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Université de Franche-Comté, CNRS
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Institut FEMTO-ST
F-25000 Besançon, France
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Abstract—This work focuses on identifying the best performing
loss functions for denoising scanning electron microscopy (SEM)
images. Recent studies on the impact and effect of loss functions
in image denoising are multiplying, particularly in the fields of
low-light and microscopic imaging. Most studies have focused
on hybrid loss functions, which are a mixture of multiple loss
functions, and have shown their significance. However, manual
experiments with different loss functions to build a hybrid
function are generally very time-consuming. Thus, we propose
a framework named LFRanker (Loss Function Ranker) that
automatically and iteratively experiments loss function from a
given set. LFRanker automatically calculates combinations using
set theory from a given set of loss functions. The findings
indicated significant variations across the different assessment
criteria (such as PSNR, SSIM and keypoints preservation). In
this work, we focus on SEM image denoising, which may be
subject to reconstruction in the next step. Thus, it is necessary to
preserve the maximum keypoints for point-cloud reconstruction
during denoising, along with high quality. Based on these criteria,
we found a hybrid loss function, combining LMSE, LMAE, LPER
and LSIM performs best. Finally, LFRanker demonstrates the
ability to automate manual experimental efforts in identifying
appropriate loss functions for denoising.

Index Terms—Scanning Electron Microscopy (SEM), SEM
image denoising, Loss functions, Deep learning, Image processing.

I. INTRODUCTION

Noise has traditionally been a major challenge for scan-
ning electron microscopy (SEM) because of its presence at
multiple stages of the signal formation process. Identifying
the sources and characteristics of noise in the SEM detector
signal is complex because they arise from multiple stages, each
contributing to its own unique noise component [2]. These
noises in SEM images are uncertain and tend to change type
depending on several factors, especially environmental config-
urations such as dwell time [3]. Dwell time, sometimes known
as scanning speeds of SEM, is defined as the time during
which the electric beam remains focused on each pixel of the
surface of nano-micro objects objects (i.e. in materials science)
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during acquisition [3]. Removal of those noises from SEM
images has become crucial for various industrial applications
in many areas, including material science. In recent years,
various convolutional neural network (CNN) based solutions
have been proposed for image denoising. But very few deal
with SEM image denoising. Furthermore, studies have shown
that the contrast and fidelity of denoised microscopic images
critically depend on the CNN architecture and the chosen loss
function [4].

An essential point when designing a CNN-based image
denoiser is the availability of data and, more specifically,
of clean image samples in a supervised context. However,
acquiring a suitable dataset (containing pairs of clean/noisy
images) in practice from SEM is difficult, thus preparing a
synthetic dataset using appropriate noise model and identifying
an effective denoising network is crucial. The acquisition of
clean images depends on slow SEM scanning speeds that can
destroy samples [3], [6]. However, there is a SEM dataset [7]
with a random mix of clean and blurred/noisy images used for
classification, but no clean/noisy pair. This dataset is partially
used to prepare a set of synthetic noisy/clean pairs.

On the other side, noises in SEM images are not always
Gaussian, but can be Poisson or Gamma [3], [8]. Furthermore,
in a previous work [9], we showed that a model trained
with a series of noise models, including Poisson and Speckle,
outperformed both state-of-the-art and benchmark studies for
SEM images. Indeed, in [9], we found that SCUNet [10],
which is a hybrid convolutional neural networks (CNNs)-
Transformer network, outperformed in terms of visual results
but in some cases causes oversmoothing in SEM images. Thus,
we conducted few experiments for determining the best combi-
nation of noise models to built dataset synthesizing and found
that a mixture of Poisson and Speckle outperformed in SEM
image denoising. The comparative analysis of SEM image
denoisers also highlighted that loss functions have significant
impact on denoising performance [9]. This observation is not
specific to SEM image denoising, since loss functions guide
the training of any neural network [5].

Although most research on image denoising typically fo-
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cuses on network architecture, there is an increasing interest
on loss functions in many works, for example [5], [11]–
[13] and many more. However, a major problem is that
everyone is proposing its own assumptions, experiments, and
loss functions, while the superiority of loss functions may
differ depending on the chosen network architecture or the
dataset used for training. Thus, it is important to automatically
identify the best performing loss functions, whether traditional
(for example MSE or MAE) or hybrid (i.e. a combination of
MSE and MAE) for specific image data samples to reduce
manual evaluation for any loss functions, whether individual
or the result of a combination.

