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Abstract

Fitness landscape analysis is used to understand search spaces of combi-
natorial problems that can hardly be solved exactly, such as the job shop
scheduling problem. We analyze the influence of the solution encodings and
the neighborhood operators on usual metrics for landscape analysis, and try
to correlate the results to the performance of a local search method such as
tabu search using these encodings and operators for a wide range of instances
of the job shop scheduling problem.
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1. Introduction

Metaheuristics are used when exact methods are limited by the size of the
problem and cannot find a solution in a reasonable amount of time. In this
case, the choice of the metaheuristic algorithm and its features can improve
the discovery of good solutions in the search space, especially the solution
encoding and its neighborhood operator in a local search metaheuristic. Fit-
ness landscape analysis aims at understanding the search spaces through
various properties and their related metrics. The goal is to explain why a
metaheuristic performs well (or poorly), hopefully before computing a solu-
tion with the chosen metaheuristic.

The job shop scheduling problem (JSP) is a good candidate for fitness
landscape analysis as it is a well known combinatorial problem that is hard to
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solve, even for small instances. Metaheuristics that are used to solve the job
shop scheduling problem are generally based on the choice of a solution en-
coding and its related neighborhood operator to navigate through the search
space. The goal of this paper is to be able to make recommendations of en-
codings and their neighborhood operators that ensure good performance for
a given metaheuristic, hopefully based on the results given by the landscape
analysis.

Through fitness landscape analysis, we have computed different metrics
for a set of well-known encodings and neighborhood operators. Then, we
compared these results to the performance of a tabu search using these en-
codings and neighborhood operators. The experiments have been made on
a very wide range of instances of the problem from the literature. We tried
to correlate the landscape analysis with the results of the metaheuristic in
order to see if the analysis can be transformed into a direct recommendation.

In section 2, we give an overview of the analysis of encodings and neigh-
borhood operators for the JSP in the literature, in particular the cases of
fitness landscape analysis. In section 3, we give a formal definition of the job
shop scheduling problem and we describe the different encodings and neigh-
borhoods, as well as a generic tabu search algorithm and the tested instances.
In section 4, we present and analyze the results of our experiments.

2. Related works

In this section, we first analyze some previous works about encodings or
neighborhood operators comparisons. Then we look at related works about
fitness landscape analysis for the job shop scheduling problem.

Cheng et al. (1996) made a list of nine different encodings used in ge-
netic algorithms solving the JSP. Several properties were studied such as the
complexity of the decoding process or the memory requirements. Ponnam-
balam et al. (2001) extended this study on four of the encodings comparing
the minimum makespan. The job permutation encoding (later called job)
provided the best results. Abdelmaguid (2010) also extended this study on
six of the encodings comparing the average optimality gap. The encoding
based on machines had the minimum gaps. Finally Jorapur et al. (2014), on
the same set of encodings, stated that a second encoding based on jobs had
the best performance. These contradictory conclusions can be explained by
the instances that were used, respectively 20 square instances, 40 square and
rectangular instances and 68 square and rectangular instances. Moreover,
in each case, the choice of the operators for selection, crossover and muta-
tion used with each encoding was absent from the protocol descriptions. In

2



Şahman & Korkmaz (2022), a comparison of three encoding schemes was
carried out for the first time with a custom metaheuristic to solve JSP. The
best results in terms of makespan value were obtained by the Smallest Posi-
tion Value (SPV) encoding. Overall, these studies appear to have divergent
results due to the various experimental conditions (instances or associations
with operators).

Besides JSP, comparisons of encodings have been done for other schedul-
ing problems such as flow shop (Fernandez-Viagas et al. (2019)), open shop
(Tsujimura et al. (1997)), or unrelated machines (Durasević & Jakobović
(2016); Vlašic et al. (2020)). Like previous works, they concentrate on both
the quality of the produced schedules and the properties of the encodings.

