the vector c(θ) is normal-
ized:

c(θ) =

⎛

⎜
⎝

sin θ1

sin θ2 cos θ1

sin θ3 cos θ2 cos θ1

cos θ3 cos θ2 cos θ1,

⎞

⎟
⎠ . (33)

The next step is to compute the maximum expec-
tation value of the observable constructed in Eq. (32)
that any classical state can achieve, i.e.,

wc(θ) = max
∀ ρc

(Tr
(
Ŵ (θ)ρc

)
). (34)

We note that Tr
(
Ŵ (θ)ρc

)
is linear in ρc, and since any

arbitrary classical state can be written as a mixture of
pure classical states according to Eq. (29), we find that:

Tr
(
Ŵ (θ)ρc

)
= Tr

(

Ŵ (θ)
∫

dα2P (α)|α〉〈α|
)

=
∫

dα2P (α)Tr
(
Ŵ (θ)|α〉〈α|

)

≤ (
∫

dα2P (α)
)
max

α
(Tr

(
Ŵ (θ)|α〉〈α|

)
)

= max
α

(Tr
(
Ŵ (θ)|α〉〈α|

)
). (35)

Therefore, we can conclude that the maximum of the
RHS of (34) is achieved by a pure coherent state. With
this simplification, we have that

wc(θ) = max
∀ |α〉

(〈α|Ŵ (θ)|α〉). (36)

We find that this maximization equivalent to a prob-
lem of finding the roots of a third-order polynomial (see
Appendix A) and can thus be simply performed ana-
lytically. The vector θ̂ = (θ1, θ2, θ3) is associated with
the weights of the different events defined by the opera-
tors P̂i on the witness Ŵ . The witness is now arranged
such that if for a given state ρ, it exists one vector θ̂
for which Tr(Ŵ (θ)ρ) > wc(θ), then the non-classicality
of the state ρ can be demonstrated using the setup of
Fig. 17.

In practice, the state |ψ〉 will experience losses; we
then define the state

ρTPG(η) = TrB(Uη|ψ〉〈ψ| ⊗ |0〉〈0|BU†
η), (37)

where Uη is a unitary corresponding to a beam-splitter
with transmitivity η, referring to the efficiency, and the
quantity q(θ) = Tr(ρTPG(η)Ŵ (θ))−wc(θ), that will be
positive when the witness can detect non-classicality
for the lossy state ρTPG(η). In order to find the opti-
mal witness of the state for a given efficiency, we can
compute:

qopt = max
θ

(q(θ)). (38)

We plot in Fig. 18 qopt with respect to the overall effi-
ciency η of the setup for ε = ξt = 0.01. We find that,
in the present case, the optimal q is always found when
wc(θ) = 0. We also find a positive qopt for the range
of all efficiencies, which proves the detection of non-
classicality of the state |ψ〉 using the setup of Fig. 17
to be robust against losses.

In the last part of this section, we turn to give an
estimation of the number of experimental runs that
would be necessary to estimate the quantity Ws =
Tr(ρTPG(η)Ŵ (θ)). We assume that the POVM ele-
ments P̂i are independent quantities that are measured
N times. At each run, we evaluate a random variable
Xi, associated with P̂i, which takes the value 1 when i
detectors click and i − 4 do not click, and the value 0
otherwise. An unbiased estimator of Ws after N runs is
given by:

W̄s =
N∑

k=1

4∑

i=1

ci
Xk

i

N
. (39)

We bound the standard deviation of W̄s as follows:

σWs
=

∑

i=1

|ci|σXi

N
, (40)

where σXi
=

√〈Xi〉(1 − 〈Xi〉) is the standard devia-
tion of a binary variable. The number of runs that is
needed to estimate the value of the witness, with a pre-
cision 3 times smaller than the distance to the classical
bound, can thus be estimated by finding the number of
runs Nopt such that:

qopt = 3σWs
. (41)

We plot Nopt with respect to the efficiency in the inset of
Fig. 19. With 4.9 triplets/s and a 5-W laser at 88 MHz,
we find that 18 seconds of experiment are enough to
certify the non-classicality of the state for an efficiency
of 50%.

