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Abstract

Biological peptides have emerged as promising candidates for data storage applications due to their versatility and programmability. Recent
advances in peptide synthesis and sequencing technologies have enabled the development of peptide-based data storage systems for realizing
novel information storage technologies with enhanced capacity, durability, and data access speeds. In this study, we performed peptide sequencing
of 12 distinct sequences through a single-layer MoS2 Solid-State Nanopore (SSN) using Molecular Dynamics (MD). Peptide sequences were
comprised of 1 positively charged, 1 negatively charged, and 4 neutral amino acids, with the position of amino acids in the sequence being
changed to generate all possible configurations. From MD, the goal was to evaluate the efficiency of these peptide sequences to represent binary
information based on ionic current traces monitored during their passage through the nanopore. A classification approach using the LightGBM
classifier was developed to analyze different sequence characteristics such as the influence of position of amino acids in the peptide sequence or
the spacing between charged amino acids. This approach was successful to identify peptide sequence pairs relevant for encoding binary data. In
addition, MD simulations allowed us to establish the nonlinear relationship between amino acid positions inside the nanopore and ionic current
fluctuations to eliminate false positives and to enable effective training of machine learning algorithms. These very promising results allowed us
to highlight the best approaches for peptide design as building blocks for molecular information storage using MoS2 SSN. Particularly, criterion
of the position of charged and neutral amino acids was preferred to design peptides representing binary bits. Finally, this study enhances our
understanding of peptide-based data storage systems, highlighting their potential for creating efficient, scalable, and reliable molecular data
storage solutions.
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INTRODUCTION1

P eptides, once relegated to the realm of biological molecules, are2

now emerging as promising candidates for data storage applica-3

tions [1]. Their inherent versatility and programmability make them4

very attractive to encode digital information in a compact and effi-5

cient manner. Furthermore, advancements in peptide synthesis and6

sequencing technologies have facilitated the fabrication and readout7

of peptide-based data storage systems [1], [2]. Experimental tech-8

niques such as mass spectrometry enable the precise construction9

and interrogation of peptide libraries tailored for data storage appli-10

cations [3]. This method focuses on using simple molecules arranged11

on an array plate, ordered both physically and by mass. It provides12

an alternative archival storage solution that is stable, energy-efficient,13

and secure. The encoding process is flexible, simple, and relies on14

physical manipulations rather than additional synthesis. Reading is15

achieved using a mass spectrometer, offering more information than16

traditional methods. While sensitivity varies, even small amounts of17

molecules can generate a spectrum. Advances in mass spectrometry18

technology promise further improvements, allowing for increased19

storage capacity per array with higher resolution spectrometers. A20

new approach for data storage using peptide sequences was previ-21

ously reported in the literature [1], where the arrangement of amino22

acids encodes digital bits. Raw data were initially converted into23

sequences of amino acids, or peptides. To retrieve the information,24

peptides were sequenced and sequences were converted back into25

digital bits, and then subsequently decoded into raw data. To facilitate26

efficient synthesis and sequencing, encoded strings were divided into27

smaller parts with address indicators ensuring correct ordering upon28

retrieval. Successful synthesis, detection, and sequencing of peptides29

were achieved through careful selection of amino acids composing30

biological peptides. Moreover, assessing peptide length was crucial 31

to increase the probability of achieving successful complete sequenc- 32

ing [1]. Finally, it has been demonstrated that shorter peptides offer 33

easier synthesis and sequencing, resulting in fewer missed fragmenta- 34

tion. Conversely, longer peptides have the capacity to store more data 35

per peptide, thereby reducing the overall number of peptides needed, 36

along with the associated addresses and error correction overhead for 37

equivalent data volumes. To strike a balance, the peptide length was 38

standardized to 18 amino acids in [1]. Other parameters must be con- 39

sidered such as the selection and arrangement of amino acids within 40

peptides. One approach involves using the distinct physico-chemical 41

properties of the 20 natural amino acids to encode information. For 42

example, hydrophobic and hydrophilic amino acids can represent bi- 43

nary values, while specific sequences or motifs may serve as markers 44

for data retrieval and decoding. In a very recent work [4], the authors 45

propose another approach that represents a successful integration 46

of deep learning and structure-based modeling for precise peptide 47

design. This method combines a Gated Recurrent Unit-based Varia- 48

tional Autoencoder with Rosetta FlexPepDock to generate peptide 49

sequences and assess their binding affinity. Molecular Dynamics 50

(MD) simulations were then performed to fine-tune the selection of 51

peptides for experimental validation. 52

Due to its portability, nanopore sequencing-based technologies 53

have garnered significant interest for DNA storage technology [5]– 54

[14]. To characterize nanopore data storage channel, a computational 55

simulator model was developed [5]. Theoretical signals generated by 56

the simulator are validated by comparing themwith real experimental 57

signals, assessing sample differences and bio-molecular errors. The 58

simulator offers the flexibility to specify sequencing coverage size, 59

accommodating different sequencing redundancy levels in various ex- 60

perimental setups. This feature helps to evaluate the effectiveness of 61
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logical and sequencing/physical redundancy, guiding the design of en-62