Regarding neighborhood operators, most papers in the literature use ei-
ther a swap operator (later called swp) or a variant of the critical adjacent
swap operator introduced by van Laarhoven et al. (1992) (later called cas)
without questioning their relevance. Some comparative studies exist to eval-
uate the performance of neighborhood operators. For solving a variant of the
JSP, Mastrolilli & Gambardella (2000) compare two operators based on the
insertion of operation on the critical path using a graph for the representa-
tion of the solution. Kuhpfahl & Bierwirth (2016) used a disjunctive graph
to compare twelve operators which are combinations and variants of critical
swap and insertion operators. No dominant operator has been identified. In
both cases, the operators are tested on a single encoding.

We see that few works focus on the impact of encodings and neighbor-
hood operators on the performance of metaheuristics for solving the job shop
problem, in particular their possible combinations. Moreover, there is room
for improvement in the experimental conditions (especially number and di-
versity of instances). We try to address these shortcomings in the following
sections. Some other works focus on fitness landscape analysis for the JSP
in order to better understand the performance of metaheuristics.

Landscape differences between some hard and easy JSP benchmark in-
stances have been investigated by Mattfeld et al. (1999) using fitness dis-
tances, distributions in terms of entropy, smoothness and correlation length.
The landscapes have been generated using local search solving methods.
They concluded that landscape structure implies, on one hand, that smooth-
ness is necessary for neighborhood operators to work properly. Neighborhood
search is more favorable for hard JSP instances than adaptive search even
though genuine neighborhood search is partially hindered by plane surfaces
of landscapes. Bierwirth et al. (2004) analyzed the landscape generated by
the Fisher and Thompson 10×10 JSP instances (Fisher & Thompson (1963))
using a disjunctive graph representation and adjacent-swap neighborhood.
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They showed that the connectivity of solutions is variable along the space
and this makes the landscape irregular. So, random walks on such landscape
will be biased. However they affirm that, in JSP, high-quality solutions gen-
erally possess high degrees of connectivity. So they conjecture that such
irregularity should aid random walks and stochastic local search algorithms
for the JSP, guiding search toward regions of the fitness landscape containing
high-quality solutions. In Streeter & Smith (2006), the impact of the ratio of
jobs to machines on the landscape of random instances for the JSP has been
studied. It has been shown, among other things, that for low ratio values,
low makespan schedules are clustered in a small region of the search space
and these schedules possess many common attributes. This is not the case
for high ratio values.

3. Problem description, search space setups and metrics

3.1. Problem Description
The job shop scheduling problem consists in scheduling n jobs (Ji)1≤i≤n

on m machines (Mk)1≤k≤m. Each job Ji has Ni operations (Oij)1≤j≤Ni that

must be scheduled in that order. N =
n∑

i=1
Ni is the total number of oper-

ations. Each operation Oij has a dedicated machine µij and a processing
time pij . A machine can execute at most one operation at a time, and op-
erations cannot be preempted. The goal is to minimize Cmax, the maximum
completion time of all the jobs, also called makespan. Using the three field
notation introduced by Graham et al. (1979), our problem is J || Cmax (J
denoting job shop and the empty middle denoting no additional constraint).

3.2. Encodings
In this section, we describe four encodings: job, ope, mch and tim, as

they are suitable and the most often used for a job shop scheduling problem.
The first three encodings are permutation encodings. For these encodings,
the schedule is computed greedily as follows: for each operation in the order
given by the encoding, the starting date is the minimum between the end
date of the last operation on the considered machine and the end date of the
previous operation of the same job. If the solution is feasible, this procedure
ensures a semi-active schedule.

job is a job list encoding introduced by Bierwirth (1995). A solution is
an ordered list of N job numbers, in which each job Ji appears Ni times.
This encoding covers the space of all possible active schedules. Two different
solutions can lead to the same schedule. All the solutions are feasible. ope
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is an operation list encoding. A solution is an ordered list of N operations.
Each operation appears exactly once in the list so the list is a permutation
of all the operations. A solution may be infeasible if an operation is before
one of its predecessors in the list. mch is a machine list encoding used by
van Laarhoven et al. (1992) for the same problem. A solution is a list of m
ordered lists of operations that are assigned to each machine. The size of
the lists varies according to the number of operations for each machine. A
solution may be infeasible when two operations from two different jobs are
interlocked on two different machines while they are waiting for a predecessor
that should be processed later in the other list.

tim is a original time list encoding that, to our knowledge, has never been
proposed. A solution is an ordered list of N times. Each time corresponds
to an operation and represents the minimum delay between the start of the
operation and the end of the previous operation of the same job (or the start
of the schedule for the first operation). As the delay is a minimum, there is
always a valid schedule that satisfies the delay constraints in the encoding.
But the schedule may not be semi-active, so we compute an equivalent semi-
active schedule. Contrary to the other encodings, tim is not a permutation
encoding.