4.4 Demonstrating non-Gaussianity of the
degenerate state |ψ〉

A witness operator Ŵ in the same general form of Eqs.
(32–33) associated with the linear optical setup of Fig.
17 proves to be useful to the demonstration of the non-
Gaussianity of the one-mode state |ψ〉 as well, meaning
that, by analyzing the mean value of this operator on
this state, we can assert that |ψ〉 cannot be written as
a convex mixture of pure Gaussian states. Witnesses of
non-Gaussianity for arbitrary Fock states using linear
optics have been derived in [46]. The aim of this section
is to derive a witness of non-Gaussianity tailored to the
state |ψ〉 where the full knowledge of the probabilities
distributions of each detector is used, and not only of
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Fig. 18 Optimized mean values of qopt. The optimization
is performed numerically over the set of parameter coeffi-
cients θ for a range of efficiencies η for ε = 10−2. Inset:
Number of experimental runs Nopt necessary for certifica-
tion

two as in [46]. In order to witness such non-Gaussianity,
we again need to specialize the witness over the free
parameters of the coefficients c(θ). A first step is defin-
ing and computing the maximum mean value wg of the
witness operator over all Gaussian states, i.e.,

wg(θ) = max
∀ ρG

(Tr
(
Ŵ (θ)ρG

)
). (42)

We note one more time that this expression is linear in
ρG, and thus, we can conclude in the same manner that
its maximum is achieved by a pure state and that it is
then sufficient to perform the optimization over the set
of pure Gaussian states. In this case, as opposed to the
witnessing of non-classicality via wc(θ), the expression
for wg(θ) is more intricated and the optimization was
performed numerically over all states of the form

ρG = ŜsD̂α|0〉, (43)

i.e., squeezed coherent states, in which D̂α and Ŝs are
the canonical displacement and squeezing operators.
More details can be found in Appendix B. The sec-
ond and last step is performing a further optimization,
now over the set of the coefficient parameters θ, of the
difference

g(θ) = Tr(ρTPG(η)Ŵ (θ)) − wg(θ), (44)

where ρTPG is the lossy state given by Eq. (37), in order
to find gopt = maxθ(g(θ)). Finding a positive value of
gopt certifies that the mean value of the witness in state
ρTPG breaks the Gaussian bound and thus that the
state |ψ〉 cannot be represented by a mixture of states
of the form of Eq. (43), meaning that this state is non-
Gaussian.

Fig. 19 Optimized mean values of gopt. The optimization
is performed numerically over the set of parameter coeffi-
cients θ for a range of efficiencies η and for ε = 10−2. In
the upper inset, we plot the expected minimum number of
runs Nopt necessary for non-Gaussianity certification. In the
lower inset, we zoom in on the region of efficiency η from 0
to 45%, showing that we find positive values of gopt for all
efficiencies

Figure 19 shows the values of gopt obtained by numer-
ical optimizations performed over a range of efficiencies
η of the setup. We find that a violation of the Gaussian
bound can be witnessed by the auto-correlation witness
of the form of Eq. (32) over the range of all efficiencies,
which again demonstrates the robustness of the method
against photon losses. In order to estimate the number
Nopt of experimental runs needed for the certification,
we one more time set

gopt = 3σWs
, (45)

where σWs
is given by Eq. (39), but now using the coef-

ficients ci optimized for the non-Gaussianity witness.
This estimation is plotted in the upper inset Fig. 19 for
the range of efficiencies η.

5 Discussion and conclusion

In this article, we have reviewed our past work, both
experimental and theoretical, from bulk crystal to
KTP waveguide and from a simplistic quantum anal-
ysis extrapolated from second-order nonlinear process,
to a deep understanding of peculiarities of quantum
behavior introduced by the third-order nonlinear inter-
action. We thus highlighted these differences, such as
the dependence of the classical and quantum behavior
on the seeding intensity, and the emergence and con-
straints induced by the non-Gaussianity. Then, we pre-
sented original theoretical results and fixed one of the
remaining important problems: how to experimentally
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conclude at the quantumness and the non-Gaussianity
of the generated triple-photon states engaging a mini-
mal resource budget. We have thus introduced quantum
witnesses using the minimum number of photocounting
detectors, optimizing thus losses and complexity. The
spontaneous generation of triple photon statistics by
the third-order nonlinear interaction is still elusive, but
we feel now closer.

