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Abstract

Periodic structures have attracted interest across various fields of science and
engineering due to their unique ability to manipulate wave propagation. The
Wave-based Finite Element Method (WFEM) is typically employed to model
such systems by relying on the dynamic behavior of a single unit cell of the
lattice. However, the WFEM can face challenges in handling unit cell finite
element (FE) models with several degrees of freedom (DoFs), as it involves
operating with large-sized matrices. Therefore, in this work, we combine the
WFEM with the Generalized Bloch-Mode Synthesis (GBMS) to offer a highly
efficient and accurate method for modeling periodic structures. Three different
types of unit cells were investigated in this study, demonstrating that highly
reduced unit cell models can be obtained using the Craig-Bampton (CB)
and Local-level Characteristic Constraint (L-CC) model reduction methods.
By leveraging the advantages of the WFEM and the reduced-order unit cell
models, harmonic forced responses were rapidly and accurately computed.
Additionally, we showed that combining the WFEM with the GBMS mitigates
numerical issues when computing forced responses, as the boundary DoFs
are reduced to a smaller number of equations, avoiding the computation of
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high-order evanescent modes, a task that can be difficult to perform accurately
for some unit cells.

Keywords: phononic crystals, elastic metamaterials, wave-based finite
element method, generalized Bloch mode synthesis, modal assurance
criterion, model reduction

1. Introduction

Periodicity manifests in various real-life scenarios, ranging from macro-
scopic systems to the arrangement of atoms within a molecule. In nature,
regular patterns can be found in honeycombs, forests, spider webs, snowflakes,
sand dunes, pine cones, sunflower seeds, and various other situations. Addi-
tionally, several engineered systems exhibit periodicity in their design, such
as airplane fuselages, railway lines, power transmission lines, pipeline systems,
structural frames, heat exchanger tubes, antenna arrays, solar panels, rotating
machinery blades, and numerous other instances. In the alluded scenario,
a periodic system is defined as those structures in which a single unit cell,
identified as the smallest repeating structure of the periodic lattice, serves
as the basis for the replication of the entire structure in one, two, or three
directions.

Recently, it has been demonstrated that systems properly devised, taking
into account geometric and/or material periodicity, may exhibit superior
properties compared to traditional designs [1–3]. In the literature, this broad
class of systems is referred to as phononic crystals (PCs), photonic crystals
(PhCs), or phoxonic crystals (PxCs), depending on the type of wave traveling
through the medium. For instance, periodic systems may reveal phenomena
such as waveguiding [4], cloaking [5], Anderson’s localization [6], confinement
[7], negative refraction index [8], non-reciprocity [9], mode conversion [10],
outstanding sound absorption [11], and more.

Of great interest in structural dynamics and passive vibration reduction
is the occurrence of the so-called bandgaps, also termed phononic bandgaps
when they arise in PCs [12]. These bandgaps comprise frequency bands
within which the propagation of various types of waves, such as elastic and
acoustic, is either forbidden or strongly attenuated in space. This interesting
property is attributed to the destructive interference of incident and reflected
waves traveling through the periodic medium at impedance mismatches
between or inside of unit cells, caused by the Bragg-scattering phenomenon
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[13]. Consequently, Bragg-type bandgaps typically occur at wavelengths
comparable to the order of the unit cell length [14].

Beyond Bragg-type bandgaps, forbidden bands for wave suppression can
also be designed by periodically incorporating resonant devices into a host
structure. In this case, the bandgap location is no longer controlled by the
unit cell length but is instead determined by the resonant properties of the
introduced devices, called local resonators. For this reason, it has been shown
that bandgaps associated to the local resonance phenomenon may occur at
frequency ranges much lower than those linked to Bragg-scattering [15, 16].
As examples, beam-type resonators were embedded in a host beam in [17],
a periodic structure with tunable fluid-solid resonators was considered in
[18], and resonators in the shape of rings were incorporated into a rotating
machine in [19]. Periodic structures embedded with resonators are known as
acoustic/elastic metamaterials (A/EMs), which can be seen as a subset of the
more broad category termed mechanical metamaterials. Broadly speaking,
PCs and A/EMs are also referred to as metastructures, owing to their unique
properties arising from engineered periodicity or tailored material composition.

The mathematical modeling of periodic structures can be approached in
various ways, including the Finite Element Method (FEM) [20, 21], Wave-
based FEM (WFEM) [22, 23], Plane Wave Expansion (PWE) [24, 25], Ex-
tended PWE (EPWE) [26, 27], Spectral Element Method (SEM) [28, 29],
Bloch-Floquet-based techniques [30, 31], homogenization strategies [32], and
numerous other methods. Due to its versatility, the most widely adopted mod-
eling technique is probably the FEM, which discretizes the physical domain
of a structure into finite elements (FEs), enabling the analysis of its behavior
through the derivation of ordinary differential equations of motion (EoMs).
The FEM produces sparse matrices, speeding up calculations and reducing
memory consumption. However, because of the predominantly periodic nature
of PCs and A/EMs, using the FEM as a modeling strategy can be disadvan-
tageous compared to the WFEM. By employing the WFEM, the dynamic
behavior of a metastructure is investigated by analyzing a FE mesh of a single
unit cell within the lattice, which considerably reduces computational time
during calculations [33]. Nevertheless, challenges in runtime may still arise,
especially when analyzing complex unit cells in mid- to high-frequency bands,
where a fine mesh is required, leading to FE models of unit cells that can
reach millions of degrees of freedom (DoFs).