3.3. Neighborhood
In this section, we describe the different neighborhood operators used in

conjunction with the previous encodings. Not all operators apply to each
encoding. Most of these operators are commonly found in the literature for
solving job shop problems with metaheuristics.

swp is a swap operator, it exchanges two randomly chosen elements in
a solution. This operator can be applied to job (and the result should be
different from the original solution), ope and mch. In the case of mch, the
operator is applied to one randomly chosen operation list. ins is an insertion
operator, it removes a randomly chosen element from a solution and inserts
it at a randomly chosen different index. The operator can be applied to job,
ope and mch (with the same adaptation as before). rev is a reverse operator,
it randomly chooses two different indices in a solution and reverses all the
elements between those two indices. The operator is appropriate for job,
ope and mch (with the same adaptation as before). adj is an adjacent swap
operator, it exchanges two randomly chosen adjacent elements in a solution.
It is a special case of the three previous operators. This operator is suitable
for job, ope and mch (with the same adaptation as before). These first four
neighborhood operators apply to any permutation encodings.
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cas is a critical adjacent swap operator introduced by van Laarhoven
et al. (1992). This operator exchanges two adjacent operations in a critical
block, i.e. two adjacent operations that are on a same machine and on a
critical path. This operator ensures that if a current solution is feasible,
then its neighbors are also feasible. This operator is applied to ope and to
mch, and not job as it does not reference any operation explicitly.

tim is a time change operator, it is created specifically for the tim encod-
ing. A subset of the elements is modified (15% in our case) as follows: an
element whose value t is zero is modified with a new value chosen randomly
with a negative binomial distribution with parameters r = 4 × max(1, t),
p = 0.8. If t is not zero, this distribution ensures an average value equal to t
but a median value less than the average: the value of the elements tends to
decrease (which is expected to obtain a better schedule) but sometimes it in-
creases a lot (to reach very different schedules). This neighborhood operator
cannot be applied to a permutation encoding.

3.4. Properties and Metrics
In fitness landscape analysis, properties and their associated metrics are

used to describe the landscape in order to better understand the structure
of the search space. The following ones are considered in our study.

Neutrality gives an indication on neighbors that have the same fitness,
called neutral neighbors (Tari et al. (2021)). A neutral landscape is char-
acterized by a significant proportion of neutral neighbors and implies the
presence of plateaus and ridges in the landscape. The metric that is used
traditionally to measure neutrality is the neutrality rate. It is the average
proportion of neutral neighbors in the landscape. As the landscape is as-
sumed to be statistically isotropic, it can be measured with a random walk
in the landscape.

Ruggedness measures the distribution of local optima and the size of
their attraction basins. A rough landscape has neighbors with very differ-
ent fitness values whereas a smooth landscape has neighbors with almost
the same values. A common metric to measure ruggedness is the correlation
length (technique 2 in Malan & Engelbrecht (2013)) that is the distance τ be-
yond which the majority of solutions becomes uncorrelated. τ is derived from
the auto-correlation function ρ(n) which measures the correlation between a
solution and the n-th subsequent solution in a random walk: τ = − 1

ln |ρ(1)| .
A high value of τ indicates a smooth landscape.

Evolvability is the capacity to evolve in the landscape toward better
fitness. It is also called searchability. A metaheuristic may take advantage
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Figure 1: Position types (Hoos & Stützle (2005)): IPLAT (interior plateau), LEDGE (local
edge), LMAX (local maximum), LMIN (local minimum), SLMAX (strictly local maximum),
SLMIN (strictly local minimum), SLOPE (slope). For example, LMIN point only has neighbors
with the same fitness or higher fitness.

of a landscape with high evolvability to get better solutions faster. Evolv-
ability can be measured with accumulated escape probability (technique 22 in
Malan & Engelbrecht (2013)). For each solution of a representative set, the
proportion of neighbors with improved fitness in the landscape is computed.
The accumulated escape probability is the average value of all these values.