The following step is to demonstrate the ability of
these states to exhibit stronger form of quantum cor-
relation such as Wigner negativity or non-locality. It is
then possible to use these behaviors in quantum infor-
mation protocols. The ability of generating heralded
pairs of photons can be used in quantum repeater pro-
tocols. Moreover, using photon detectors preceded by
displacement operation on one of the three modes of
the state |ψ〉3, it is then possible to herald a state of
the form |00〉 + ε|11〉 that has the ability to violate
Bell inequalities [47]. Time-bin genuine entanglement
and non-locality can be demonstrated on the state |ψ〉3
using Franson-type measurement. Indeed, all the pho-
tons can be sent to a single imbalanced interferome-
ter and look at threefold coincidences at the outputs
of the interferometer. Then, if the arm length differ-
ence of the interferometers is smaller than the coherence
length of the pump, it is by principle impossible to tell
if all three photons have taken the short or the long
arm, effectively generating a three-mode Greenberger-
Horne-Zeilinger state (GHZ state). The long-term aim
is to add TPG process to the quantum optics toolbox
for quantum communication and computation.
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Appendix A: Non-classicality witness

A pure coherent state can be written in the Fock or
number state basis as

|α〉 = exp

(

−|α|2
2

) ∞∑

n=0

αn

√
n!

|n〉, (A1)

where α is a parameter defining the specific state. The
action of balanced beam-splitters at coherent states
given by Eq. (A1) is straightforwardly computable.
Actually, after a beam splitting, the state is represented
by two pure coherent states attenuated as α

′ → α/
√

2
at each output path, so that the probabilities Pi of
observing i clicks at the detectors of Fig. 17 can be
written as

Pi =
(

4
4 − i

)(

exp(−|α|2
4

)
)i (

1 − exp(−|α|2
4

)
)i

,

(A2)

for i = 1, 2, 3, 4. The non-classicality witness will then
simply be given by the summation

W (θ) =
4∑

i=1

ci(θ)Pi, (A3)
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with ci(θ) defined by Eq. (33), and the maximization
of wc(θ) of Eq. (34) will consist of a maximization over
the sole parameter α. If we first define the change of
parameters x = exp(− |α|2

4 ), the value of α which max-
imizes Eq. (A3) can be found by computing the roots
of

∂W (θ)
∂x

=
4∑

i=1

ci(θ)
∂Pi

∂x
= 0, (A4)

so that αopt will be given by ±√−4 ln(x), with x ade-
quately picked among the found roots of Eq. (A4). As
can easily be seen, due to the form of the Pi, Eq. (A4)
is, in turn, a third-order polynomial in the new variable
x, and thus, its roots can be routinely found. By com-
puting the value of W (θ) at values α associated with
each of the found roots, and verifying which of those
points consist of W (θ) maxima (∂2W (θ)

∂2α < 0), the max-
imization of Eq. (34) can thus be completely computed
analytically.

Let us focus on the multimode case, since we cannot
have access to the coherence on the setup. A general
multimode classical state can be written as:

ρm =
∑

λ

p(λ) �λ =
∑

λ

p(λ)
⊗

k

ρ
[k]
λ (A5)

where ρ
[k]
λ = |αk〉〈αk|. The POVM associated with the

event ”i detector click and 4-i does not clicks” can be
written as:

P̂im =
(

4
i

)

(1 −
⊗

k

P̂0)⊗i ⊗ (
⊗

k

P̂0)⊗(4−i) (A6)

The maximum of Tr(W (θ)ρm) is achieved by pure mul-
timode states for which we have

Tr(P̂im|αk〉〈αk|⊗k)

=
(

4
i

) (

1 −
k∏

i=1

e− |αk|2
4

)i (
k∏

i=1

e− |αk|2
4

)(4−i)

(A7)

=
(

4
i

) (

1 − e−
∑k

i=1 |αk|2
4

)i (

e−
∑k

i=1 |αk|2
4

)(4−i)

(A8)

which is the same expression than (A2) if we take |α| =√
∑k

i=1 |αk|2. Thus, the bound for single mode holds
for the multimode case.