A potential solution to address this issue is to use reduced-order models
for unit cells, obtained through model order reduction (MOR) techniques.
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This strategy has been observed in recent literature focused on computing
dispersion diagrams, also known as band diagrams or dispersion curves, which
depict the relationship between Bloch wavenumbers and frequency [34, 35].
Most of the more efficient and widely used MOR methodologies in structural
dynamics are component mode synthesis (CMS)-based approaches, inspired
by the seminal works published in the sixties by Hurty [36] and Craig and
Bampton [37], which led to the development of the Craig-Bampton (CB)
method (or Hurty-CB method). For instance, Krattiger and Hussein [30]
developed an ultrafast strategy for elastic band-structure calculations called
Bloch Mode Synthesis (BMS), where the interior DoFs of a unit cell of a
periodic structure are represented as a set of reduced modal DoFs derived
from the combination of fixed interface modes and constraint modes. A
novel method for reducing the boundary DoFs of unit cells after enforcing
Bloch-Floquet boundary conditions (BCs) was also introduced in [30], using
system-level characteristic constraint (S-CC) interface reduction.

Four years later, Krattiger and Hussein introduced the Generalized BMS
(GBMS), which mostly differs from their previous work in the sense that the
reduction of boundary DoFs is performed in a single frequency-independent
step before imposing the Bloch-Floquet periodicity conditions, making use
of local-level characteristic constraint (L-CC) interface reduction [31]. The
compatibility of boundary DoFs required for applying the Bloch-Floquet
theorem after the MOR process is preserved in the GBMS, and the reduced-
order models of unit cells can be employed in either the ω(k) or k(ω) methods.
Krattiger and Hussein [31] also demonstrated a way to improve the CB
MOR method by accounting for the influence of neglected (or residual) fixed
interface modes on the unit cell’s interior dynamic behavior.

In the last few years, it has been observed that the studies by Krattiger
and Hussein [30, 31] have influenced subsequent research papers on the
computation of dispersion curves, with several works building upon their
foundational contributions. Aladwani [38] extended the BMS method to
electroelastic metamaterials with piezoelectric resonant shunt damping. The
BMS technique was further developed by Aladwani et al. [39] to arbitrarily
damped phononic materials, resorting to the state-space formulation. Van
Belle et al. [40] employed the GBMS to accelerate the calculation of dispersion
curves of a two-dimensional EM. Cool et al. [41] applied the BMS and GBMS
methods to compute vibro-acoustic dispersion curves of periodic structures in
a solid-air medium. Xi and Zheng [34] proposed improvements to the GBMS
by exploiting algebraic condensation to further accelerate dispersion curve
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calculations, introducing the GBMS with algebraic condensation (GBMS-
AC). Cool et al. [42] investigated the impact of the unit cell choice on the
computational efficiency of band structure calculations using the GBMS. Van
Belle et al. [43] used the GBMS method with substructuring to compute the
forced response for a plate-type metamaterial. Zhu et al. [35] developed an
Improved GBMS method, employing algebraic condensation (IGBMS-AC).
Jiang et al. [44] developed a Hybrid BMS (HBMS) technique by considering
a hybrid Bloch-Floquet BC for band-structure computation. More recently,
Duhamel and Mencik [45] investigated time-domain responses of finite periodic
structures with absorbing boundary conditions (ABCs) using unit cell reduced-
order models derived as described in ref. [31], supported by standard FE
assembling procedures and ABCs formulated in the wave mode space. Closely
related to CMS MOR-based approaches, various Bloch-Floquet-based MOR
techniques are also available in the literature to speed up the analysis of
periodic structures [46, 47]. Droz et al. [48] proposed a Floquet-based model
reduction method for modeling periodic structures using the WFEM under
harmonic or transient loads. Wang and Amirkhizi [49] developed a reduced-
order modeling approach for analyzing metamaterials constituted by beam-
like elements using a limited number of simulations at selected wavevector
locations.

As the developments reported so far using reduced-order models of unit
cells predominantly focus on calculating dispersion curves, which are valid
for analyzing wave propagation behavior in infinite periodic structures, there
remains a need to explore other open-aspects of structural dynamics. In real-
life, structures are not infinite, as implied by the Bloch-Floquet periodicity
condition. Therefore, forced response calculations are likely the most suitable
method for investigating the wave propagation characteristics of finite PCs
and A/EMs. Accordingly, in this work, we propose modifications to the
GBMS method derived by Krattiger and Hussein [31], allowing an efficient
reduction of internal and boundary DoFs for unit cells of periodic structures,
while preserving the accuracy of Bloch wavenumbers and corresponding wave
modes. Such wave modes, obtained using reduced-order unit cell models, are
then used in the WFEM, enabling fast and accurate computation of harmonic
forced responses and related results without encountering commonly observed
numerical issues, putting forward its application to more challenging problems,
including those in mid- to high-frequency ranges. Although the WFEM can
also be applied to investigate waveguides with local perturbations or some
kind of joint or coupling elements [50–52], in this work we focus on periodic
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structures, disregarding these types of features. Additionally, for the sake of
simplicity, the combined use of the GBMS and the WFEM is investigated for
problems encompassing one-dimensional wave propagation in this research,
meaning that our interest is in the dynamic behavior of those structures where
waves propagate mainly along the primary longitudinal axis. It should be
noticed, nonetheless, that the proposed methodology can be extended for two-
or three-dimensional wave propagation problems with suitable modifications
[53–57].

The GBMS which has been used in this study differs from the technique
employed by Krattiger and Hussein [31] in two main aspects: (1) Interface
modes, post-processed to locally reduce boundary DoFs via L-CC MOR, are
calculated for the unit cell at a global level. As a consequence, frequency-
based truncation of modes has been found to be effective in delimiting the
space of the lowest frequency eigenvalues obtained from the unit cell’s global
eigenproblem. Additionally, as the interface modes are computed considering
the influence of the unit cell’s internal DoFs, more reliable vibration modes
for performing the reduction of boundary DoFs are obtained, as demonstrated
by numerical simulations; (2) Redundant eigenmodes (i.e., those almost
linearly dependent with respect to a given reference) are eliminated from the
L-CC transformation matrix by exploring the well-known modal assurance
criterion (MAC) index, while respecting constraints required by the periodicity
condition related to the Bloch-Floquet theorem. This second modification
could erroneously be taken as unnecessary; however, it addresses a critical
issue. Specifically, the modal basis used to represent boundary DoFs might be
assembled by discarding modes based solely on their frequency, which could
be understood as the more straightforward approach and as a viable means
to ensure the accuracy of the resulting unit cell reduced model. However,
from another hand, this strategy does not take into account the mode shapes
themselves. Consequently, redundant (almost collinear) eigenmodes may be
included in the L-CC reduction matrix, unnecessarily increasing the number
of retained boundary modal DoFs. In addition to reducing computational
performance, such redundant modes can introduce numerical issues when
computing forced responses, as demonstrated later.