Position type distribution is a measure that classifies a solution ac-
cording to the fitness differences observed in its neighborhood (Hoos & Stüt-
zle (2005)). This gives seven position types that are summarized in figure 1.
This metric is linked to the previous properties, e.g. a high proportion of
IPLAT solutions denotes a neutral landscape.

Many other metrics have been proposed in Malan & Engelbrecht (2013)
and later in Malan (2021). Most of them do not apply to our problem, either
because they need a binary encoding or because they require the knowledge
of properties that are difficult to compute for our problem (optima network,
global optima, "distance" between two solutions).

3.5. Instances
We used two sets of instances of job shop scheduling problems, repre-

senting 2742 instances, to test our 15 encoding-neighborhood pairs. The
first set is composed of 242 classical instances that are described exten-
sively by Hoorn (2018). Table 1 gives the main characteristics of these in-
stances. The second set includes 2500 generated instances that have been
created by Strassl & Musliu (2022) with n = 10, 20, . . . , 100, and m =
10, 20, . . . , 100. Different distributions have been used for generating the pro-
cessing times of the operations: gen-const for constant distribution equals
to 1; gen-uniform-99 for uniform distribution in [1, 99]; gen-uniform-200
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Prefix Count n m Ref
abz 5 10,20 10,15 Adams et al. (1988)
dmu 80 20,30,40,50 15,20 Demirkol et al. (1998)
ft 3 6,10,20 5,6,10 Fisher (1963)
la 40 10,15,20,30 5,10,15 Lawrence (1984)
orb 10 10 10 Applegate & Cook (1991)
swv 20 20,50 10,15 Storer et al. (1992)
ta 80 15,20,30,50,100 15,20 Taillard (1993)
yn 4 20 20 Yamada & Nakano (1992)

Table 1: Characteristics of Classical Instances

for uniform distribution in [1, 200]; gen-binom for binomial distribution with
n = 98 and p = 0.5; gen-nbinom for the negative binomial distribution with
r = 1 and p = 0.5. We notice that in all theses instances, Ni = m. These
instances have been used originally to compare several algorithms for solving
the job shop problem. As they are recent, they are not widely studied but
have the advantage ot covering a large range of n and m.

3.6. Tabu Search
In order to test the different encodings and neighborhood operators and

find correlations with the results of landscape analysis, we implemented a
tabu search adapted from Taillard (1994) for the same problem. The adapta-
tion consists in replacing the encoding and neighborhood operator (mch-cas
in the original implementation) by one of our encoding-neighborhood pairs.
We preserved the length of the tabu list (called L in Taillard (1994)).

We arbitrarily chose to limit the exploration to 20 neighbors (feasible or
not), and to limit the whole search to 10 seconds. If the algorithm cannot find
a candidate (for example, no neighbor is feasible), then the algorithm restarts
from the beginning. This may limit its performance when the operators have
difficulties to find a feasible neighbor.

4. Experiments and Analysis

To compute the four considered metrics, we made three kinds of experi-
ments for each encoding and its neighborhood operators, and each instance:

1. In the first experiment, we generate 20 random walks of length 1000
from a feasible solution. For each step of the walk, the first found
feasible neighbor is chosen as the next step. We assume the landscape
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Figure 2: Neutrality Rate for Classical Instances (left) and Generated Instances (right)

is statistically isotropic, i.e. the starting position does not play any
role in the result. From this experiment, we compute the neutrality
rate and the correlation length.

2. In the second experiment, we uniformly generate 1000 feasible solutions
and for each solution, we generate 100 feasible neighbors. Generating
solutions with a discrete uniform distribution is only possible for job
and ope (because a feasible solution in ope is in bijection with a solution
in job). From this experiment, we compute the accumulated escape
probability and the position types distribution.

3. In the third experiment, we compute the results of 10 runs of the tabu
search and keep the best one. For each instance, the results are ranked,
with ties having the same rank.

These three experiments utilized several months-CPU and generated a
total of 17 GB of raw text data.

4.1. Neutrality Rate
Figure 2 shows the neutrality rate for classical instances and generated

instances respectively.
The neutrality rate is quite similar for classical and generated instances.