To solve this issue, we propose a novel iterative method
based on training/validating a network with different loss
functions and then testing each of its trained instance with
real noisy image samples, in order to rank the loss functions
and determine the top performer based on qualitative metrics
PSNR and SSIM, keypoints preservation and manual visual
assessments. The proposed approach starts with a set of loss
functions from which the method will automatically calculate
combinations by following the power set theory [14] except
empty set. For example, if there is a n number of elements
in a set then the total number of combinations will be 2n

and without empty set it will be 2n − 1. Each loss function
issued from the power set is then evaluated using SEM
image samples collected considering different dwell times
(or scanning speeds). We found that, based on noise level,
simple loss functions sometimes outperformed and other times
hybrid loss functions. These results led us to claim that the
proposed technique is able to successfully identify the top
performing loss functions for different samples of SEM images
and cope with changes accordingly. The major contribution
of this proposal is therefore to automate the identification of
effective losses from a set of loss functions. This process min-
imizes the list of manual experiments for each loss function.
Additionally, it automatically experiments the traditional loss
functions individually at the same time hybrid loss functions
sequentially.

The rest of the paper is organized as follows. Section II dis-
cusses background work found in the literature. The proposed
methodology is described in Section III, while Section IV rep-
resents and discusses the experiments, results, and comparative
findings. Finally, Section V concludes the paper with possible
future directions.

II. BACKGROUND

The impact of various loss functions are manually assessed
in [4] for microscopy images and in particular for biological
cells. The authors have found that the combination of Fast
Fourier Transform (FFT) and pixel wise loss, as well as
the loss in the frequency domain with feature based loss,
not only outperforms, but also preserved the cell structures
in the denoising output. In a similar study [13], performed
on positron emission tomography (PET) images, the authors
claimed that L1 norm loss function derived from histogram
count provides high performance in supervised denoising,

whereas in self-supervised techniques mean squared error
(MSE) helps to preserve local features.

Wavelet-Based loss function has been proposed in a recent
work [11] for protecting denoising output from blurring of
contours and local high-frequency details. According to the
authors of [15], L1 norm loss function with the combination
of perceptual loss can produce visually pleasant, a combination
inspired by [15] who showed that a combination of L1 and
Multi-Scale Structural Similarity Index Measure (SSIM) can
improve the output performance. Mean Squared Error (MSE),
Mean Absolute Error (MAE), Mean Absolute Percentage Error
(MAPE), Mean Squared Logarithmic Error (MSLE), Huber,
Peak Signal-to-Noise ratio (PSRN) and Structural Similarity
Index Measure (SSIM) were manually experimented in one
study [5] for medical image applications.

In [16], four loss functions, namely pixel-wise L2, pixel-
wise L1, structural dissimilarity (DSSIM), and perceptual
loss were individually experimented, revealing that that per-
ceptual loss outperforms int the context of Magnetic reso-
nance imaging (MRI). However, they did not investigate their
combination, because a set of four loss functions can make
2n−1 = 24−1 = 15 combinations. Doing many experiments
manually is quite expensive and time-consuming. It is there-
fore important to automate the process and obtain optimized
results for specific data samples. The combination of several
loss functions was studied for adversarial based denoising in
[17], resulting in a combination of three loss functions: MSE,
perceptual loss, and adversarial loss, to preserve details in
denoised images.

The aforementioned works show an increasing interest on
hybrid loss functions, as well as exploration of loss functions,
in the training of denoisers in different domain. However, a
manual process may make the process complex when someone
intends to have experiments with a set of loss functions. It is
not only important to study loss functions individually, but also
to perform automated combinations of them with experiments,
in order to determine the best performing individual function
or combination in a specific domain. Thus, this work propose
a novel automated approach, called Loss Function Ranker
(LFRanker), which solves the challenges of manual calcu-
lations and experiments. Additionally, it enables the ranking
mechanism to identify top performing loss functions, either
individual or hybrid (combinations), from a given set. The
proposed method is experimented and evaluated with SEM
images. The SEM image samples to be tested are collected
from different dwell times (or scan speeds) to have varieties
of noises.

Almost all of the previous studies used PSNR and SSIM
as qualitative metrics to evaluate their respective proposals.
However, we have shown in [9] that for SEM images, these
two measures are not sufficient for evaluation. Thus, in this
study, AKAZE [18] local features keypoints detection and a
manual check of the visual quality of the denoised images are
both carried out for each of the losses studied for training.