coding/decoding schemes and reconstruction methods. In the design63

of biological peptides for data storage applications, researchers aim64

to exploit their sequence-specific properties to represent binary in-65

formation. By strategically arranging amino acids within the peptide66

chain, unique sequences can encode digital data in the form of bits.67

Moreover, peptides offer the potential for high-density storage due to68

their small size and the vast combinatorial possibilities of amino acid69

arrangements. The storage density of the peptide method, using only70

eight amino acids as monomers, could be 3.72 times greater than that71

of the DNA method, using four nucleotides as monomers [1]. Fur-72

thermore, this storage density can be enhanced evenmore by using 1673

or more amino acids. However, a retrievable data density of 1.7×101074

bits/g is achieved using the peptide method, which is approximately75

nine orders of magnitude lower than that of the DNA method [1],76

[15]. This is due to the difference in how DNA and peptides can be77

amplified and detected. DNA can be amplified using polymerase78

chain reaction before sequencing, allowing a much smaller quantity79

of DNA to be used to retrieve data. Peptides, on the other hand, can-80

not be amplified in the same way, meaning that a larger quantity of81

peptides is required for data retrieval. This results in a lower practical82

data density for peptides compared to DNA. Nevertheless, there is83

potential for significant improvement in peptide-based data density.84

Advances in peptide sequencing and detection at much smaller scales85

(attomole, yoctomole, or even single-molecule) could bring the prac-86

tical data density of peptides closer to their theoretical potential [2],87

[16], [17], thereby reducing the current gap between peptide and88

DNA data storage methods.89

Effective design and analysis of peptides involves considering vari-90

ous factors such as sequence, amino acid composition, length, and91

solubility. Peptides derived from native proteins may require alter-92

ations, focusing on non-essential amino acids. Longer peptides often93

result in decreased purity [18], while hydrophobic amino acids can94

impact solubility [19]–[22]. Avoiding sequences prone to 𝛽-sheet95

formation [23] and ensuring a balance of charged and uncharged96

amino acids is also crucial [24]. By carefully assessing these factors,97

researchers can optimize peptide design for efficient assembly, purifi-98

cation, and solubility of the final product. Moreover, another study99

emphasizes the importance of efficiently predicting nucleotide iden-100

tity [25]. Originally, they evaluated the classification performance of101

individual nucleotides (dAMP, dTMP, dCMP, or dGMP) using data102

from experiments conducted with specific pore diameters. Input vari-103

ables included dwell time, the height/depth of ionic current blockade,104

the mean ionic blockade current, and the number of distinct ionic105

current jumps within a single translocation event. Based on these106

data, they discussed the relationship between classification schemes107

derived from unsupervised learning and the supervised models em-108

ployed. Looking ahead, the design of peptides for data storage holds109

promise for realizing novel information storage technologies with110

enhanced capacity, durability, and data access speeds.111

The exploration of peptides for data storage has highlighted the112

potential of integrating biological components with advanced compu-113

tational models to improve the processes of encoding and retrieving114

information, as demonstrated by advances in nucleotide classification.115

This sets a precedent for future innovations in the field of data storage116

and retrieval. As we move towards exploring peptide design for data117

storage, it becomes evident that leveraging mathematical approaches118

for pattern recognition can significantly enhance our ability to decode119

complex biological signals and reveal biological insights, as demon-120

strated in several studies involving nanopore sensor data [26]–[29].121

Moreover, the potential of machine learning algorithms to reveal bio-122

logical insights inherent within nanopore sensor output data has been123

demonstrated in several studies [30]–[33]. From the development124

of SquiggleNet for real-time, direct classification of signals to the ex-125

ploration of deep learning models for gene detection, computational126

approaches offer promising results to unravel the complexities of127

genetic information encoded in nanopore signals. Custom-designed 128

informational polymers can be effectively deciphered using a specific 129

variant of aerolysin biological nanopore (K238A) [34]. Through a bio- 130

inspired framework, a single-bit resolution was achieved using a deep 131

learning approach. Thismethod allowed the accurate decoding of dig- 132

ital sequences containing up to 4 bits of information. The structure of 133

aerolysin pore can potentially be fine-tuned to optimize translocation 134

for better reading efficiency. In addition, the identity and relative 135

concentration of polymer mixtures were effectively detected without 136

prior knowledge. Therefore, there is a vast potential in exploring the 137

chemical diversity of informational polymers to enhance decoding by 138

biological nanopores. By hybridizing with DNA nucleobases, these 139

polymers retain advantages of synthetic DNA for data storage. For ex- 140

ample, different terminal nucleobases allow formore efficient capture 141

and threading by the nanopore, enabling potential use of canonical 142

DNA bases to define data structure for random access [35]. In par- 143

allel, advancements in nanopore sequencing simulations for DNA 144

data storage applications and the development of nanopore-based 145

DNA hard drives demonstrate innovative approaches to rewritable 146

and secure data storage [6], [7]. Efforts to expand the molecular 147

alphabet of DNA-based data storage systems, coupled with neural 148

network nanopore readout processing, offer promising avenues for 149

enhancing the capacity and efficiency of digital data storage using 150

DNA nanostructures and solid-state nanopores, paving the way for 151

future advancements in molecular data storage [8], [9]. In a very 152

recent work [36], we demonstrated that single-layer MoS2 nanopore 153

sensors can differentiate in a distinct manner positively and nega- 154

tively charged from neutral amino acids using MD and unsupervised 155

machine learning techniques. We defined coarse grained sequences 156

of proteins which consist of replacing the primary sequence of a pro- 157

tein made of the 20 amino acids to a sequence made of three types of 158

amino acids depending on their charge: A for positive, B for negative 159

and C for neutral amino acids. 160

In the present work, we performed translocation experiments of 161

12 different peptide sequences of amino acids through single-layer 162

MoS2 nanopores using MD (Fig. 1). Sequences were made of one 163

positive (K, Lysine), one negative (E, Glutamic acid), and four neutral 164

amino acids (A, Alanine) which were arranged in various configu- 165

rations. Moreover, each sequence was chemically linked to a short 166

polycationic charge carrier made of four Lysine, which facilitates 167

the threading and capture of the peptide through the pore [37]. The 168

goal of the present work was to evaluate their efficiency to represent 169

binary information based on the ionic current traces monitored dur- 170

ing their passage through the pore. For this purpose, we explored 171

a supervised Machine Learning (ML) approach, i.e. classification 172

approach, to study the influence of various criteria such as the posi- 173

tion in the sequence and spacing between charged amino acids. We 174

used the LightGBM classifier, known for its leaf-wise tree growth 175

strategy minimizes loss, leading to faster convergence and better ac- 176

curacy compared to other boosting algorithms, to identify pairs of 177

peptide sequences potentially relevant for encoding binary data. The 178

main advantage of this numerical approach compared to experiments 179

is to establish the non linear relationship between the amino acid 180

positions, which are known in MD, and the ionic current traces, as 181

measured experimentally. This allows us to eliminate false positives, 182

which appear as current modifications without "true" passage of the 183

protein (in a sense of significant), and to train ML algorithms on the 184

simulated current traces using the concept of coarse-grained sequenc- 185

ing of proteins proposed in a previous work [36]. 186

MATERIALS AND METHODS 187

Molecular Dynamics 188

Weperformed extensive unbiased all-atomMD simulations in explicit 189

solvent to simulate the translocation of 12 different peptide sequences 190

through single-layer MoS2 nanopore of diameter 𝐷 = 1.5 nm, im- 191

mersed in a 1M KCl electrolyte [36]. The simulation box, as repre- 192
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sented in Fig. 1A, is made of around 100,000 atoms in total. MD was193

carried out with the GROMACS software package (version 2018.2 [38]194

in double precision), using AMBER99sb*-ILDN-q force-field [39].195

Force-field parameters for MoS2 are given in details in a previous196

work [36]. During translocation simulations, MoS2 nanoporousmem-197

brane serves as the separation between cis and trans compartments198

(Fig. 1A). The peptide is initially positioned at a vertical distance199

of approximately 2.5 nm above the membrane, in the cis compart-200

ment. Prior to production, systems were equilibrated in the NVT201

(𝑇 = 300 K), first and then in the NPT ensemble (𝑃 = 1 bar) without202

any applied electric field. These equilibration runs lasted each for203

100 ps, allowing the system to relax, first, to the desired temperature,204

and, second, to the desired volume. After equilibration, production205

run starts with random initial velocities and by applying an external206

uniform electric field across the membrane, corresponding to a volt- 207

age of 1 V. The duration of each production run was 400 ns in NVT 208

ensemble, with a time step of 2 fs. In this work, 12 distinct peptide se- 209

quences made of 6 amino acids were studied, each of them connected 210

chemically to a short polycationic charge carrier (4 Lysine, +4), as 211

done in previous works [36], [37], [40]. Each peptide is made of 4 212

Ala (neutral, labeled hereafter A), 1 Lys (positive, labeled hereafter 213

B), and 1 Glu (negative, labeled hereafter C), which are distributed 214

at different positions in the sequence. To reduce the ensemble of 215

sequences made of 4 A, 1 B and 1 C, a constraint of 2 consecutive A 216

in the sequence was used, reducing the ensemble from 30 sequences 217

to 12 sequences, as shown in Fig. 1B. In total, 50 runs of 400 ns were 218

performed for each of the 12 sequences, resulting in a total simulation 219

time of 240 𝜇s. 220

Figure 1. (A) Atomic representation of the solid-state nanopore sensor studied in the present work. The system is made of a MoS2 nanoporous membrane
(𝐷 = 1.5 nm), immersed in 1 M KCl electrolyte, plus a biological peptide. Atoms are shown with spheres: membrane (Mo: blue, S: yellow); amino acids
(Alanine: green, lysine: blue and glutamic acid: red, polycationic charge carrier: gray). Ions and water molecules are represented with transparent spheres (K+:
palegreen, Cl−: lightpink) and balls and sticks (O𝑤 : red and H𝑤 : white), respectively. (B) Design of peptide sequences studied in the present work. Neutral (A),
positively (B) and negatively (C) charged amino acids are shown in green, blue and red, respectively. Polycationic Charge Carrier (PCC), made of 4 Lysines, is
shown in gray. (C) A typical ionic current time series (in nA) as a function of time (in ns) and monitored during molecular dynamics simulations. Red areas
represent blockade events extracted using the two-threshold method and their corresponding current drop ∆𝐼𝐵 and dwell time 𝜏𝐵 are also indicated. Blue lines
represent structural breaks within the time series, extracting 𝑁𝐿 = 18 ionic current levels in this example. Minimum and maximum blockade levels, 𝐿𝑚𝑖𝑛 and
𝐿𝑚𝑎𝑥 respectively, are also indicated, as well as the blockade duration 𝑇𝐵 and the average of the blockade current value 𝐼𝐵 .
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Ionic Current Time Series221

Ionic current traces were extracted from MD production runs by222

tracking 𝑧-coordinates of K+ and Cl− ions over time, and computed223

as follows:224

𝐼(𝑡) = 1
∆𝑡𝐿𝑧

𝑁ions∑

𝑖=1
𝑞𝑖 [𝑧𝑖(𝑡 + ∆𝑡) − 𝑧𝑖(𝑡)] (1)