The application of the WFEM considering the modified GBMS is illus-
trated through three examples in this work: (1) a PC composed of unit cells
with inertial amplification mechanism (IAM), modeled using plane stress
state assumption; (2) an EM embedded with rectangular spiral resonators,
discretized with Reissner-Mindlin plate elements; (3) a PC with an internal
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void with arbitrary shape, modeled using solid FEs, portraying several DoFs
at the boundaries of the unit cell, disregarding the presence of fluid, such as
air, in its interior, or even exterior. That is, in this work, one is interested
in structural behavior, only. While vibro-acoustics should also be of interest,
one will address such type of problem in a future work.

A flowchart illustrating all steps adopted by us for the ultra-fast structural
dynamics analysis of periodic structures is shown in Fig. 1. In step (1),
the EoMs of the unit cell are obtained from the FEM, followed by spatial
partitioning of DoFs into boundary and interior sets in step (2). Internal
DoFs are reduced through the CB MOR method in step (3), employing a
combination of constraint modes and fixed interface modes, while the reduction
of boundary DoFs is carried out in step (4), utilizing L-CC modes, which
are filtered based on their frequency and according to the MAC correlation
indices. Finally, the unit cell FE model with reduced interior and boundary
DoFs is invoked in step (5), enabling time-efficient computation of dispersion
curves, harmonic deformed patterns, and other related results. It should be
clarified that the term GBMS, often appearing in related literature, usually
encompasses steps (1–4) in Fig. 1, as well as the computation of dispersion
curves in step (5). However, the GBMS neither solves a global eigenproblem
to reduce the boundary DoFs nor considers the MAC indices in step (4),
which correspond to modifications introduced in this work.

To summarize the foregoing discussion, the novelties of the current work
are as follows:

N1) One proposes the use of L-CC model order reduction, previously adopted
to compute dispersion curves, to aid in performing structural, forced
harmonic analyses of periodic structures via the WFEM; and

N2) We present modifications to the L-CC procedure, aiming to improve the
reduction of boundary DoFs of a unit cell of interest. Whilst the proposed
modifications might seem small, they have enabled: the utilization of
a frequency-based criterion as a prior truncation metric to retain the
most relevant boundary modes; the derivation of boundary modes more
suitable to locally reduce the unit cells boundaries; and the elimination
of numerical issues which are faced by the WFEM in structural analysis
in mid- to high-frequencies.

Beyond this introduction section, this work is divided as follows: in Section
2, modeling of unit cells of periodic structures using full- and reduced-order
models is introduced, followed by a review about the WFEM in Section 3.
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Figure 1: Flowchart depicting the various steps used for the ultra-fast analysis of periodic
structures. Novelties introduced in this paper are highlighted by the darkened boxes.

Numerical experiments illustrating the application of the WFEM considering
the modified/improved GBMS are presented in Section 4. The main conclu-
sions of this work are summarized in Section 5, thereafter, acknowledgements
and references are provided.

2. Full and reduced finite element models of a unit cell of periodic
structures

This section presents the mathematical model of a unit cell of a periodic
structure in both physical and modal (reduced) domains. First, the unit cell’s
EoMs, derived from FEM, are discussed in Subsection 2.1. Mathematical
developments related to the reduction of interior DoFs through the CB method
as developed in [30] are reviewed in Subsection 2.2. Finally, modifications
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that we have made to the GBMS method outlined in [31] for unit cell MOR
of boundary DoFs are introduced in Subsection 2.3.

2.1. Equations of motion of a unit cell

Figure 2, on its left, illustrates an infinite one-dimensional periodic struc-
ture formed by unit cells with inclusions of arbitrary shape. As we have chosen
the FEM to discretize a unit cell’s physical domain, its mesh is pictorially
illustrated on the right of Fig. 2, with related DoFs and load vectors, q̂ and f̂ ,
respectively, labeled according to left (L), internal (I), and right (R) locations.

q̂I, f̂ I

q̂L, f̂L q̂R, f̂R

Figure 2: One-dimensional periodic structure of infinite extent, composed of unit cells
containing inclusions of arbitrary shape (left) and a unit cell FE mesh with DoFs and load
vectors labeled (right).

By leveraging the capabilities of conventional FE software and following
step (1) in Fig. 1, the undamped EoMs in the time domain for a unit cell
such as the one illustrated in Fig. 2 can be expressed in physical coordinates
as:M̂LL M̂LR M̂LI

M̂RL M̂RR M̂RI

M̂IL M̂IR M̂II


¨̂qL
¨̂qR
¨̂qI

+

K̂LL K̂LR K̂LI

K̂RL K̂RR K̂RI

K̂IL K̂IR K̂II


q̂L

q̂R

q̂I

 =


f̂L
f̂R
f̂ I

 , (1)

where M̂ij and K̂ij account for the matrices of mass and stiffness, respectively,
considering the DoFs locations introduced in Fig. 2, i.e., i, j ∈ {L,R, I}; q̂j

represents time-dependent vectors of DoFs, comprising displacements and
rotations in the general case; f̂ j are the corresponding time-dependent load
vectors encompassing forces and moments; and ˙ denotes time derivatives.