Appendix B: Non-gaussianity witness

The expectation value of the probability Pi of observ-
ing i out of 4 detectors clicking is associated with the
projector operator P̂i of Eq. (32) acting on the state

after the unitary evolution U representing the beam-
splitters, and for a general pure Gaussian state |G〉
arriving in the setup of Fig. 17 this can be written as:

Pi = 〈G|U†P̂iU |G〉
= 〈0|D̂†

αŜ†
sU

†P̂iUŜsD̂α|0〉
= 〈α|Ŝ†

sU†P̂iUŜs|α〉, (B1)

where D̂α and Ŝs are the canonical displacement and
squeezing operators, with displacement and squeezing
parameters equal to α and s, respectively, and with P̂i

given by

P̂i =
(

4
i

)

(Î − P̂0)i(P̂0)(4−i), (B2)

where P̂0 = |0〉〈0| is the projector onto vacuum at each
detector. We use the fact that any Gaussian state |G〉
can be written as a squeezed coherent state and, with-
out loss of generality, we can choose s to be real while
keeping α generally complex.

Alternatively, and for convenience of calculation, we
can reinterpret Eq. (B1) as a reverse evolution U†

acting on the P̂i operators and compute the expec-
tation value of U†P̂iU in the incoming general pure
Gaussian state |G〉. In accordance with Eq. (B2), this
can be performed by deriving all the operators of the
form U†(P̂0)k(Î)4−kU , each of those associated to hav-
ing 0 clicks at k detectors without mention of what is
observed at the other 4−k detectors. This can be done
as follows.

For a Fock state |n〉, the probability of detecting a
vacuum state (no click) at a detector placed after two
balanced beam-splitters, without mention to what is
observed at any remaining detectors, can be written
as:

P0,n =
(

1
2

)n n∑

k=0

(
n

k

) (
1
2

)k

=
(

3
4

)n

. (B3)

For any convex combination of Fock states |n〉, the
associated projector onto vacuum at this detector
(U†(P̂0)1(Î)3U) can then be written in terms of the
number operator a†a as:

P̂0,n =
(

3
4

)a†a

. (B4)

The operators associated with the detection of two or
three vaccum states after the beam-splitters can be
derived in the same manner, and are given, respectively,
by:

P̂00,n =
(

1
2

)a†a

,
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P̂000,n =
(

1
4

)a†a

. (B5)

Finally, the operator associated with all four detections
not clicking (P̂0000,n = U†(P̂0)4U) will just be the vac-
uum operator |0〉〈0|, with associated probability being
the modulus squared of the overlap of the incoming
Gaussian state with the vaccum, that is 〈G|0〉〈0|G〉 =
|〈0|G〉|2. As derived in ref.[48], we have that:

〈0|G〉 = 〈0|ŜsD̂α|0〉 = exp
(

−1
2
|α|2 +

1
2
α2 tanh (s)

)

.

(B6)

Again, instead of directly computing the expectation
value of such projection operators in a general Gaus-
sian state, in accordance with Eq. (B1), we can apply
the reversed squeezing operator to these projectors and
compute their expectation values on a coherent state
|α〉. Following the result in Eq. (9) of ref. [49], and the
fact that e(ka†a)=:e((ek−1)a†a) :, where :: represents nor-
mal ordering, we have

Ŝ†
se

ka†aŜs = e− k
2 (e

Ts
2 ( e2k

C2
s −S2

se2k −1)a†2

× : e(e− ln Fs −1)a†a : ×e
Ts
2 ( e2k

C2
s −S2

se2k −1)a2

)/
√

Fs,
(B7)

where Ss = sinh (s), Cs = cosh (s), Ts = tanh (s) and
Fs = e−kC2

s − ekS2
s , and, to be consistent with ref. [49]

results, we have to take s to −s. By taking values for the
parameter k in accordance with each of the projectors
of Eqs. (B4) and (B5), we will have all needed terms of
the form S†(s)U†(P̂0)k(Î)4−kUS(s), and we are ready
to compute their expectation values on the coherent
state |α〉: as Eq. (B7) is normal ordered in the field
operators, it can be directly applied between 〈α| and
|α〉 in Eq. (B1) using 〈α|a†2|α〉 = α∗2, 〈α|a2|α〉 = α2

and 〈α|a†a|α〉 = |α|2.
The witness of Eq. (32) of a Gaussian state can then

be readily computed by summing the results as:

〈G| ˆW (θ)|G〉 =
4∑

i=1

ci〈G|P̂i|G〉 (B8)

Finally, we witness non-Gaussianity of state |ψ〉 when-
ever we find θ so that:

g(θ) = 〈ψ|Ŵ (θ)|ψ〉 − max
∀ α,s

×(〈G(α, s)|Ŵ (θ)|G(α, s)〉) > 0. (B9)

Moreover, we can optimize the witness by computing
gopt = maxθ(g(θ)).
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