where∆𝑡 represents the time interval betweenMD snapshots selected225

for calculations (∆𝑡 = 1 ns), 𝐿𝑧 corresponds to the dimension of the226

simulation box in the 𝑧-direction, which aligns with the applied elec-227

tric field direction, 𝑁ions corresponds to the total number of ions in228

the simulation box, 𝑞𝑖 is the charge of ion 𝑖, and 𝑧𝑖(𝑡) corresponds to229

the 𝑧-coordinate of ion 𝑖 at time 𝑡. Ionic current was monitored every230

10 ps during MD simulations, leading to time series length of 39,901231

data points for each production run. Finally, traces were filtered to232

remove high frequency fluctuations by computing the moving mean233

of each trace over 1,001 samples.234

Peptide Induced Blockade Events235

From ionic current traces as shown in Fig. 1C, identification of236

peptide-induced Blockade Events (BEs) was performed using a two-237

threshold method. Initially, a threshold, referred to as 𝑡ℎ1, is utilized238

to detect possible BEs. Threshold 1 was defined as 𝑡ℎ1 = 𝐼0 − 4𝜎0,239

where 𝐼0 is the mean open pore ionic current and 𝜎0 is its standard240

deviation. For single-layer Mo𝑆2 nanopores of diameter 𝐷 = 1.5 nm,241

values of 𝐼0 and 𝜎0 are 4.04 and 0.23 nA, respectively. Using this242

threshold provides the advantage of effectively reducing the open243

pore ionic current fluctuations observed throughout translocation ex-244

periments. After identifying possible BEs based on 𝑡ℎ1, we computed245

the corresponding probability density 𝑃(𝐼𝐵) of the event and a single246

Gaussian distribution was fitted to the data. Finally, if the mean value247

of the Gaussian distribution is below threshold 𝑡ℎ2, which is defined248

as 𝑡ℎ2 = 𝑡ℎ1 − 𝜎0 = 𝐼0 − 5𝜎0, the event was definitely classified as a249

peptide-induced blockade event.250

Moreover, each BE was defined by 2 parameters: i) its duration251

or dwell time 𝜏𝐵 and ii) its depth or current drop ∆𝐼𝐵, which was252

computed as the difference between 𝐼0 and the mean blockade ionic253

current 𝐼𝐵 of the event. From MD, the majority of the 12 peptide254

sequences presents between 60 and 100 BEs throughout 50 runs, ex-255

cept for sequences AABCAA, BAAAAC, AACAAB, AABAAC, and256

BAACAA, which present more than 100 BEs. BAAAAC is the se-257

quence with themost BEs (nearly 200), which represents a significant258

difference (56 BEs) compared to the peptide sequence AABCAAwith259

the second most BEs. Moreover, 2-D maps representing dwell time260

𝜏𝐵 and current drop ∆𝐼𝐵 for each sequence and presented in Sup-261

plementary Materials (Fig. S1) present overall similar distributions262

but with some specific differences among them. In all peptide se-263

quences, ionic current drops ∆𝐼𝐵 did not exceed 3.0 nA, except for264

a single BE observed in sequence CAABAA. Additionally, for each265

peptide sequence where B precedes C, named S𝐵𝐶 sequence group (6266

sequences), more than 97% of BEs exhibit ∆𝐼𝐵<2.0 nA. In fact, the267

number of BEs with drops below 1.5 nA remains quite high for some268

sequences, such as BAAAAC (92%), BAACAA (84%), and AABAAC269

(82%), averaging 79% across all peptide sequences S𝐵𝐶 . In contrast, for270

peptide sequences where C precedes B, named S𝐶𝐵 sequence group271

(6 sequences), BEs with ∆𝐼𝐵<2.0 nA represent 88% of the dataset on272

average. However, those BEs with drops below 1.5 nA represent an273

average of 46%. Regarding dwell time 𝜏𝐵 of BEs, BAACAA peptide274

sequence does not present any BE with a duration 𝜏𝐵 greater than275

100 ns, whereas BCAAAA and BAAAAC sequences present only 4%276

and 10% of such BEs, respectively. Overall, the majority of BEs in277

S𝐵𝐶 group are characterized by 𝜏𝐵<100 ns, averaging 90% across all278

these sequences. Additionally, only three peptide sequences in S𝐶𝐵279

present more than 30% of BEs with 𝜏𝐵>100 ns. It concerns CBAAAA,280

AACBAA, and CAABAA peptide sequences, averaging 26% across281

all the sequences. On the other hand, peptide sequence BCAAAA282

shows the largest number of BEs with 𝜏𝐵<10 ns, representing only 283

8% of the data. 284

Machine Learning Techniques 285

To identify significant changes in ionic current traces to uncover hid- 286

den patterns within their fluctuations, we employed first structural 287

break detection. The identification of each level in ionic current 288

traces for each MD run (Fig. 1C) has been performed and treated as 289

a potential feature for the classification model of peptide sequences. 290

Chow test, a tool for detecting structural breaks and evaluating pa- 291

rameter stability in regression models, was utilized for this purpose. 292

We employed scikit-learn, an open-source Python library for machine 293

learning, to conduct the detection. Basically, Chow test partitions the 294

data into two subsets and examines whether the coefficients of the 295

linear regressions remain consistent across them [41], [42]. Reject- 296

ing the null hypothesis indicates structural changes. The procedure 297

involves fitting a regression equation to the complete set of observa- 298

tions, including both subsets, and calculating the residual sum of 299

squares. Next, separate regression equations are fitted to each subset, 300

and the residual sum of squares for these individual regressions are 301

calculated. The ratio of the difference between the combined residual 302

sum of squares and the sum of the residual sums of squares from the 303

separate regressions to this latter sum follows an F-distribution under 304

the null hypothesis, once adjusted for the corresponding degrees of 305

freedom. This method has variations depending on whether both 306

samples have enough observations to derive a regression equation 307

(i.e., the observations exceed the number of estimated regression pa- 308

rameters) or if one sample has more observations than the estimated 309

parameters while the other sample lacks sufficient observations. 310

This preliminary postprocessing of the data enables precise charac- 311

terization and extraction of essential features necessary for accurate 312

classification of ionic current observations, ultimately facilitating 313

the recognition of sequences useful for efficient information encod- 314

ing. LightGBM was selected as the algorithm for the classification 315

problem of peptide sequences due to its advantageous features and 316

capabilities, its efficiency in handling large datasets, and fast training 317

speed. Based on some experiments conducted on a variety of public 318

datasets, LightGBM has been shown to greatly speed up the training 319

process of conventional Gradient Boosting Decision Trees (GBDT), 320

achieving up to a 20-fold increase in speed while preserving nearly 321

identical accuracy. Additionally, this algorithm incorporates two spe- 322

cific techniques: Gradient-based One-Side Sampling and Exclusive 323

Feature Bundling. These techniques are designed to handle large 324

datasets and a high number of features, respectively. Experimental re- 325

sults in [43] indicate that LightGBM significantly surpasses eXtreme 326

Gradient Boosting (XGBoost) and Stochastic Gradient Boosting (SGB) 327

in both computational speed and memory efficiency. Additionally, its 328

ability to handle imbalanced datasets through class weights and its 329

flexibility in parameter tuning further enhanced its suitability. Over- 330

all, LightGBM provided an efficient solution for the classification 331

problem performed here. 332

In the supervised learning process applied hereafter, the training 333

and testing datasets were divided in a 70 to 30% ratio. Cross-validation 334

was employed to select hyperparameters such as the number of esti- 335

mators, the maximum depth, and the learning rate. Additionally, a 336

grid searchwas performed, specifying themodel, parameter grid, scor- 337

ing metric, and cross-validation strategy. An exhaustive feature se- 338

lection method was implemented, involving a comprehensive search 339

where all possible combinations of features are evaluated. Thismeans 340

conducting a brute-force evaluation of feature subsets, with the op- 341

timal subset being chosen by optimizing a specified performance 342

metric for a given classifier. Given the small number of features ex- 343

tracted from the statistical analysis, computational complexity was 344

not a problem. The evaluation of the performance of the different 345

feature combinations in the classification task was conducted using 346

four metrics: accuracy, which calculates the percentage of correctly 347
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predicted instances out of all predictions; recall, which measures the348