It essentially depends on the encoding-neighborhood pair. Two pairs have
a very high neutrality, close to 100%: job-adj and ope-adj. Exchanging
two elements in these solutions does not change the schedule or provide a
schedule with the same makespan, hence the very high neutrality.
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Three other pairs have high neutrality, between 80% and 95%: ope-ins,
ope-rev and ope-swp. It comes from the difficulty to find feasible neighbors
with the ope encoding. Most neighbors are not so different and thus give
quite similar scheduling with similar fitness.

A large group of pairs have medium neutrality, between 25% and 75%:
job-ins, job-swp, mch-adj, mch-cas, mch-ins, mch-rev, mch-swp, ope-cas.
Similar to the ope encoding, the mch encoding with ins, rev and swp neigh-
borhood have similar profiles due to the fact that it is difficult to find feasible
neighbors. Again, the adj operator (which is in the intersection of the three
others) gives a higher neutrality.

Finally, two pairs have low or very-low neutrality: job-rev and tim-tim.
In the case of job-rev, reversing many elements in the solution can give a
totally different solution with a totally different schedule and makespan.
As for tim-tim, the neighborhood operator changes enough elements in the
solution so that the makespan is different.

4.2. Correlation Length
Figure 3 shows the correlation length for classical and generated in-

stances. The correlation length is plotted with respect to n, the number
of jobs, and a logarithmic y scale.

The correlation length varies from 2 to more than several thousands, but
stays within the same order of magnitude for a single encoding-neighborhood
pair. In the vast majority of the cases, the correlation length increases with
n. This is due to the nature of the neighborhood operators that have a
smaller relative impact on the solutions when n (and m) increases, which
gives neighbor solutions with more correlation. On the contrary, the tim
neighborhood operator modifies a proportion of the solution and the corre-
lation length decreases a little.

The job-rev pair has a correlation length between 2 and 3, meaning that
neighbors with a distance greater than 3 are uncorrelated. In fact, applying
rev twice successively on a job encoding is like getting a random solution.

Some pairs show average correlation lengths, from 10 to 80: job-ins,
job-swp, ope-ins, ope-rev, ope-swp. The landscape is neither too rough,
nor too smooth. The operators modify the solutions enough, but not too
much so that the correlation length is what we could expect in order to avoid
too many local optima, while having uncorrelated solutions quite quickly.

Another group exhibits large correlation lengths, from 80 to 200, which
means a smooth landscape: mch-cas, mch-ins, mch-rev, mch-swp, ope-cas.
The cas operator restricts the number of possible neighbors and all neighbors
do not differ much from the origin and so, are quite correlated even after
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Figure 3: Correlation Length for Classical Instances (left) and Generated Instances (right)

many steps. The mch encoding suffers from the same pitfall, the non-cas
neighborhoods operators only modify the operations on a single machine. It
is not enough to find uncorrelated solutions quickly.

The adj neighborhood operator gives very high correlation lengths of sev-
eral thousands. As stated before, it does not modify the solution enough, so
that a large number of steps is necessary to obtain an uncorrelated solution.

Finally, the tim-tim pair gives a very spread repartition of correla-
tion length in the case of generated instances (not shown in the figure).
We observed that the correlation length depends on the probability dis-
tribution that is used to generate the processing times. Two groups of in-
stances clearly appear: one group with medium correlation length (20-50) for
gen-const and gen-nbinom; and a group with low correlation length (5-20)
for gen-binom, gen-uniform-200 and gen-uniform-99. This is consistent
with the results obtained with classical instances where the processing times
are generated uniformly.

4.3. Accumulated Escape Probability
Figure 4 shows the accumulated escape probability for classical and gen-

erated instances respectively.
job-adj and ope-adj have a very low escape probability. This is linked

to the very high neutrality rate of their landscape: it is difficult to find a
better neighbor among neighbors with the same fitness. Similarly, ope-ins,
ope-rev and ope-swp have a low escape probability because they have a
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Figure 4: Accumulated Escape Probability for Classical Instances (left) and Generated
Instances (right)

high neutrality rate. job-ins and job-swp have medium escape probability,
which is again very related to their medium neutrality rate.