Figure 1. The proposed Loss Function Ranker - LFRanker approach

III. PROPOSED METHOD

The proposed LFRanker approach is described in Fig. III.
As can be seen, the framework starts with the building of a
dataset using clean SEM images from [7]. There are 500 clean
images selected based on high resolution, which we made
available at [19]. In the dataset, the samples are collected
from multiple sources including biological cells, tips, particles,
porous sponge, powder, fibres, nanowires. These different
categories of samples will give diversity to the denoiser
network. From the clean samples only, pairs of clean/noisy
image patches are created to train the denoising network.
In the next step, the loss functions combination generation
(2n − 1 times) is completed, after which a denoising network
is trained for each of the generated loss functions. Finally,
a ranker performs evaluation of the 2n − 1 trained denoisers
(one per loss function) on real noisy images. The denoised
output is compared with real target clean images by ranker
itself, initially in terms of PNSR and SSIM.

It is important to mention that we have collected samples
of different dwell time, or scanning speeds, as reported in
Table I. Normally, we have selected scanning speed 2, 3, and
5 as noisy samples, whereas scanning speed 8 is the clean
target. Per scanning speed, we collected at least one sample
from Zeiss Auriga SEM at FEMTO-ST lab to perform the real
application assessment of our proposal.

Table I
EXAMPLE OF ZEISS AURIGA SEM CONFIGURATIONS

Scan Speed Dwell time
8 10 microseconds
5 2 microseconds
3 510 nanoseconds
2 280 nanoseconds

All the experiments are completed on a GPU server from
Mésocentre de calcul de Franche-Comté. Additionally, Py-
Torch python framework and Numpy, Pillow python packages
are basically used for the implementation. We performed
the training process on a selection of mixed Poisson and
Speckle noises. As stated before, there are different opinions
on the type of noise, but we found in our experiments that
the combination of these two noise models performed the
best in our case. The detailed process of the method will
be discussed step by step in the following subsections with
possible implementation details.

A. Dataset Synthesis
Initially, NFRanker synthesized the dataset by loading clean

images and creating multiple patches from the original images.
Indeed, we divided the images into multiple patches to increase
the number of size in training samples. Subsequently, an
artificial mixture of Poisson and Speckle noises was added to
the clean patches, thereby generating a dataset of clean/noisy
pairs. As we used the mixture of Poisson and Speckle noises,
we formulated our synthetic noise function as in Equation 1.

NM = clamp((α× Pn + β × Sp), 0, 1) (1)

where:
• NM is the noise model,
• α and β are the weights of the two noise models and

in our case we use unweighted or same weight for both
such as α = β = 1,

• Pn is Poisson noise and Sp is Speckle noise,
• clamp(p, x, y) clamps the values of p to be within the

range [x, y].

B. Denoising Network
In this step, we used the best-performing denoiser we

identified for denoising SEM images in a previous work [9].



From this denoiser, named SCUNet [10], we have taken the
architecture as it is, but we updated the loss functions in the
training process as follows.

At initial stage, we take a set of four noise models, which
includes MSE, MAE, SSIM and V GG19 perceptual loss
function. We can denote our set as in Equation 2.

LF = {LMAE, LMSE, LSIM, LPER} (2)

where:
• LF is the set of selected Loss Functions
• LMAE is the Mean Absolute Error loss,
• LMSE means the Mean Squared Error loss,
• LSIM represents Structural Similarity Index Measure

(SSIM) loss,
• LPER denotes the Perceptual loss function.
Combining the four individual loss functions in our set

produces a number of subsets that can be calculated using
power set formula (in our case except empty or null set). We
therefore have a total of |P{LF}| = 2n - 1 where n = 4, which
results in (24 - 1) = (16 - 1) = 15 initial subsets:
P (LF ) = {LMAE}, {LMSE}, {LSIM}, {LPER},
{LMAE, LMSE}, {LMAE, LSIM}, {LMSE, LSIM}, {LSIM, LPER},
{LMSE, LPER}, {LMAE, LPER}, {LMAE, LMSE, LSIM},
{LMAE, LMSE, LPER}, {LMAE, LSIM, LPER},
{LMSE, LSIM, LPER}, {LMAE, LMSE, LSIM, LPER}

A SCUNet model is trained for each subset of P (LF ),
each time using as loss function the weighted combination
defined by the subset. The obtained trained models are stored
for further treatment by the ranker in the next step.

C. Ranker

Pairs of clean/noisy patches are used to perform denoising
with the different trained instances of the SCUNet model and
calculate for each the average PSNR and SSIM values. These
values are then used to rank the denoisers and determine the
best performer, which has been trained by the best combination
of weighted loss functions.