percentage of true positives over the sum of true positives and false349

negatives; precision, which calculates the percentage of true positives350

out of all instances predicted as positive; and F1-score, which repre-351

sents the harmonic mean of precision and recall. These four metrics352

together offer a comprehensive view of the model performances from353

multiple angles, as they allowmeasuring the overall correctness of the354

model, minimizing false positives and false negatives, and maintain-355

ing a balance between the latter two. It therefore allows for informed356

decisions about implementation and adjustment. After a preliminary357

model selection process, the model with the best performance was358

ultimately chosen using the confusion matrix.359

RESULTS360

Analysis of Blockade Events Dataset and Feature Selection for361

Peptide Sequence Classification362

First, a preliminary statistical analysis of ionic current traces dataset363

was conducted in order to extract information that could be poten-364

tially relevant for the identification of peptide sequences as they pass365

through MoS2 nanopores. A total of six features were selected among366

tens of them analyzed, with three of them being extracted from the367

detection of BEs per simulation and the other three extracted from the368

full ionic current trace per simulation. This approach was conceived369

to incorporate more comprehensive information about the dynamics370

of the translocation process observed during MD. It leads to a well371

balanced dataset between the 12 peptide sequences since the same372

number of MD runs of the same duration were performed, leading to373

𝑛 = 50 observations with 6 features per peptide sequence. In details,374

it concerns i) the number of BEs per simulation 𝑁𝐵 (feature F1); ii)375

the number of ionic current levels per simulation 𝑁𝐿 (feature F2); iii)376

the minimum level of ionic current within a simulation 𝐿𝑚𝑖𝑛 (feature377

F3); iv) the maximum level of ionic current within a simulation 𝐿𝑚𝑎𝑥378

(feature F4); v) the blockade duration per simulation 𝑇𝐵 (feature F5),379

which is defined as the ratio between the sum of individual BE dura-380

tion within a simulation and the total simulation time (400 ns) and381

vi) the mean blockade ionic current per simulation 𝐼𝐵 (feature F6),382

which is defined as the average of BE ionic current values. These383

six features are highlighted for a given MD simulation of a given384

sequence in Fig. 1C. In this example, three BEs were detected using385

the two-threshold method in the present simulation (𝑁𝐵=3). It cor-386

responds to 22,956 values of blockade ionic current over the 39,901387

values of the full time series, which leads to a blockade duration of388

57.53 %. The corresponding average of the 22,956 blockade ionic cur-389

rent values is 𝐼𝐵 = 2.13 nA. Furthermore, from the trace presented in390

Fig. 1C, 18 levels of current (𝑁𝐿 = 18) were detected using structural391

break detection. From these 18 levels, the minimum and maximum392

levels of ionic current were 𝐿𝑚𝑖𝑛 = 1.69 nA and 𝐿𝑚𝑎𝑥 = 4.25 nA,393

respectively. As mentioned above, other features were tested such394

as the number of simulation with/without BEs, the mean and the395

standard deviation of blockade ionic current 𝐼𝐵, dwell time 𝜏𝐵 and396

ionic current drop ∆𝐼𝐵 per BE, the highest absolute value of ionic397

current per simulation, the first location of the minimum and maxi-398

mum value of ionic current per simulation, the kurtosis, the median,399

the root mean square, the sample skewness, the standard deviation400

and the variation coefficient of ionic current per simulation, most of401

them were calculated using the Python package tsfresh (Time Series402

FeatuRe Extraction on basis of Scalable Hypothesis tests).403

Fig. 2 shows statistical distributions of the 6 selected features, rep-404

resented as box plots for each peptide sequence. Blockade events405

dataset analysis revealed the presence of two distinct groups of pep-406

tide sequences, each comprised of 6 sequences (Fig. 2A).The defining407

characteristic among peptide sequences within each group lies in the408

position along the sequence of positively charged amino acid B, that is409

driven in the direction of the applied electric field (shown in Fig. 1A)410

and negatively charged amino acid C that is propelled in the opposite411

direction. In the first group of sequences S𝐵𝐶 (in blue), B precedes412

C in the 6 peptide sequences and, in the second group, named S𝐶𝐵 413

(in red), C precedes B in the 6 peptide sequences (Fig. 2A). For most 414

of the features described above, we observed that peptide sequences 415

within each group share very similar properties that clearly help us 416

distinguishing them from the other group (Fig. 2B). First, feature 𝐹1 417

(𝑁𝐵) shows a notable difference in the median of the distribution for 418

peptide sequences AABCAA, BAAAAC, and AABAAC, which are 419

higher than those of the other peptide sequences. In addition, all pep- 420

tide sequences in S𝐶𝐵 group show outliers greater than the maximum 421

non-outlier, while these are present only in two peptide sequences 422

of the S𝐵𝐶 group, i.e., AAAABC and AABAAC. Most of the peptide 423

sequences in S𝐶𝐵 exhibit a distribution with lower dispersion and a 424

lower median than most of peptide sequences in S𝐵𝐶 . It is clearly 425

observed that feature 𝐹3 (𝐿𝑚𝑖𝑛) shows lower medians for peptide se- 426

quences in S𝐶𝐵 (lower than 2.3 nA), as well as greater dispersion than 427

peptide sequences in S𝐵𝐶 , whereas peptide sequences in S𝐵𝐶 present 428

a median greater than 2.4 nA. In the case of feature 𝐹2 (𝑁𝐿), a similar 429

behavior is also observed between the two groups of sequences S𝐵𝐶 430

and S𝐶𝐵, i.e. lower medians (𝑁𝐿 < 22 ionic current levels) and greater 431

dispersion for peptide sequences in S𝐶𝐵, whereas the medians for 432

peptide sequences in S𝐵𝐶 shows 𝑁𝐿 ≥ 22 ionic current levels. For 433

feature𝐹4 (𝐿𝑚𝑎𝑥), probability densities behave similarly for all peptide 434

sequences, with a median around 4.0 nA. This is because 𝐿𝑚𝑎𝑥 , which 435

represents the highest level of ionic current, is at the same level as 436

the open pore ionic current 𝐼0. However, peptide sequence BAAAAC 437

shows a notable dispersion for 𝐿𝑚𝑎𝑥 compared to other sequences. On 438

the other hand, for feature 𝐹5 (𝑇𝐵), distributions of peptide sequences 439

in S𝐶𝐵 generally show greater dispersion than peptide sequences in 440

S𝐵𝐶 , with some exceptions such as AABAAC andAABCAA sequences 441

which are very wide compared to the others sequences in S𝐵𝐶 . Peptide 442

sequence BCAAAA is characterized by a very short median (4 ns) 443

compared to the others, while the sequence with the longest median 444

is AACAAB (54 ns). Sequences in S𝐶𝐵 present, on average, a me- 445

dian of around 21 ns, whereas sequences in S𝐵𝐶 present, on average, 446

a median of around 31 ns. Finally, for feature 𝐹6 (𝐼𝐵), medians of 447

probability densities of all peptide sequences are uniform. However, 448

it shows a lower mean (𝐼𝐵 < 2.5 nA) and a greater dispersion for 449

peptide sequences in S𝐶𝐵 than in peptide sequences in S𝐵𝐶 . BCAAAA 450

peptide sequence presents a singular behavior compared to the other 451

sequences with a large variability and values 𝐼𝐵 < 2.5 nA. 452

Probability densities 𝑃 of the six features for the two groups of pep- 453

tide sequences, S𝐵𝐶 and S𝐶𝐵, were computed by applying the Gaussian 454

Mixture Model (GMM) algorithm combined with the Bayesian Infor- 455

mation Criterion (BIC), as presented in Fig. 2C. It involves a total of 456

300 data points for each feature in each group. First, 𝑃(𝑁𝐵) exhibits 457

two sub-populations for the two groups S𝐵𝐶 and S𝐶𝐵 of peptide se- 458

quences, with similar means for the sub-population with the largest 459

weight (< 𝑁𝐵 >= 1.18 for S𝐶𝐵 and< 𝑁𝐵 >= 1.39 for S𝐵𝐶). The second 460

sub-population shows larger differences, with peptide sequences in 461

S𝐵𝐶 group presenting more events per simulation(S𝐵𝐶 : < 𝑁𝐵 >= 4.14 462

and S𝐶𝐵: < 𝑁𝐵 >= 3.07). Second, probability densities of sensing 463

time 𝑃(𝑇𝐵) exhibit two sub-populations for group S𝐶𝐵 and three for 464

group S𝐵𝐶 . Sub-populations for group S𝐵𝐶 are centered around 5%, 465

30%, and 70%, whereas for group S𝐶𝐵, they are centered around 12% 466

and 55%, making them clearly distinguishable from each other. Third, 467

concerning the mean blockade ionic current, 𝑃(𝐼𝐵) exhibits three sub- 468

populations for peptide sequences in group S𝐵𝐶 and two for sequences 469

in group S𝐶𝐵. Particularly, the main sub-populations for each group 470

are clearly distinguishable from each other which may favor the clas- 471

sification task (S𝐵𝐶 : < 𝐼𝐵 >= 2.70 nA vs. S𝐶𝐵: < 𝐼𝐵 >= 2.32 nA). 472

Fourth, 𝑃(𝑁𝐿) which represents the probability density of the num- 473

ber of current levels per simulation, exhibits two sub-populations 474

for peptide sequences in group S𝐶𝐵, while group S𝐵𝐶 is only char- 475

acterized by one population. Moreover, main sub-populations of 476

each sequence group are also clearly distinct from each other (S𝐵𝐶 : 477

< 𝑁𝐿 >= 24.80 vs. S𝐶𝐵: < 𝑁𝐿 >= 16.63). Similarly, 𝑃(𝐿𝑚𝑖𝑛) for pep- 478
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Figure 2. (A) Groups of peptide sequences S𝐵𝐶 and S𝐶𝐵 . (B) Box plot of the six features extracted from the ionic current dataset as a function of peptide
sequence: the number of BEs (𝑁𝐵), the number of blockade ionic current levels (𝑁𝐿), the minimum and maximum ionic current level (𝐿𝑚𝑖𝑛 and 𝐿𝑚𝑎𝑥), the
total sensing time (𝑇𝐵) and the mean blockade ionic current (𝐼𝐵). (C) Probability densities of the six features for each group of peptide sequences: S𝐵𝐶 (in bluish
colors) and S𝐶𝐵 (in reddish colors).