Overall, for this problem, on average, half of non-neutral neighbors are
better neighbors, whatever the encoding-neighborhood pair. It does not
bring a valuable information for choosing a good encoding-neighborhood
pair. It just means that statistically the pairs show predictable behaviors.

4.4. Position Type Distribution
Table 2 shows the position type distribution for classical and generated

instances. For these experiments, for each solution, we separate the neighbors
in three categories: neighbors that have a better fitness than the solution,
neighbors that have a worse fitness than the solution and neighbors that have
the same fitness as the solution. Each group is considered to be significant
if it has more than 10% of the neighbors. Then from the resulting groups,
we derive the position type. For example, if a solution has a significant
group of neighbors with the same fitness, and no other significant group, it
is categorized as an IPLAT solution.

Unsurprisingly, job-adj and ope-adj have a very high rate of IPLAT
solutions because their landscape is very neutral. They do not even show any
position types where equal fitness is absent (SLMAX, SLOPE, SLMIN). ope-cas
has an asymmetric profile, with many LMIN and a little SLMIN but very
little LMAX and even less SLMAX solutions. The rest mainly consists in LEDGE
solutions. ope-ins, ope-rev and ope-swp share a similar profile, with a high
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SLMAX LMAX LEDGE SLOPE IPLAT LMIN SLMIN
job-adj -/- 0.3/0.0 0.0/- -/- 99.3/100.0 0.3/0.0 -/-
job-ins -/- 1.1/3.5 97.4/93.1 -/- -/0.0 1.4/3.4 -/-
job-rev 0.9/0.7 0.5/0.5 19.7/22.9 77.7/74.9 -/- 0.4/0.3 0.8/0.6
job-swp -/- 0.4/0.9 99.1/98.5 0.3/0.0 -/0.0 0.2/0.6 0.0/-
ope-adj -/- 0.3/0.0 0.0/- -/- 99.3/100.0 0.3/0.0 -/-
ope-cas -/0.0 0.1/0.1 37.0/11.9 3.0/1.8 0.1/0.2 58.0/79.8 1.9/6.1
ope-ins -/- 14.2/2.2 10.9/0.5 -/- 61.3/95.2 13.7/2.2 -/-
ope-rev -/- 16.3/2.7 7.5/0.6 -/- 60.0/94.1 16.2/2.6 -/-
ope-swp -/- 19.6/3.9 24.5/2.7 -/- 36.4/89.5 19.6/3.9 -/-

Table 2: Position Type Distribution in percent for Classical/Generated Instances

rate of IPLAT due to their high neutrality, but also some noticeable rates of
LMIN, LEDGE and LMAX solutions. job-ins and job-swp also share a similar
profile with a very high rate of LEDGE, and very little rate of LMIN and LMAX.
Finally, job-rev shows a very high rate of SLOPE solutions, and a high rate
of LEDGE solutions. It confirms the very rough nature of its landscape.

4.5. Synthesis on Landscape Analysis
At this point, it is difficult to make predictions on the performance of

each encoding-neighborhood pair in the implementation of the tabu search
described above just looking at the landscape analysis. For a fixed encoding,
which neighborhood operator is the best? For a fixed neighborhood operator,
which encoding gives the best results? Table 3 provides a synthesis of the
results obtained so far with landscape analysis metrics.

A partial conclusion is that the landscape mainly depends on the enco-
ding-neighborhood pair. The job shop instance plays a very minor role, for
some metrics, and more precisely the generation method of the instance may
play a role, if any. Further measures (not shown here) show that classical
instances are sometimes grouped by family when the results of a metric is
more spread than usual. Overall the encoding-neighborhood factor is largely
dominating in the results. In the next section, we measure the performance
of each pair to try to find a correlation with the landscape analysis measures.