In accordance with most CMS-based MOR techniques and following step
(2) in Fig. 1, Eq. (1) is rewritten in terms of boundary (B) DoFs, encompassing
those located at the unit cell’s left and right interfaces (i.e., B ∈ {L,R}), and
internal DoFs [58]:

M̂

{
¨̂qB
¨̂qI

}
+ K̂

{
q̂B

q̂I

}
=

{
f̂B
f̂ I

}
, (2)

9



where:

M̂ =

[
M̂BB M̂BI

M̂IB M̂II

]
, K̂ =

[
K̂BB K̂BI

K̂IB K̂II

]
. (3)

2.2. Model reduction of interior DoFs

Model reduction of interior DoFs plays a crucial role in the GBMS and
WFEM, as it converts several internal DoFs represented in physical coordinates
to a reduced, yet accurate, smaller number of internal modal DoFs. This
procedure encompasses step (3) in Fig. 1, being quite important for tasks
related to step (4) – to be discussed in Subsection 2.3 –, which involves the
solution of an eigenproblem at the global level of the unit cell.

The reduction of interior DoFs of a unit cell, such as the one illustrated in
Fig. 2, can be achieved through various strategies. In this work, we employ the
CB MOR method, one of the most widely used MOR techniques in structural
dynamics and CMS-based applications [59]. Related literature can be found
in seminal works [36, 37], as well as in more recent research [30, 31], where
the BMS and GBMS methods were introduced, for example. Within this
MOR approach, boundary DoFs are preserved after reducing the unit cell’s
internal DoFs. Consequently, the Bloch-Floquet periodicity condition can
be directly imposed afterward, as it would be in the absence of this MOR
step. This, in turn, does not mean that M̂BB and K̂BB in Eq. (3) remain
unchanged after reducing the interior DoFs; they are modified to account
for partial influence the unit cell interior DoFs exert on its boundary DoFs.
Accordingly, the following transformation holds:{

q̂B

q̂I

}
= TCB

{
q̂B

qI

}
, (4)

where qI (without a hat) represents a set of internal modal DoFs; TCB is the
CB projection matrix, given by:

TCB =

[
I 0
Γ Ξ

]
; (5)

I is an identity matrix of size (nL + nR) × (nL + nR); Γ is the matrix of
constraint modes of size nI × (nL + nR); Ξ is the matrix of fixed interface
modes of size nI × nCB; nj, for j ∈ {L, R, I}, is the number of DoFs related
to partitions illustrated in Fig. 2; and nCB is the number of fixed interface
modes, significantly smaller than nI (nCB ≪ nI).
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The matrix of fixed interface modes Ξ can be assembled by first solving the
eigenvalue problem resulting from Eq. (2), with all boundary DoFs constrained
to be nil: (

K̂II − κjM̂II

)
ξj = 0, (6)

which leads to:

Ξ =
[
ξ1 ξ2 · · · ξnCB

]
, for κj ∈ {κ1, κ2, . . . , κnCB

}, (7)

where nCB is determined through a frequency-based truncation criterion.
Specifically, nCB corresponds to the number of fixed interface modes such
that κ0.5

j /(2π) ⩽ (n̂× fmax), with n̂ representing a multiplicative factor (e.g.,
n̂ = 1.5, 3, 5) and fmax denoting the maximum frequency of analysis (in hertz).
In summary, Ξ plays the role of considering the necessary information about
the interior dynamics of a unit cell during the model reduction of interior
DoFs, while keeping its boundary DoFs unaltered.

On the other hand, the matrix of constraint modes, Γ, addresses the
influence of the fixed (preserved) boundaries in the MOR of interior DoFs
of the unit cell. It can be calculated using the Guyan method (or static
reduction) [60]:

Γ = −K̂
−1

II K̂IB. (8)

Computing the matrix of fixed interface, low-frequency modes (Ξ) can be
achieved efficiently by employing iterative solvers, such as the Arnoldi method,
implemented as eigs in MATLAB® [61] for sparse matrices. This approach
takes advantage of the sparse nature of matrices K̂II and M̂II, potentially
reducing the solution time for the eigenvalue problem in Eq. (6) from O(n3)
to O(n) — with n here denoting the number of equations involved in the
calculations —, as discussed in [31]. Similarly, the computation indicated in
Eq. (8) can be efficiently performed using the sparse supernodal Cholesky
algorithm, which is implicitly invoked by the backslash operator of MATLAB®

[61].
Based on the previously reviewed theory, the EoMs for the unit cell

of a periodic structure, with internal DoFs reduced from nI to nCB, while
preserving the boundary DoFs, can be expressed as:

M̄

{
¨̂qB

q̈I

}
+ K̄

{
q̂B

qI

}
= TT

CB

{
f̂B
f̂ I

}
, (9)
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where M̄ = TT
CBM̂TCB, K̄ = TT

CBK̂TCB, and
T is the transpose operator.

Note that, as discussed previously, although the boundary DoFs are
preserved after performing the reduction of boundary DoFs (step (3) in Fig.
1), M̄BB and K̄BB in Eq. (9) write as M̄BB = M̂BB+M̂BIΓ+ΓTM̂IB+ΓTM̂IIΓ
and K̄BB = K̂BB+K̂BIΓ+ΓTK̂IB+ΓTK̂IIΓ, respectively, thus partially taking
into account coupling between interior and boundary DoFs. Other coupling
takes place by means of M̄BI, M̄IB, K̄BI and K̄IB, naturally.