tide sequences in group S𝐶𝐵 exhibits two sub-populations, whereas479

group S𝐵𝐶 presents only one population. Main sub-populations in480

both groups are well separated from each other, with < 𝐿𝑚𝑖𝑛 >= 2.52481

and 1.83 nA for peptide sequences in S𝐵𝐶 and S𝐶𝐵 groups, respec-482

tively. Finally, 𝑃(𝐿𝑚𝑎𝑥) for both groups exhibit two sub-populations,483

with the main sub-populations being very close to each other (S𝐶𝐵:484

< 𝐿𝑚𝑎𝑥 >= 4.05 nA vs. S𝐵𝐶 : < 𝐿𝑚𝑎𝑥 >= 4.13 nA), which was ex-485

pected as they represent ionic current values corresponding to an486

open pore situation. However, slight differences are observed due to487

a "shadow" effect of the peptide above the pore, as already mentioned488

and described in a previous work [40]. Therefore, this feature is also489

included to evaluate peptide sequence classification performances.490

To conclude, statistical analysis of the dataset and feature selection491

were crucial for revealing the potential of ionic current characteris-492

tics as discriminatory features for the classification task of these two493

peptide sequence groups. The main sub-population for the sensing494

time 𝑇𝐵 in sequences S𝐶𝐵 has a mean of approximately 55%, which495

is significantly larger than the mean for the main sub-population in496

sequences S𝐵𝐶 (28%). This disparitymay contribute to the observation497

that the main sub-population for features 𝐿𝑚𝑖𝑛 and 𝐼𝐵 shows lower498

mean values for peptide sequences in S𝐶𝐵 compared to sequences in499

S𝐵𝐶 , as longer sensing times could lead to a larger drop of ionic current. 500

As illustrated in Fig. S5, the sensing time for motif C, which exhibits 501

the longest duration (over 30%), is larger for peptide sequences in S𝐶𝐵 502

group than in S𝐵𝐶 group. This difference may also explain why the 503

overall sensing time is longer for S𝐶𝐵 compared to S𝐵𝐶 . Additionally, 504

as previously discussed, BEs in sequences S𝐶𝐵 generally exhibit a 505

longer dwell time. 506

Classification of Peptides according to the Position of Charged 507

Amino Acids in their Sequences 508

Once two distinct peptide sequence groups have been determined, 509

their potential as well-distinguishable sequences for binary encoding 510

was evaluated using a classification technique (supervised learning). 511

First, from the six features presented in Fig. 2, a comparison between 512

accuracy scores of models made of different combinations was per- 513

formed. Results are shown in Fig. 3A with red asterisks highlighting 514

the combinations leading to the best accuracy scores. Other metrics 515

as precision, recall and F1-score were also evaluated (see Supplemen- 516

tary Materials, Fig. S2). Model selection process showed that overall 517

the best score is obtained for the combination of features F1,3,6 (𝑁𝐵, 518
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𝐿𝑚𝑖𝑛, 𝐼𝐵) with accuracy: 0.775, precision: 0.766, recall: 0.824 and519

F1-score: 0.780. Among the 63 possible feature combinations (some520

of them are shown in Fig. 3A), 76% of them achieved an accuracy521

larger than 0.7 and the combination of features F3,4,6 (𝐿𝑚𝑖𝑛, 𝐿𝑚𝑎𝑥 , 𝐼𝐵)522

achieves the highest accuracy, with a value of 0.777. The next four523

combinations with the highest accuracy are: F3,6, F1,3,6, F1,3,4,6 and524

F2,3,4,6. Additionally, regarding the precision, 76% of the combinations525

achieve a precision larger than 0.7. The combination of features with526

the highest precision is F3,6 (𝐿𝑚𝑖𝑛, 𝐼𝐵) and F1,3,6 (𝑁𝐵, 𝐿𝑚𝑖𝑛, 𝐼𝐵), with a527

value of 0.766. Regarding the recall, 41% of the 63 possible combi-528

nations exhibit a recall larger than 0.8. Feature combinations F1,5,6529

(𝑁𝐵, 𝑇𝐵, 𝐼𝐵) achieve the highest recall with a value of 0.837. Finally,530

regarding F1-score, 76% of the 63 combinations achieve scores larger531

than 0.7. Feature combination F1,3,6 (𝑁𝐵, 𝐿𝑚𝑖𝑛, 𝐼𝐵) shows the highest532

F1-score, with a value of 0.780. From these results, feature F6 (𝐼𝐵), fol-533

lowed by feature F3 (𝐿𝑚𝑖𝑛), are the most impactful for improving the 534

classification model’s performance, as they appear in all the combina- 535

tions with the best metric scores. It means that the average blockade 536

current and the minimum current level per simulation are crucial to 537

differentiate ionic current traces of both groups of sequences, S𝐵𝐶 and 538

S𝐶𝐵. Then, using F1,3,6 combination (𝑁𝐵, 𝐿𝑚𝑖𝑛 and 𝐼𝐵), we computed 539

the confusion matrix of the classification model which shows an av- 540

erage identification accuracy of 72% (Fig. 3B). In total, the model 541

correctly identifies 65% of peptide sequences belonging to group S𝐶𝐵 542

and 79 % of peptide sequences belonging to group S𝐵𝐶 . Moreover, 543

values of the three evaluated classification metrics, i.e. precision, 544

recall, and F1-score are comprised between 0.65 and 0.85, with con- 545

sistently better performances to classify peptide sequences in group 546

S𝐵𝐶 compared to S𝐶𝐵. However, false negative rate is high for class 547

S𝐶𝐵 (35%), which suggests that the classification model sometimes 548

Figure 3. (A) Accuracy scores of the classification of the two groups of peptide sequences S𝐵𝐶 and S𝐶𝐵 using LightGBM classifier and evaluated for different
combinations of features. Red asterisks indicate combinations of features with the highest accuracy scores. (B) Confusion matrix of the classification for
peptide sequences in S𝐵𝐶 vs. S𝐶𝐵 group using a combination of features 𝐹1,3,6. Precision, recall, and F1-score calculated for both groups S𝐵𝐶 and S𝐶𝐵 are shown
as bar plots. (C) Confusion matrices and precision, recall and F1-score metrics for binary classifications between a peptide sequence in S𝐶𝐵 group versus its
corresponding peptide sequence in S𝐵𝐶 group.
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confuses peptide sequences in S𝐶𝐵 as S𝐵𝐶 . In summary, although the549