IV. RESULTS AND DISCUSSION

LFRanker is initially evaluated with real noisy SEM images
collected from electron microscope at FEMTO-ST lab accord-
ing to different scan speeds denoted as spd2, spd3, and spd5
for scan speeds 2, 3, and 5, respectively.

The average values obtained for PNSR and SSIM are
presented in Table II. According to these results, the winning
combinations are LMAE and LSIM if we consider SSIM as the
main metric, but for PSNR the top performer is the combi-
nation of LPER and LSIM. Let us now explore the individual
results of the different scanning speeds, which are reported
in Table III. We can see that the results confirm the previous
observation. The combination of LPER and LSIM performs best,
with a balance between PSNR and SSIM.

However, we found in a previous work [9] that PNSR and
SSIM results are not enough to evaluate the denoising of SEM
images. To improve the assessment, we decided to extend

Table II
AVERAGE RESULTS FOUND FOR EACH COMBINATION (BEST IN BOLD)

Loss Functions PSNR/SSIM (Avg.)
LMAE 18.1732 / 0.3255
LMAE + LPER 18.2821 / 0.2958
LMAE + LPER + LSIM 18.3876 / 0.3122
LMAE + LSIM 18.1361 / 0.3290
LMSE 18.1342 / 0.3206
LMSE + LMAE 18.1463 / 0.3226
LMSE + LMAE + LPER 18.3407 / 0.2885
LMSE + LMAE + LPER + LSIM 18.2490 / 0.3126
LMSE + LMAE + LSIM 18.1798 / 0.3264
LMSE + LPER 18.2045 / 0.2878
LMSE + LPER + LSIM 18.4269 / 0.3171
LMSE + LSIM 18.0450 / 0.3154
LPER 17.6269 / 0.2553
LPER + LSIM 18.4566 / 0.3233
LSIM 7.7816 / 0.0091

it to include a visual check of the quality of the denoised
images, as well as the preservation of keypoints identified
with AKAZE keypoint detection. Thus, Table IV shows the
keypoints preserved with a good match using the threshold
value of 0.50 in the brute force analyzer with hamming
distance as the measure. The threshold is used to eliminate
non-unique matches and identify good matches. The 0.50
threshold helps us to identify the best matches in this distance.

Table IV reports the number of well-matched keypoints for
scan speeds 2, 3 and 5. We can see that, as expected, the
fastest the scan speed (or the lower the dwell time) the lower
the number of well-preserved keypoints. We also note that for
a given scan speed, the numbers obtained for the different loss
functions are very different. These results suggest the use of
a hybrid loss (a combination) for very noisy images collected
with spd2, whereas spd3 and spd5,support a traditional loss
function. The combination of LMSE, LMAE, LPER and LSIM
performs best at the fastest scan speed.

Table V summarizes the most significant results. Clearly,
the best loss function will vary according to the measure used
to assess the quality of the denoised image. Thus, if we target
evaluation with PSNR, the combination of LPER and LSIM
is the top performer, while for SSIM, it is the combination
of LMAE and LSIM. As SEM images can be used for 3D
reconstruction similar to [21], the keypoints of denoised SEM
images are crucial. So, if the aim is to denoise SEM images
for reconstruction, in the case of denoising very noisy images
it may be necessary to use a hybrid loss function, whereas an
individual loss function is sufficient for apparently less noisy
images.

Finally, we focus on the visual quality of the denoised
images. In Fig. 2, denoised images at scan speeds spd2, spd3,
and spd5 are visualized alongside noisy and clean images. It
is evident that the hybrid loss function LMSE + LMAE + LPER
+ LSIM, which yields the largest number of keypoints for scan
speed spd2, produces, after training, a denoising network that
generates denoised images of high visual quality. However,
over-smoothing issues were observed at some scan speeds,



Table III
AVERAGE RESULTS OBTAINED FOR EACH COMBINATION FOR SCAN SPEEDS 2, 3, AND 5 (BEST IN BOLD)