2.3. Model reduction of boundary (interface) DoFs

In accordance with the flowchart depicted in Fig. 1, local interface modal
reduction (step (4)) is conducted after carrying out the reduction of internal
DoFs of a unit cell, although it is not a requirement, as discussed later.
Additionally, this reduction must be performed in a way that enables the
subsequent application of Bloch-Floquet periodicity conditions [31]. This
implies that the transformation matrix associated with the reduction of
boundary DoFs must use the so-called compatible modes, meaning that the
modal DoFs at the unit cell’s left interface must necessarily be compatible
with those modal DoFs at its right extremity after the reduction process is
accomplished. Having this in mind, one writes:{

q̂B

qI

}
= TL-CC

{
qB

qI

}
, (10)

where:

TL-CC =

[
L 0
0 I

]
, (11)

L =

[
ΨLR 0
0 ΨLR

]
, (12)

and:

ΨLR =
[
ψL ψR

]
. (13)

The columns of ψL and ψR in the matrix of compatible modes ΨLR above
correspond to partitions of modes ψj that satisfy:(

K̄− γjM̄
)
ψj = 0, (14)
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i.e.:

ψL =
[
(ψ1)L (ψ2)L · · ·

(
ψnL-CC

)
L

]
, (15)

ψR =
[
(ψ1)R (ψ2)R · · ·

(
ψnL-CC

)
R

]
, (16)

where
(
ψj

)
L
and

(
ψj

)
R
are used to indicate subsets of a given mode ψj.

The value of nL-CC is determined using the same frequency-based criterion
employed to determine nCB, presented earlier in Subsection 2.2, i.e., nL-CC

corresponds to the number of vibration modes such that γ0.5
j /(2π) ⩽ (n̄×fmax),

with n̄ representing a multiplicative factor, not necessarily equal to n̂.
Aiming to mitigate numerical issues arising from the MOR process and

eliminate redundant modes from the L-CC projection matrix TL-CC, and
consequently from the final reduced modal model, Eq. (13) can be rewritten
as:

ΨLR =
[
ψL ψ̃R

]
, (17)

where ψ̃R is a subset of modes collected in ψR, corresponding to those for
which the MAC index, given by [62]:

MAC
{(
ψj

)
L
,
(
ψj

)
R

}
=

∣∣∣(ψj

)T
L

(
ψj

)∗
R

∣∣∣2((
ψj

)T
L

(
ψj

)∗
L

)((
ψj

)T
R

(
ψj

)∗
R

) , (18)

is lower than a user-defined threshold value TVMAC, with | | denoting the
absolute value of a scalar and ∗ the complex conjugate operation. The
number of mode partitions collected in ψ̃R, equal to nR̃, can range from zero
to at most nL-CC. For the case when nR̃ = nL-CC, one obtains ψ̃R = ψR, so
that ΨLR = [ψL ψR]. It is important to note that, the number of modes
which get collected in ψ̃R is inherently dependent on the unit cell dynamics,
being influenced, for instance, by its degree of symmetry. More details about
the selection of TVMAC and related consistent modes are provided later, in
Subsections 4.1.3 and 4.3.1, respectively.

The MAC number is a measure of the degree of correlation between two
eigenvectors, widely used in structural dynamics. It is bounded between 0 and
1, where values close to 0 indicate the absence of correlation between the two
vectors, suggesting that they are dissimilar or unrelated. In contrast, values
approaching 1 show a high degree of correlation, suggesting that the vectors
are similar, or have nearly identical shapes [63]. Therefore, the MAC number
can be understood as an efficient tool for removing redundant modes from
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Eq. (13), as a simple frequency-based truncation criterion does not take into
account mode shapes themselves. Among other problems, keeping redundant
modes in Eq. (13), can (1) increase the number of equations in the reduced
modal model, and (2) lead to numerical issues during the computation of
forced responses and other related results in the WFEM. Additionally, note
that an excessive number of boundary DoFs causes complications in the
WFEM-related equations, introduced in Section 3, as the relevant expressions
depend on their amount.

Last, but not least, after assembling ΨLR, following the procedure de-
scribed above, resulting in Eq. (17), it is of utmost importance to guar-
antee that it is not singular, by ensuring that the partitions of vibration
modes collected in ΨLR (Eq. (17)) be linearly independent [64]. This task
can be accomplished by orthogonalizing ΨLR, using, for example, singular
value decomposition (SVD). The SVD of ΨLR can be performed such that
SVD(ΨLR) = UΣVT, where U and V represent matrices of left and right
singular vectors, respectively, and Σ is a diagonal matrix of singular values
of ΨLR. If some singular values are very small, the matrix of left singular
vectors given by U can be truncated, retaining the nSVD most significant
ones (where nSVD denotes the number of dominant singular values), with-
out significantly affecting the original basis ΨLR. Accordingly, ΨLR matrix
given by Eq. (17) can be rewritten as ΨLR → U. In MATLAB® [61], the
orth command is a direct implementation of this procedure, meaning that
ΨLR → orth(ΨLR). By default, the threshold value used by MATLAB® to
truncate the most relevant left singular values in the orth command is given
by τ = max(size(ΨLR))× eps(norm(ΨLR)), where max, size, eps, and norm

are native functions of MATLAB®.
Therefore, the EoMs for a unit cell reduced through L-CC MOR, after its

internal DoFs have been represented in modal coordinates by the CB method,
can be expressed as:

M

{
q̈B

q̈I

}
+K

{
qB

qI

}
= TT

L-CCT
T
CB

{
f̂B
f̂ I

}
, (19)

where M = TT
L-CCM̄TL-CC and K = TT

L-CCK̄TL-CC. Note that, in this case,
contrarily to the reduction of interior DoFs discussed previously, the L-CC
projection matrix affects only the partitions of the mass and stiffness matrices
related to the boundary DoFs themselves, i.e., MBB and KBB in Eq. (19)
write as MBB = ΨT

LRM̄BBΨLR and KBB = ΨT
LRK̄BBΨLR, respectively.
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It is important to realize that the final number of equations in Eq. (19) is
influenced by both the internal reduction performed by the CB method, and
by the reduction of boundary DoFs through the L-CC MOR (steps (3) and
(4) in Fig. 1). Therefore, it is determined by the sum nCB + (nL-CC + nR̃), if
U is not truncated, otherwise it is given by nCB plus the number of relevant
singular values nSVD.