classificationmodel developed here shows good overall performances550

and is very promising, particularly for class S𝐵𝐶 , there is room for551

improvement in identifying peptide sequences in group S𝐶𝐵.552

Then, pairwise sequence classificationwas performed to determine553

the design of peptide sequences which offers the best classification554

performances. Therefore, classification was performed between each555

pair of peptide sequences with one belonging to S𝐶𝐵 group and its556

corresponding sequences in S𝐵𝐶 group, resulting in six classification557

tasks being carried out. Results are shown in Fig. 3C. Classification558

tasks of peptide sequences AAAACB vs. AAAABC and AACAAB vs.559

AABAAC show that the best score is achieved with F2 (𝑁𝐿) as the560

key feature for the former, and a combination of F2,3 features (𝑁𝐿 +561

𝐿𝑚𝑖𝑛) for the latter. In addition, classification performances generally562

resemble classification of peptide sequence in S𝐶𝐵 vs. S𝐵𝐶 group, with563

precision, recall, and F1-score metrics around 0.7, although it shows564

lower values for classification of AACAAB vs. AABAAC peptide se-565

quences. The average accuracy score decreases to 67% for AAAACB566

vs. AAAABC and 63% for AACAAB vs. AABAAC, consequently567

increasing the false negative and the false positive rates (see Fig. 3B).568

Based on the analyzed metrics, in both cases the classification shows569

similar performance for both sequences. Furthermore, we observed570

that classification tasks of peptide sequences CAAAAB vs. BAAAAC,571

CBAAAA vs. BCAAAA, and AACBAA vs. AABCAA present ex-572

cellent scores, with average accuracy scores of 97%, 87%, and 78%,573

respectively. Combinations of features chosen for each classification574

task based on the best performance were F1,2,4,5,6 for CAAAAB vs.575

BAAAAC, F1,3,5 for CBAAAA vs. BCAAAA, and F4,6 for AACBAA vs.576

AABCAA. In general, false negative and positive rates are quite low,577

with the highest false negative rate being 29.41% and the highest false578

positive rate being 15%, both for the classification with the lowest579

performances (AACBAA vs. AABCAA). However, a null false posi-580

tive rate and a false negative rate of only 5.88 % were achieved for the581

best classification model among all pairwise sequence comparisons,582

i.e. CAAAAB vs. BAAAAC. Regarding the other metrics, classifi-583

cation of CAAAAB vs. BAAAAC sequences achieved values larger584

than 0.9, classification of CBAAAA vs. BCAAAA sequences achieved585

values larger than 0.8, and classification of AACBAA vs. AABCAA586

sequences achieved values larger than 0.7 (Fig. 3C). Similarly, the587

three models perform better to classify peptide sequences where588

B (positively charged amino acid) precedes C (negatively charged589

amino acid). Lastly, classification of peptide sequences CAABAA vs.590

BAACAA shows the least efficient scores, especially for CAABAA591

sequence, with significant differences observed in the precision and592

recall metrics for both peptide sequences. Features selected for this593

classification task were F1,3,4,6 (𝑁𝐵, 𝐿𝑚𝑖𝑛, 𝐿𝑚𝑎𝑥 and 𝐼𝐵). False nega-594

tive rate is quite high (59%), suggesting that the model frequently595

classifies peptide sequences CAABAA as BAACAA. However, false596

positive rate is extremely low (8%), which means that a very few ionic597

current traces of BAACAA sequence were incorrectly classified. Pep-598

tide sequence CAABAA shows good performance for the precision,599

with a value of approximately 0.9, but poor performance for the recall,600

with a value around 0.4. On the contrary, peptide sequence BAACAA601

shows excellent performance for the recall (around 0.9), but a lower602

precision, around 0.5 (Fig. 3C). This tells us that, although the classi-603

fication model developed here is very effective at correctly detecting604

peptide sequences CAABAA (high precision), it has difficulty identi-605

fying peptide sequences CAABAA when predicting them (low recall).606

On the other hand, the classification model is able to detect most607

peptide sequences BAACAA (high recall), but the precision of these608

predictions is bad.609

To summarize, CAAAAB and BAAAAC peptide sequences exhibit610

by far the best classification performances, achieving an accuracy611

of 0.97, which makes them the best pair of sequences among all612

those studied to represent bits 0 and 1 in binary information encod-613

ing. Therefore, they are the most promising candidate for accurately614

reading digital information encoded in a peptide sequencewith single- 615

bit resolution. This demonstrates the sensitivity of MoS2 nanopore 616

sensors in detecting and differentiating sequences with excellent per- 617

formances, particularly when charged amino acids are separated by 618

four neutral amino acids (the largest separation tested in the present 619

work among all sequences). Overall, all pairwise classification tasks 620

yielded good accuracy scores, except for classification of peptide se- 621

quences CAABAA vs. BAACAA, where there is a marked disparity 622

between performances of both classes (Fig. 3C). 623

Classification of Peptides according to the Spacing between 624

Charged Amino Acids in their Sequences 625

To evaluate information about peptide sequences that are selective 626

in addition to the position of charged amino acids, to distinguish 627

sequences within each S𝐶𝐵 and S𝐵𝐶 groups, two classification ap- 628

proaches were carried out separately based on two different criteria 629

and following the same strategy as described above. First, within 630

each group of peptide sequences S𝐶𝐵 and S𝐵𝐶 , sequences were classi- 631

fied using the information about the spacing between charged amino 632

acids in the sequence. We consider two subgroups: i) sequences for 633

which charged amino acids (B and C) are separated in the sequence 634

by neutral amino acids (A), named S𝑠𝑒𝑝.𝐶𝐵 and comprised of AACAAB, 635

CAABAA and CAAAAB peptide sequences; ii) sequences for which 636

charged amino acids (B and C) are consecutive or linked together in 637

the sequence, named S𝑡𝑜𝑔.𝐶𝐵 and comprised of AACBAA, CBAAAA and 638

AAAACB. The same subgroups of peptide sequences can be done 639

for S𝐵𝐶 group, resulting in two classification problems S
𝑠𝑒𝑝.
𝐶𝐵 vs. S𝑡𝑜𝑔.𝐶𝐵 640

(Fig. 4A) and S𝑠𝑒𝑝.𝐵𝐶 vs. S𝑡𝑜𝑔.𝐵𝐶 (Fig. 4C). After carrying out model selec- 641

tion process for classification of peptide sequences in S𝑠𝑒𝑝𝐶𝐵 vs. S
𝑡𝑜𝑔
𝐶𝐵 , 642

the combination of the features𝐹1,2,4,6 was selected (𝑁𝐵,𝑁𝐿, 𝐿𝑚𝑎𝑥 and 643

𝐼𝐵). It leads an average classification accuracy of 61%, with notable 644

false positive (32%) and false negative(45%) rates. It indicates that 645

the model faces difficulties distinguishing peptide sequences in S𝑡𝑜𝑔.𝐶𝐵 646

vs. S𝑠𝑒𝑝.𝐶𝐵 (Fig. 4A). In addition, classification of peptide sequences 647

in S𝑠𝑒𝑝.𝐶𝐵 class performs better than in S𝑡𝑜𝑔.𝐶𝐵 class in all evaluated met- 648

rics (precision, recall, and F1-score), with values larger than 0.5 in 649

all metrics for S𝑡𝑜𝑔.𝐶𝐵 class and larger than 0.6 in all metrics for S𝑠𝑒𝑝.𝐶𝐵 650

class. Classification of peptide sequences in S𝑠𝑒𝑝𝐵𝐶 vs. S
𝑡𝑜𝑔
𝐵𝐶 showed better 651

performances compared to S𝐶𝐵 group, with a feature combination 652

comprised of 𝐹3,4,5,6 (𝐿𝑚𝑖𝑛, 𝐿𝑚𝑎𝑥, 𝑇𝐵 and 𝐼𝐵). The average classifica- 653

tion accuracy was 70% and false positive and false negative rates were 654

of 32% and 28%, respectively. For both sequences, precision, recall, 655

and F1-score metrics show similar values around 0.7. These results 656

indicate that classification models developed here present a good 657

performance in predicting peptide sequences in the two subgroups 658

of peptide sequences for which charged amino acids are separated or 659

together in the sequence. However, this criterion appears to be less 660

crucial than the relative position of charged amino acids within the 661

sequence. 662

The second criterion tested here is based on the number of con- 663

secutive neutral amino acids (A) in the peptide sequence. Therefore, 664

we separated peptide sequences into two subgroups: i) sequences 665

with a maximum of two consecutive neutral amino acids, named S2𝐴𝐶𝐵 666

and S2𝐴𝐵𝐶 ; ii) sequences with a maximum of four consecutive neutral 667

amino acids, named S4𝐴𝐶𝐵 and S
4𝐴
𝐵𝐶 (Fig. 4B and D). The best combina- 668

tion of features to classify peptide sequences in S4𝐴𝐶𝐵 vs. S
2𝐴
𝐶𝐵 subgroups 669

was 𝐹2,3,4,5,6 (𝑁𝐿, 𝐿𝑚𝑖𝑛, 𝐿𝑚𝑎𝑥, 𝑇𝐵 and 𝐼𝐵). Results show that peptide 670

sequences in S4𝐴𝐶𝐵 are classified with precision of approximately 65 %, 671

which indicates that the model has acceptable reliability for this sub- 672

group of sequences. Nevertheless, peptide sequences in S2𝐴𝐶𝐵 were 673

classified with a much lower precision around 40 %. Recall score 674

for peptide sequences in S4𝐴𝐶𝐵 subgroup is very low (around 0.3), sug- 675

gesting that the classifier struggles to correctly identify sequences in 676

this subgroup, whereas recall scores for peptide sequences in S2𝐴𝐶𝐵 is 677

significantly higher (around 80%, Fig. 4B). Additionally, average clas- 678

sification accuracy is 53% and false positive and false negative rates 679
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Figure 4. (A) Confusion matrices and precision, recall and F1-score metrics for binary classifications between peptide sequences in S𝑡𝑜𝑔.𝐶𝐵 vs. S𝑠𝑒𝑝.𝐶𝐵 group. (B)
Confusion matrices and precision, recall and F1-score metrics for binary classifications between peptide sequences in S4𝐴𝐶𝐵 vs. S

2𝐴
𝐶𝐵 group. (C) Confusion matrices

and precision, recall and F1-score metrics for binary classifications between peptide sequences in S𝑡𝑜𝑔.𝐵𝐶 vs. S𝑠𝑒𝑝.𝐵𝐶 group. (D) Confusion matrices and precision,
recall and F1-score metrics for binary classifications between peptide sequences in S4𝐴𝐵𝐶 vs. S

2𝐴
𝐵𝐶 group.