4.6. Performance of Tabu Search
Table 4 and 5 show the ranks obtained by each encoding with one of its

neighborhood operator in the tabu search for all the classical instances and
generated instances respectively. Rank 1 corresponds to the pairs obtaining
the best Cmax. For example, in table 4, job-ins obtained the first place
211 times out of 242 instances. The tables also show the mean rank and the
median rank for each pair. For classical instances, we give the number of
times the search gave the known optimal bound for each pair.
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Neutrality Ruggedness Evolvability Position Type
job-adj Max Low Min IPLAT
job-ins Medium Medium Medium LEDGE
job-rev Low Max High SLOPE
job-swp Medium-Low Medium Medium LEDGE
mch-adj Medium-High Very Low - -
mch-cas Medium Medium-Low - -
mch-ins Medium Low - -
mch-rev Medium Low - -
mch-swp Medium Low - -
ope-adj Max Low Min IPLAT
ope-cas Medium Low High LMIN
ope-ins High Medium Low IPLAT
ope-rev High Medium Low IPLAT
ope-swp High Medium Low IPLAT
tim-tim Min Medium or Low - -

Table 3: Synthesis on Landscape Analysis

In both cases, job-ins is the best encoding-neighborhood pair in terms of
mean rank. It is slightly better in the case of classical instances with a mean
rank of 1.19, compared to generated instances, with a mean rank of 2.59. As a
reminder, job-ins has a median neutrality rate of 50%, a median correlation
length of 20-50, a median escape probability of 25% and is characterized by
a very high rate of LEDGE solutions. The job encoding is an encoding with
many solutions that lead to the same schedule. Its main property is that all
solutions are feasible. The ins neighborhood operator changes the relative
order of a single element. In fact, the FLA metrics provide average values,
which do not make this pair noticeable among others. This is surprising as
there seems to be no correlation with the excellent performance of job-ins
on all instances.

In the case of classical instances, excluding job-ins, three group appear.
A first group of four pairs with mean ranks between 3.11 and 3.81: mch-adj,
ope-ins, job-swp and ope-swp. Then a second group of five pairs with
mean ranks between 6.33 and 8.99: tim-tim, mch-cas, ope-rev, ope-cas,
job-rev. Finally, a last group of five pairs with mean ranks between 10.81
and 13.36: mch-ins, ope-adj, job-adj, mch-swp and mch-rev.

In the case of generated instances, the groups are slightly different. First
a group of four pairs with mean ranks between 3.06 and 3.74: mch-cas,
tim-tim, ope-cas and job-swp. Then a second group of five pairs with
mean ranks between 6.05 and 9.35: ope-ins, ope-swp, mch-adj, job-rev,
ope-rev. Finally, a last group of five pairs with mean rank between 12.31
and 13.66: mch-ins, mch-rev, mch-swp, job-adj and ope-adj.

14



1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 Mean Median OPT
job-ins 211 25 2 2 1 1 1.19 1.00 36
mch-adj 49 62 47 35 29 7 11 1 1 3.11 3.00 35
ope-ins 26 56 60 51 29 8 2 3 3 1 1 1 1 3.44 3.00 25
job-swp 44 23 39 33 86 14 3 3.61 4.00 36
ope-swp 30 22 45 73 33 25 10 1 1 2 3.81 4.00 28
tim-tim 28 6 2 8 83 44 30 29 3 4 4 1 6.33 6.00 23
mch-cas 31 7 11 7 8 26 55 50 23 11 1 3 3 4 2 6.51 7.00 25
ope-rev 21 2 36 36 44 91 3 1 3 4 1 7.49 8.00 21
ope-cas 14 1 2 7 16 54 60 49 14 10 3 1 3 8 7.92 8.00 13
job-rev 19 1 5 3 3 3 4 15 166 23 8.99 10.00 18
mch-ins 16 1 1 3 7 5 10 7 14 55 16 83 19 5 10.81 12.00 16
ope-adj 13 1 1 4 69 82 33 27 12 11.55 12.00 13
job-adj 13 1 1 50 80 51 30 16 11.83 12.00 13
mch-swp 15 1 1 5 7 6 29 27 102 49 12.69 14.00 15
mch-rev 15 1 1 3 10 12 20 43 137 13.36 15.00 15