In general, in the proposed procedure, few modes, if any, are eliminated
from U during the orthogonalization of ΨLR, as the adopted threshold value
τ is very small. In this context, SVD is used simply to avoid singularity issues
that can occur if ΨLR is not orthogonalized [64].

On the other hand, SVD could also be used to discard redundant (almost
collinear) modes from ΨLR [31, 45, 64]. The adoption of this strategy relies on
the specification of a threshold, which may not be straightforward. It would,
otherwise, eliminate the necessity of the alternative, MAC-based procedure
introduced in this work. Notwithstanding, in the authors’ view, the MAC-
based approach is more robust than the SVD-based procedure for reducing
modal boundary DoFs, as MAC indices can be used to identify and remove
redundant modes from ΨLR taking directly into account spatial correlation
between mode shapes. A deeper comparison of both these methods is provided
in Subsection 4.4.2, considering results from numerical simulations.

Additionally, note that, instead of solving an eigenvalue problem that only
considers the boundary equations for reducing the boundary DoFs, as has
been done in [31, 34, 35, 40–43, 45], inhere the coupled behavior between
qI and its neighboring DoFs, collected in q̂B, has been accounted for in Eq.
(14). As a consequence of this modification, frequency-based truncation works
very well for determining an initial modal basis for constructing ΨLR, cf. Eq.
(13), using the most relevant vibration modes in a given frequency band,
which are afterward filtered out exploring MAC indices, leading to Eq. (17).
Furthermore, this change enables the computation of more reliable boundary
modes for the unit cell, improving the accuracy of the model reduction process
overall, and, consequently, the computation of subsequent results, such as
harmonic forced responses. This discussion is further detailed in Subsection
4.4, accompanied by comprehensive results from numerical simulations.

It must be highlighted that the proposed reduction of boundary DoFs
involves the solution of a global eigenvalue problem (at the unit cell level)
given by Eq. (14). Despite it involves both physical (boundaries) and modal
(interior) DoFs, for the examples considered later in Section 4, the matrices K̄
and M̄ presented condition numbers similar to those found when the method
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shown in [31] was used, which relies on a local eigenvalue problem, comprising
physical coordinates, only. In general, the condition numbers of the previous
matrices have been observed to be only slightly worse (larger) than those seen
when the traditional L-CC was followed. Notwithstanding, no ill-conditioning
issues were noted during the solution of Eq. (14), for the cases one studied.
This is a point which deserves attention when applying the proposed method;
but which would be accompanied by evident signs of issues during the solution
of Eq. (14).

Lastly, it should be clarified that a single transformation matrix encom-
passing both the CB and L-CC MOR methods can also be derived, allowing
for a straightforward expression that relates full and reduced DoFs as:{

q̂B

q̂I

}
= T

{
qB

qI

}
, (20)

where:

T =

[
L 0
ΓL Ξ

]
. (21)

According to the proposed scheme for reducing the boundary DoFs, which
one might cautiously term “global”, L can be derived without the need for
performing the interior reduction, because Eq. (14) is solved at the unit cell’s
global level, therefore considering its “complete” dynamic behavior. Of course,
it is more computationally advantageous to conduct the CB MOR method
before applying the L-CC MOR technique, as suggested in the flowchart
depicted in Fig. 1. This approach often results in solving a much smaller
eigenproblem during the L-CC model reduction step (recall that nCB ≪ nI was
assumed in Subsection 2.2). However, it may also be the case that reduction
of boundary DoFs should be performed first, which is well-supported within
the proposed methodology.

On the other hand, the same cannot be achieved if the traditional method-
ology [31], which considers a boundary-only, “local” eigenvalue problem, is
followed, as it provides eigenvectors related to blocked interior DoFs, disre-
garding the dynamic behavior of the unit cell as a whole. Hence, for it to
work properly, the effect of interior DoFs must be taken into account on the
boundaries at least statically, which is granted by the CB MOR through the
matrix of constraint modes (cf. Subsection 2.2).
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3. A brief review of the WFEM

This section covers the mathematical formulation of the one-dimensional
WFEM using reduced-order unit cell models, corresponding to step (5) in
Fig. 1. The explanation of the WFEM provided here is mainly a summary of
findings from [65, 66] and other works duly referenced below, along with our
own experiences in utilizing the method.

3.1. Basic developments

The reduced time-domain EoMs derived in the previous section, given by

Eq. (19), can be reformulated in the frequency domain as D̃
(n)

q(n) = F(n),

where D̃
(n)

= −ω2M + K represents the unit cell dynamic stiffness ma-
trix (DSM), q(n) and F(n) denote frequency-dependent vectors of displace-
ments/rotations and forces/moments, respectively. A damping model may
be included in the DSM by making the unit cell’s stiffness matrix complex,
for example, K → (1 + iη)K, where η stands for the hysteretic damping
coefficient [67].

Differently from the segregation of the DoFs of the unit cell performed
previously for the application of MOR, i.e., in boundary and internal DoFs, a
more convenient partitioning can be established for the developments related
to the WFEM. This involves explicitly writing the DSM as a function of
modal DoFs encountered at the unit cell’s boundaries (q

(n)
L and q

(n)
R ) and

internally (q
(n)
I ) — according to the partitioning scheme illustrated in Fig. 2:D̃

(n)

LL D̃
(n)

LR D̃
(n)

LI

D̃
(n)

RL D̃
(n)

RR D̃
(n)

RI

D̃
(n)

IL D̃
(n)

IR D̃
(n)

II



q
(n)
L

q
(n)
R

q
(n)
I

 =


F

(n)
L

F
(n)
R

F
(n)
I

 . (22)

From Eq. (22), the internal DoFs of the unit cell can be condensed
to its boundaries. This step, known as dynamic condensation, does not
compromise the accuracy of the unit cell’s mathematical model. After dynamic
condensation, it can be demonstrated how the DoFs and loads at the right
side of the unit cell can be obtained from those at its left. Subsequently, by
enforcing DoFs’ compatibility and load equilibrium between adjacent unit
cells in a periodic structure, namely (n) and (n+ 1), i.e., q