are of 25% and 69%, respectively. It means that there is a significant680

percentage of peptide sequences in S2𝐴𝐶𝐵 that are not correctly classified681

and, more importantly, a large majority of peptide sequences in S4𝐴𝐶𝐵682

are not correctly classified. Therefore, the classification model in this683

case is quite effective for peptide sequences in S2𝐴𝐶𝐵 subgroup but not684

for classifying peptide sequences in S4𝐴𝐶𝐵 subgroup. It leads to a very685

low model accuracy score (0.48). Overall, performances of the differ-686

ent classification models tested here show room for improvement,687

especially in terms of balance between S2𝐴𝐶𝐵 and S
4𝐴
𝐶𝐵 classes as the688

results indicate a significant imbalance in the performances of both689

classes. Therefore, optimization and tuning strategies, such as feature690

engineering, could be consideredmoving forward. On the other hand,691

the best combination of features to classify peptide sequences in S4𝐴𝐵𝐶692

vs. S2𝐴𝐵𝐶 subgroups was 𝐹1 (𝑁𝐵) with an average classification accuracy693

of 69%. False positive and false negative rates were 25% and 36%694

respectively, suggesting that a significant percentage of traces in both695

classes are not correctly classified. The overall analysis indicates that696

peptide sequences S2𝐴𝐵𝐶 are much better classified across all metrics697

(precision, recall, and F1-score) compared to peptide sequences in698

S4𝐴𝐵𝐶 , which means that the model performs better for S
2𝐴
𝐵𝐶 than for S

4𝐴
𝐵𝐶699

(Fig. 4D).700

To conclude, based on the evaluation of classification scores and701

by taking into account the spacing between charged amino acids, we702

demonstrate that classifying peptide sequences in S𝐵𝐶 group based on703

the proximity or separation between the two charged amino acids in704

the sequence yields to better scores than classifying peptide sequences705

in S𝐶𝐵 group using the same criterion, with an accuracy of 0.70 and706

0.62 respectively (Fig. 4A and C). Similarly, based on the number of707

consecutive neutral amino acids in peptide sequences, classifications708

scores show better performances to classify peptide sequences in S𝐵𝐶709

group. This study indicates that when comparing both groups of pep- 710

tide sequences, it is more likely to distinguish sequences in S𝐵𝐶 group 711

according to both criteria of charged and neutral residue positions 712

and without significant differences between the two criteria. On the 713

opposite, peptide sequences in S𝐶𝐵 group are more sensitive to one 714

criterion over the second, especially for sequences in S4𝐴𝐶𝐵 subgroup. 715

According to our data, it would be more effective to use S𝐵𝐶 type se- 716

quences to identify 0 or 1 bits, as the results show very good scores for 717

distinguishing them effectively using single-layer MoS2 nanopores. 718

Classification of Peptide Sequence Motifs 719

Design of long peptide sequences capable of encoding binary digits 720

continuously can be advanced through a method in which peptides 721

are composed of specific amino acids to represent digital bits. Ini- 722

tially, raw data are encoded as long strings of 0s and 1s. These strings 723

are then translated into sequences of amino acids, or peptides, ac- 724

cording to predefined assignments. To retrieve the data, peptides are 725

sequenced and the resulting sequences are converted back into binary 726

digits, which are decoded to reproduce the original data. To enhance 727

this approach, we explored the impact of amino acid motifs of differ- 728

ent length on ionic current traces recorded during MD. Unlike the 729

previous sections where the role of the order of each amino acid in the 730

sequence was studied, each sequence having the same composition, 731

this section focuses solely on the amino acid composition of sequence 732

motifs, regardless of the order in the sequence. 733

Fluctuations observed in ionic current traces during peptide 734

translocation through SSN necessitate a thorough understanding 735

of the non-linear relationship between the amino acid presence in- 736

side the pore and the monitored ionic current. Molecular Dynamics 737

is essential to establish this relationship since it precisely tracks Carte- 738
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sian coordinates of all the atoms of the system and especially of the739