Table 4: Tabu Search Ranks of Encoding-Neighborhood for 242 Classical Instances
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1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 Mean Median
job-ins 710 492 525 653 119 1 2.59 3.00
mch-cas 677 446 561 224 376 43 76 64 25 2 4 2 3.06 3.00
tim-tim 1164 244 179 205 285 110 107 99 59 39 6 3 3.06 2.00
ope-cas 253 738 341 410 259 155 169 124 32 8 5 4 2 3.72 3.00
job-swp 284 258 471 544 778 94 50 21 3.74 4.00
ope-ins 183 21 97 84 131 741 802 412 28 1 6.05 6.00
ope-swp 174 11 44 77 127 706 864 364 133 6.27 7.00
mch-adj 197 67 70 97 132 180 101 670 572 361 32 12 9 7.24 8.00
job-rev 17 4 44 90 378 157 571 722 508 9 8.11 8.00
ope-rev 43 2 2 10 27 26 89 853 1411 24 7 5 1 9.35 10.00
mch-ins 1 1 3 8 47 724 545 847 162 162 12.31 12.00
mch-rev 5 45 761 680 512 220 277 12.37 12.00
mch-swp 1 1 8 40 673 657 622 323 175 12.40 12.00
job-adj 2 1 1 1 4 6 256 296 192 942 799 13.66 14.00
ope-adj 1 1 1 2 11 255 294 205 942 788 13.66 14.00

Table 5: Tabu Search Ranks of Encoding-Neighborhood for 2500 Generated Instances
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There are some common points. First for a fixed encoding, ins is gen-
erally better than swp, which is generally better than rev. This order is
the same as the number of changes in the relative order of elements in the
neighbor (1 for ins, 2 for swp and 1 to N for rev). Second, for a fixed
neighborhood operator, job generally gives better results than ope which in
turn generally gives better results than mch. The encodings are ordered like
the complexity of the encodings, i.e. the number of encoded constraints.

Third common point, the worst group is the same by a large margin. In
this group, we find job-adj and ope-adj which had nearly 100% neutral-
ity and very large correlation length. We also find mch-ins, mch-swp and
mch-rev that have many infeasible solutions, which is not a good feature for
our implementation of tabu search, as explained before.

We observe some noticeable differences for the two sets of instances.
First, the performances of mch-cas and tim-tim are very good for generated
instances (mean rank of 3.06 for both) and average for classical instances
(mean rank of 6.51 and 6.33 respectively). On the contrary, mch-adj is
good for classical instances (mean rank of 3.11) and average for generated
instances (mean rank of 7.24). We verified that the reason was not the
random distribution used for the processing times of generated instances. In
fact, the reason is the number of machines, which is never greater than 20
in classical instances and range from 10 to 100 in the generated instances.

Figure 5 shows the mean rank of each encoding-neighborhood pair with
respect to the number of machines m and the number of jobs n for generated
instances. In the first figure, we observe the three groups we identified.
We also observe that for a low number of machines, the ranks can be very
different from the ranks with a high number of machines (m ≥ 40). In
particular, mch-cas is in the two best pairs from m = 30 up to m = 100, but
is only seventh for m = 10 and third for m = 20. job-ins is always good,
which explains its overall result. tim-tim becomes the best pair from m ≥ 70
and has globally a good behavior. In the second figure, we observe again the
three groups. mch-cas shows a good behavior for a small number of jobs
(n ≤ 50) while ope-cas improves with increasing n. job-ins stays quite
low, despite being outweighted by up to three other pairs between n = 60
and n = 70. Finally, tim-tim becomes the first pair for n ≥ 50.

5. Conclusion

In our experiments, fitness landscape analysis fails at predicting the per-
formance of the different encoding-neighborhood pairs. It is not possible to
make a recommendation of encoding and neighborhood operator solely based
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on the fitness landscape analysis result. Nevertheless, it can explain the bad
performance when it exhibits extreme metrics, like very high neutrality. It
implies that some pairs (job-adj, ope-adj, mch-ins, mch-swp, mch-rev)
should be avoided for JSP. Regarding the performance of the encoding-
neighborhood pairs with the tabu search algorithm, job-ins, mch-cas and
tim-tim are the clear winners. Despite having different properties in their
fitness landscape analysis, they share one similarity: they always stay in
feasible solutions, either with the encoding that handle constraints when
computing the schedule, or with the neighborhood that guarantees to pro-
vide a feasible solution. We aim at extending these results to more complex
scheduling problems in order to see if these results can be extended or if new
pairs will provide better results for different problems.
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