(n)
R = q

(n+1)
L and

F
(n)
R = −F

(n+1)
L + F

(n)
B , where F

(n)
B represents an external load applied to the
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right interface of the nth cell, the following relationship is derived [68]:

u
(n+1)
L = Su

(n)
L + b(n), (23)

with:

u
(n)
L =

{
q
(n)
L

−F
(n)
L

}
, S =

[
−D−1

LRDLL −D−1
LR

DRL −DRRD
−1
LRDLL −DRRD

−1
LR

]
,

b(n) =

{
−D−1

LRDLIF
(n)
I(

DRI −DRRD
−1
LRDLI

)
F

(n)
I − F

(n)
B

}
. (24)

In the related literature, the vector uL is known as the state vector, and S
is recognized as the unit cell transfer matrix. The vector b enables one to
account external loads applied at both internal and right-boundary DoFs, if
they exist.

Based on the recurrence relation embedded in Eq. (23), it can be shown
that:

u
(n+1)
L = Snu

(1)
L +

∑n

k=1
Sn−kb(k), (25)

u
(N+1)
L = SN+1−nu

(n)
L +

∑N

k=n
SN−kb(k), (26)

where N represents the number of unit cells of a finite periodic structure.
These expressions support mathematical developments in subsequent analyses.

3.2. Computation of wave modes

Determination of wave modes is a crucial step in the WFEM, as they form
the basis for expansions used in steps which follow afterward. Additionally,
the wave modes gather information related to wave shapes and dispersion
characteristics, which are often calculated to investigate the dynamic behavior
of periodic structures [30, 31, 34, 35, 38–44, 46–49]. This, for instance, has mo-
tivated the advances in BMS and GBMS reported previously. Unfortunately,
several numerical issues may arise during this task, for reasons explained
later. Therefore, this section provides the main guidelines for the efficient
and accurate computation of wave modes.

As one-dimensional wave propagation phenomena are addressed in this
work, the Bloch-Floquet periodicity condition for one-dimensional problems
is resorted to [33]:

u
(n+1)
L = µu

(n)
L , (27)
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where µ = exp(−ik∆) is the propagation constant, k is the corresponding
wavenumber, ∆ is the unit cell length along the direction of wave propagation,
and i =

√
−1 is the unit imaginary number. If external loads are zero in Eq.

(23) (b(n) = 0) and the Bloch-Floquet periodicity condition given by Eq. (27)
is invoked, one can derive a standard eigenvalue problem as follows [69]:

(S− µjI)ϕj = 0. (28)

Related solutions are the eigenpairs µj and ϕj ∝ u
(n)
L (also known as wave

modes), indexed by j ∈ {1, . . . , 2× (nL-CC+nR̃)} (or j ∈ {1, . . . , 2×nSVD}),
which store several properties related to wave propagation in infinite media.
Wavenumbers, for instance, are of great interest in structural dynamics and
many other areas, being computed as kj = (lnµj)/(−i∆), to determine, for
example, bandgap locations [70].

The solution of Eq. (28) might not be straightforward for many unit cell
designs. As an example, this includes unit cells that have a large length along
the periodicity direction, for which the computation of high-order evanescent
wave modes can be challenging. In general, this happens because ϕj collects
displacements/rotations and forces/moments, whose order of magnitude can
be quite disparate [71, 72]. Several formulations have been developed over
the past years to improve on Eq. (28), such as the (N-L) approach, quadratic
eigenvalue problem, S+ S−1 transformation (or Zhong’s eigenvalue problem),
and more [73]. In this work, the Zhong’s eigenvalue problem is employed,
which is a method applicable to general unit cells, symmetric or not, and is
usually less prone to such numerical complications, for which the following
holds [65]: (

A− λjB
)
zj = 0, (29)

with the eigenvalues and eigenvectors of this better conditioned eigenproblem
denoted as λj and zj, respectively, A = NJLT + LJNT, B = LJLT, and:

N =

[
DRL 0

−(DLL +DRR) −I

]
, L =

[
0 I

DLR 0

]
, J =

[
0 I
−I 0

]
. (30)

Since large condition numbers of A or B indicate a nearly singular prob-
lem, one can further alleviate numerical issues by employing the following
methodology. If cond (A) < cond (B), where cond ( ) denotes the condition
number of a matrix, it is preferable to solve (B− λ̂jA)zj = 0 instead of Eq.
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(29) [74], whose solutions provide the inverse eigenvalues λ̂j and corresponding

eigenvectors zj. This means computing large eigenvalues (λ̂j) rather than
small ones (λj) that are likely to be close to each other, a condition which
could introduce numerical issues during their determination. Practice experi-
ence indicates that, before computing λj from λ̂j , it is strongly recommended

to verify if |Im{λ̂j}| → 0 (e.g., less than the floating-point relative accuracy)

and |Im{λ̂j}| ≠ 0. If that is the case, the approximation λ̂j ≈ Re{λ̂j} can be

applied, so that λj is recovered afterward as λj = 1/λ̂j.
As shown by Mencik and Duhamel [65], it can be demonstrated that

the eigenvalues of Eq. (29) are related to each propagation constant by

λj = µj + 1/µj, such that µj =
1
2

(
λj ±

√
λ2
j − 4

)
. However, direct compu-

tation of µj employing the quadratic formula can lead to pitfalls brought
by special numerical conditions, whose occurrence is not uncommon, as the
terms found in the discriminant of the solution of the second-degree poly-
nomial equation can be very disparate. This issue can also happen in the
kinematics of mechanisms for determining angles between links of planar and
three-dimensional systems (cf. ref. [75], p. 100). Therefore, as an alternative,
µj can be obtained numerically by calculating the eigenvalues of the com-
panion matrix corresponding to the polynomial equation. This algorithm is
implemented in MATLAB® [61] as roots and satisfactorily mitigates the
occurrence of numerical instabilities due to challenges in computing µj.