nanopore and of the peptide at each time step of simulation. To de-740

termine which amino acids of the peptide are inside the nanopore741

at a given time, a geometric criterion based on the volume of the742

amino acid inside the pore was employed. Each amino acid along the743

sequence was modelled as a sphere, centered at the center of mass744

of the amino acid and of radius 𝑅𝑎.𝑎., which is proportional to the745

volume of the amino acid. Then, if more than 30% of the volume746

of the amino acid is inside the pore at a given time, the amino acid747

is considered to be inside. This criterion enabled the extraction of748

information regarding the presence of a single or multiple amino749

acids simultaneously, called sequence motif, in single-layer MoS2750

nanopores. Moreover, we assigned ionic current values 𝐼𝑐(𝑡) to the751

presence of each sequence motif inside the pore at a given time 𝑡,752

based on the geometric criterion described above. In total, 19 differ-753

ent sequence motifs were identified and correspond to motifs made754

of: i) a single amino acid (A, B or C), ii) a pair of amino acids (AA,755

AB, AC or BC), iii) a triplet of amino acids (AAA, AAB, AAC or ABC),756

iv) a quartet of amino acids (AAAA, AAAB, AAAC or AACB), v) a757

quintet of amino acids (AAAAB, AAAAC or AAACB), and vi) a sextet758

of amino acids (AAAACB). Regarding the frequency of appearance759

of the different motifs in MD trajectories, single amino acid motifs760

were detected in all twelve sequences. As the number of amino acids761

per motif increases, the number of sequences where these motifs762

are present decreases. The most probable motifs extracted from the763

twelve peptide sequences were C, A, AA, and AC, with a frequency of764

35%, 19%, 18%, and 13% of the total presence of all motifs, respectively765

(see Supplementary Material, Fig. S5). Fig. 5A depicts the distribu-766

tion of ionic current associated with single amino acid motifs, which767

shows well-distinguished peaks despite overlapping, particularly for768

negatively charged amino acid C.769

We performed multiclass classification tasks of peptide sequence770

motifs using the same strategy as before, but this time using ionic771

current values (see the probability densities of ionic current shown772

in Fig. 5A) associated with each motif as the only input variable. The773

aim here was to examine the influence of amino acid motifs of differ-774

ent lengths on ionic current traces recorded during MD at a shorter775

sequence length scale. This insight will be valuable for the future776

design of longer peptide sequences capable of encoding 0 and 1 bits777

within the same sequence which makes it crucial to select suitable778

amino acids to comprise the peptides. First, concerning motifs made779

of a single amino acid, we found that all three motifs A, B and C can780

be classified with an accuracy larger than 0.6. However, positively781

charged amino acid B shows issues with precision score. Further-782

more, accuracy score of classification tasks degrades when identifying783

peptide sequence motifs consisting of two amino acids, as shown in784

Fig. 5B, with the motif AA being presenting the best score. This motif785

is, among all motifs made of two amino acids, characterized by the786

highest frequency during MD simulations (see Supplementary Mate-787

rials, Fig. S5). Same trends persist for peptide sequence motifs made788

of three amino acids with accuracy scores not exceeding 0.56, which789

is also the accuracy score for peptide sequence motif AAB, the third790

most frequent motif made of two amino acids and identified fromMD.791

Finally, by looking at all three metric scores shown in Fig. 5B (middle792

panel and right panel), only peptide sequence motif AA achieved793

good scores and peptide sequence motif AAC shows high precision794

score. The other motifs are characterized by low classification scores.795

However, by studying pairwise motif binary classification (Fig. 5C, D796

and E), accuracy, precision, recall and F1-scores increase significantly.797

For instance, Fig. 5C shows the different binary classifications per-798

formed between motifs made of a single amino acid. Classification799

between charged amino acids B vs. C shows the best classification800

scores among all three binary classifications, with an average accu-801

racy score of 87%. In addition, precision, recall, and F1-score are802

quite large for negatively charged amino acid. However, positively803

charged amino acid B shows precision limitations, which involves804

a low F1-score. This is due to imbalance dataset between B and C 805

classes (see Supplementary Materials, Table S3). On the other hand, 806

the comparison between neutral amino acid A and negatively charged 807

amino acid C presents a lower average classification score, with an 808

accuracy of 75%. However, both amino acids present more balanced 809

precision, recall, and F1-scores compared to the other two binary 810

classifications. Finally, the comparison between neutral amino acid 811

A and positively charged amino acid B shows an average classification 812

accuracy of 72%, with excellent precision, recall, and F1-score for 813

neutral amino acid A but low scores for positively charged amino 814

acid B, especially in precision and F1-score. 815

For longer motifs made of two amino acids (Fig. 5D), the best aver- 816

age classification accuracy scores are obtained for AA vs. AB (84%), 817

AB vs. AC (79%), and AA vs. BC (78%), with significant potential 818

for designing longer peptide sequences capable of encoding binary 819

digits. For these longer motifs, the precision is quite low for AA and 820

AC due to imbalance dataset between the classes (see Supplementary 821

Materials, Table S4). Classification of AC vs. BC peptide sequence 822

motifs presents an average accuracy of 76%, with good recall and F1- 823

scores for bothmotifs. It shows low precision for AAmotif once again 824

due to imbalanced dataset between the two classes. Classifications of 825

peptide sequencemotifs AB vs. BC and AA vs. AC show low accuracy 826

for classes AC (48%) and AB (53%), despite dataset being relatively 827

well-balanced between the classes and without significant overlap 828

between ionic current distributions of both motifs. Last but not least, 829

for peptide sequencemotifs made of three amino acids (Fig. 5E), most 830

of classification tasks trained and tested here lead to low accuracy 831

scores for one of the classes. This may be due to a larger overlap 832

between ionic current distributions of motifs (Fig. 5A, right panel) or 833

imbalance in the dataset between the corresponding classes. Same 834

observations were made for precision, recall, and F1-score metrics, 835

for which there is a significant difference between the two classes. 836

These results clearly indicate that it is much more difficulty for MoS2 837

nanopores to detect sequence motifs made of three amino acids due 838

to its sub-nm thickness and therefore representing binary data in 839

peptide sequences using motifs made of three amino acids is not 840

appropriate for 2D SSN. 841

CONCLUDING DISCUSSION 842

In this study, we performed MD simulations of the translocation of 843

twelve different peptide sequences with the same composition (1 844

positively charged, 1 negatively charged and 4 neutral amino acids) 845

through single-layer MoS2 nanopores. By changing the configuration 846

of the sequence, i.e. the position and spacing between charged amino 847

acids, the goal was to explore the feasibility of differentiating between 848

the twelve peptide sequences in order to design peptide sequences 849

for binary encoding applications. From statistical dataset analysis 850

and classification tasks using LightGBM classifier, we identified six 851

promising features in ionic current time series recorded during MD, 852

i.e. the number of BEs per simulation 𝑁𝐵 (F1), the number of ionic 853

current levels per simulation 𝑁𝐿 (F2), the minimum level of ionic 854

current within a simulation 𝐿𝑚𝑖𝑛 (F3), the maximum level of ionic 855

current within a simulation 𝐿𝑚𝑎𝑥 (F4), the blockade duration per sim- 856

ulation 𝑇𝐵 (F5) and the mean blockade ionic current per simulation 857

𝐼𝐵 (F6). The corresponding feature subsets were further evaluated 858

using four usual evaluation metrics for classifiers, i.e. accuracy, pre- 859

cision, recall and F1-score. First, our findings revealed the presence 860

of two distinct groups of six sequences, determined by the relative 861

position of the positively charged amino acid (B) compared to the neg- 862

atively charged amino acid (C). This is explained by the fact that the 863

direction of the electric field breaks the symmetry of the device with 864

respect to the sign of charge transport. These groups of sequences 865

were named S𝐶𝐵 and S𝐵𝐶 peptide sequence groups. Furthermore, 866

as already shown in a previous work [36], this study highlights the 867

significance of charge distribution along the peptide sequence on 868

the discriminatory capacity for peptide sequencing through MoS2 869
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Figure 5. (A) Probability densities of ionic current 𝑃(𝐼𝑐) for peptide sequence motifs made of one (left panel), two (middle panel), or three amino acids
(right panel), identified and extracted from MD trajectories. (B) Confusion matrices and precision, recall and F1-score metrics for tertiary and quaternary
classifications between peptide sequence motifs made of one (left panel), two (middle panel) and three (right panel) amino acids. (C) Confusion matrices and
precision, recall and F1-score metrics for binary classifications between peptide sequence motifs made of one amino acid (A, B, C). (D) Confusion matrices and
precision, recall and F1-score metrics for binary classifications between peptide sequence motifs made of two amino acids (AA, AB, AC, BC). (E) Confusion
matrices and precision, recall and F1-score metrics for binary classifications between peptide sequence motifs made of three amino acids (AAA, AAB, AAC,
ABC).
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nanopores.870

Furthermore, we observed a strong correlation between discrimi-871

nation accuracy and the separation in the sequence between charged872

amino acids, whether they are i) positioned apart from each other873

in the sequence; ii) adjacent to each other; or iii) depending on the874

number of adjacent neutral amino acids between them. This sug-875

gests a potential underlying mechanism influencing the detection876

capability of MoS2 nanopore sensors for peptide sequencing. When877

classifying peptide sequences belonging to S𝐶𝐵 group against their878

corresponding peptide sequences in S𝐵𝐶 group (pairwise comparison),879

large classification accuracy scores were achieved. This is particularly880

true when charged amino acids are in the first position, whether the881

two charges are together such as CBAAAA vs. BCAAAA, or sepa-882

rated by four neutral charges such as CAAAAB vs. BAAAAC, as well883

as in the case of AACBAA vs. AABCAA. These findings highlight884

the critical roles of i) charged amino acid positions in the design of885

peptide sequences for binary data storage and ii) MoS2 SSN ability886

to recognize the permutation of these charged amino acids within887

the sequence. Classification within each peptide sequence group888

based on the separation between charged amino acids reveals that889

S𝐶𝐵 group presents the most challenging classification task due to its890

average accuracy score, while peptide sequences in S𝐵𝐶 group are well891

classified, whether B and C amino acids are consecutive or separated892

by neutral amino acids in the sequence. This can be explained by the893

fact that, due to the direction of the electric field, forces on C and B act894

in opposite directions. Additionally, B is the amino acid that forms895

the PCC, introducing another source of asymmetry in the system,896

which influences both the applied force and the conformation of the897

peptide. Similarly, when considering the criterion of the length of898

separation by neutral amino acids, peptide sequences in S4𝐴𝐶𝐵 group ex-899

hibit poor accuracy score. These findings indicate that classification900

of peptide sequences in S𝐵𝐶 group generally outperforms classifica-901

tion of peptide sequences in S𝐶𝐵 group. However, the criterion of902

separation between charged amino acids enhances precision within903

the classification of peptide sequences in S𝐶𝐵 group. One of the most904

significant results of the present work is related to the importance905

of certain features extracted from ionic current traces in the classi-906

fication of peptide sequences, primarily features 𝐹3, i.e., 𝐿𝑚𝑖𝑛, and907

𝐹6, i.e., 𝐼𝐵. These characteristics of peptide induced blockade events908

played a crucial role in the classifier that were ultimately selected,909

demonstrating that these features capture the dynamics ofblockade910

events in a single ionic current value through MD simulations.911

The precise information provided by Molecular Dynamics is the912

exact position of the peptide and its amino acids as they translocate913

through the pore at any given time. It allows us to analyze in details914

peptide sequence translocations, focusing on the presence of amino915

acids inside the pore in order to correlate coordinates information916

with recorded ionic current. Therefore, we quantified the most fre-917

quent amino acid patterns within the pore, enabling more extensive918

extraction of ionic current data for further analysis. Peptide sequence919

motifs that were predominantly identified in the twelve sequences920

are made of one, two or three amino acids, for a total of eleven dif-921

ferent motifs, namely A, B, C, AA, AB, AC, BC, AAA, AAB, AAC,922

ABC. Classification based on the length of these peptide sequence923

motifs showed that short motifs made of one amino acid in length924

exhibit much more distinct characteristics, which allow for better925

classification scores, whereas longer motifs may induce an increase of926

complexity or variability for such 2-D nanopores, leading to reduced927

classification performances. However, binary classification of peptide928

sequence motifs allowed us to determine which pairs of motifs could929

be differentiated. For motifs made of one amino acid, classification930

task shows excellent accuracy, particularly among charged amino931

acids, demonstrating a clear distinction between positively and nega-932

tively charged motifs. For motifs made of two or three amino acids,933

performances range from moderate to excellent, with some motifs934

of two-amino-acid length standing out, such as AA vs. BC, AA vs.935

AB, and AB vs. AC. Selection of pairs of shorter peptide sequence 936

motifs that can be differentiated using 2-D SSN would enable in the 937

future the design of longer sequences representing ’0’ and ’1’ bits . 938

Our results suggest that sequence motifs made of one or two amino 939

acids show great potential, particularly by comparison with motifs 940

made of three amino acids. Sequence pairs (AA, AB) and (AB, AC) 941

are among the best candidates for binary representations in longer 942

peptide sequences as they show the best results in the classification 943

tasks. Similarly, among the three binary classifications ofmotifsmade 944

of a single amino acid, sequence pairs (C, B) and (A, C) emerged as 945

promising candidates. 946

Finally, results presented here propose various approaches for de- 947

signing peptides that can be differentiated from each other, potentially 948

serving as building blocks for data storage in biological molecules. 949

Different criteria concerning the position of charged and neutral 950

amino acids in the sequence as well as the spacing between charged 951

amino acids could be used to design peptides that store 0 and 1 bits, 952

contributing to the goal of synthesizing biological peptides made 953

of amino acids for binary encoding applications. Exploring other 954

structural features or modifying peptide sequences based on these 955

findings may further enhance their potential use in molecular data 956

storage applications since choosing classes of biological molecules 957

that offer prolonged stability, with no energy required for storage, is 958

one long-term objective of this area of research. 959
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