Loss Functions PSNR/SSIM - spd2 PSNR/SSIM - spd3 PSNR/SSIM - spd5
LMAE 17.7675 / 0.2990 18.0906 / 0.3267 18.6615 / 0.3507
LMAE + LPER 17.8475 / 0.2574 18.2228 / 0.2997 18.7759 / 0.3303
LMAE + LPER + LSIM 17.9282 / 0.2720 18.3281 / 0.3180 18.9064 / 0.3464
LMAE + LSIM 17.6593 / 0.3016 18.0889 / 0.3304 18.6602 / 0.3549
LMSE 17.7289 / 0.2921 18.0601 / 0.3223 18.6135 / 0.3475
LMSE + LMAE 17.7203 / 0.2941 18.0759 / 0.3247 18.6428 / 0.3491
LMSE + LMAE + LPER 17.8737 / 0.2328 18.2689 / 0.2979 18.8796 / 0.3347
LMSE + LMAE + LPER + LSIM 17.7809 / 0.2741 18.1874 / 0.3185 18.7787 / 0.3453
LMSE + LMAE + LSIM 17.7099 / 0.2973 18.1059 / 0.3283 18.7236 / 0.3536
LMSE + LPER 17.8041 / 0.2344 18.1456 / 0.2979 18.6637 / 0.3310
LMSE + LPER + LSIM 17.9813 / 0.2865 18.3566 / 0.3194 18.9430 / 0.3455
LMSE + LSIM 17.4581 / 0.2775 17.9875 / 0.3194 18.6894 / 0.3494
LPER 17.1542 / 0.1943 17.6407 / 0.2680 18.0858 / 0.3035
LPER + LSIM 18.0182 / 0.2940 18.3759 / 0.3248 18.9757 / 0.3510
LSIM 7.8181 / 0.0092 7.7855 / 0.0087 7.7410 / 0.0094

Table IV
NUMBER OF WELL-MATCHED KEYPOINTS WITH AKAZE FOR EACH COMBINATION FOR SCAN SPEEDS 2, 3 AND 5 (BEST IN BOLD)

Loss Functions Keypoints - spd2 Keypoints - spd3 Keypoints - spd5
LMAE 479 607 731
LMAE + LPER 426 549 668
LMAE + LPER + LSIM 462 578 690
LMAE + LSIM 478 582 685
LMSE 483 648 783
LMSE + LMAE 497 615 776
LMSE + LMAE + LPER 441 565 725
LMSE + LMAE + LPER + LSIM 498 571 676
LMSE + LMAE + LSIM 478 578 693
LMSE + LPER 464 580 703
LMSE + LPER + LSIM 418 546 665
LMSE + LSIM 482 624 734
LPER 457 571 740
LPER + LSIM 429 503 619
LSIM 0 0 0

Table V
SUMMARY OF RESULTS OBTAINED ONLY WITH THE BEST-PERFORMING COMBINATIONS FOR THE DIFFERENT SCAN SPEEDS (spd2 - spd3 - spd5) (BEST

IN BOLD)

Loss Functions PSNR SSIM Keypoints
LMAE + LSIM (17.6593 - 18.0889 - 18.6602) (0.3016 - 0.3304 - 0.3549) (478 - 582 - 685)
LMSE (17.7289 - 18.0601 - 18.6135) (0.2921 - 0.3223 - 0.3475 ) (483 - 648 - 783)
LMSE + LMAE (17.7203 - 18.0759 - 18.6428) (0.2941 - 0.3247 - 0.3491 ) (497 - 615 - 776)
LMSE + LMAE + LPER + LSIM (17.7809 - 18.1874 - 18.7787) (0.2741 - 0.3185 - 0.3453) (498 - 571 - 676)
LPER + LSIM (18.0182 - 18.3759 - 18.9757) (0.2940 - 0.3248 - 0.3510) (429 - 503 - 619)

which may be addressed in future work through hyperparam-
eter optimization or the utilization of alternative denoising
networks. In summary, for highly noisy image denoising, the
hybrid loss function outperformed the others. These results
were obtained from the validation of the method on SEM
noisy images; thus, it would be valuable to cross-validate the
proposed framework with other domains in future research.

V. CONCLUSION

We have proposed and tested a new method, called
LFRanker, to automate the selection of the best loss function
for denoising SEM images. First, given a set of basic loss

functions (MSE, MAE, and so on), each of their possible
combinations is used to train the SCUNet deep learning
model, using clean and noisy synthesized image pairs as input.
Second, the obtained trained models are automatically ranked
according to qualitative measures in order to identify the top-
performing loss function for SEM image denoising. Thus, our
contribution eliminates the challenges of manual experiments
to individually assess the various loss functions. Depending on
the qualitative measure chosen, the ranking obtained is differ-
ent. In this work, we targeted the reconstruction capability
after denoising. Thus, we focused on keypoint detection and
visualization evaluation, which led us to conclude that highly



Figure 2. Visual results for hybrid loss function LMSE + LMAE + LPER + LSIM (spd2 preserves more keypoints ( Table IV) and visually more closer to clean
and others may have over-smoothing issue)

noisy images require a hybrid loss function to improve quality
without losing the detailed feature keypoints in the denoised
images.
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