Eigenvectors of the original eigenproblem stated in Eq. (28) can be re-
trieved as [65]:

ϕj =

[
I 0

DRR I

]
wj, with wj = J

(
LT − 1

µj
NT

)
zj. (31)

Eigenvalues and associated eigenvectors can be separated into those related
to positive-, (µj,ϕj), and negative-going waves, (µ∗

j ,ϕ
∗
j), for j ∈ {1, ...,

nL-CC + nR̃} (or j = {1, . . . , nSVD}). If |µj| < 1, the mode is associated
with a wave that propagates in the positive direction; otherwise, if |µj| > 1,
the corresponding wave propagates in the negative direction. When |µj| =
1, one can examine the power flow of the wave mode to make a decision
[72, 76]. According to this assortment procedure, the following matrices can
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be introduced:

µ = diag(µ1, . . . , µnL-CC+nR̃
), Φ =

[
ϕ1 . . . ϕnL-CC+nR̃

]
=

[
Φq

ΦF

]
, (32)

µ∗ = diag(µ∗
1, . . . , µ∗

nL-CC+nR̃
), Φ∗ =

[
ϕ∗

1 . . . ϕ∗
nL-CC+nR̃

]
=

[
Φ∗

q

Φ∗
F

]
, (33)

where subscripts q and F denote partitions of the wave modes matrices
associated with displacements/rotations and forces/moments, respectively.

It should also be pointed out that, to develop expressions presented in
Subsection 3.3, which rely on simplifications due to the orthogonality of wave
modes, the eigenvectors collected in Φ and Φ∗ must be normalized according
to ϕj → ϕj(ϕ

∗T
j Jϕj)

−0.5 and ϕ∗
j → ϕ∗

j(ϕ
∗T
j Jϕj)

−0.5 [71].

3.3. Computation of harmonic forced responses

Expressions used for calculating harmonic forced responses of finite peri-
odic systems, encompassing, for example, PCs and EMs, are briefly reviewed
in this section. It should be clarified that these expressions, as well as other
which have been presented throughout the work, are general, and can be
applied to compute forced responses of periodic structures considering dis-
tributed or concentrated loads. They are also well suited for considering loads
applied at interior and/or boundary DoFs of unit cells. The imposition of
BCs is also discussed below, with the resulting expressions provided at the
end. One begins by expressing the state vector, u

(n)
L , and the vector that

collects externally applied loads, b(n), as a linear combination of wave modes’
amplitudes:

u
(n)
L = ΦQ(n) +Φ∗Q∗(n), (34)

b(n) = ΦQ
(n)
B +Φ∗Q∗(n)

B , (35)

where Q(n), Q∗(n), Q(n)
B , and Q

∗(n)
B are vectors gathering amplitudes related

to the wave modes’ expansion of u
(n)
L and b(n). These expressions establish

the connection between physical and modal (or wave mode) domains, which
is the basis of the WFEM.

By manipulating Eqs. (25) and (26) in conjunction with Eqs. (34) and
(35), and taking into account the orthogonality of the wave modes defined
as Φ∗TJΦ = −ΦTJΦ∗ = I and ΦTJΦ = Φ∗TJΦ∗ = 0 [71], the following
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expressions can be derived [66, 68]:

Q(n) = µn−1Q(1) +
∑n−1

k=1
µn−k−1Q

(k)
B , (36)

Q∗(n) = µN+1−nQ∗(N+1) −
∑N

k=n
µk−n+1Q

∗(k)
B , (37)

with Q
(k)
B and Q

∗(k)
B given by:

Q
(k)
B =

(
µΦ∗T

q DLI +Φ∗T
q DRI

)
F

(k)
I −Φ∗T

q F
(k)
B , (38)

Q
∗(k)
B = −

(
µ∗ΦT

qDLI +ΦT
qDRI

)
F

(k)
I +ΦT

qF
(k)
B . (39)

Finally, combining Eqs. (34), (36), and (37), and taking into account that

the state vector u
(n)
L contains information related to DoFs and loads (q

(n)
L

and F
(n)
L , cf. Eq. (24)), along with the partitioning scheme introduced in Eqs.

(32) and (33), one can show that:

q
(n)
L = Φqµ

n−1Q+Φ∗
qµ

N+1−nQ∗

+Φq

∑n−1

k=1
µn−k−1Q

(k)
B −Φ∗

q

∑N

k=n
µk+1−nQ

∗(k)
B , (40)

− F
(n)
L = ΦFµ

n−1Q+Φ∗
Fµ

N+1−nQ∗

+ΦF

∑n−1

k=1
µn−k−1Q

(k)
B −Φ∗

F

∑N

k=n
µk+1−nQ

∗(k)
B , (41)

withQ ≡ Q(1) representing the wave mode amplitudes of waves that propagate
from the left interface of the 1st unit cell to the right (right-going waves),
and Q∗ ≡ Q∗(N+1) representing the wave mode amplitudes of waves that
propagate from the right interface of the N th unit cell to the left (left-going
waves).

In this work, the numerical investigations presented in Section 4 have
been performed considering free-free BCs, for which F

(1)
L = 0 and F

(N+1)
L = 0.

The effect of external loads, in turn, was taken into account through the
vector FB introduced previously, as seen later. Accordingly, resorting to
the pre-conditioning procedure proposed by Mencik [33], which makes the
main diagonal of coefficients matrix all ones, the following linear system of
equations can be derived:[

I Φ−1
F Φ∗

Fµ
N

Φ∗−1
F ΦFµ

N I

]{
Q
Q∗

}
=

{
Φ−1

F Φ∗
F

∑N
k=1 µ

kQ
∗(k)
B

−Φ∗−1
F ΦF

∑N
k=1 µ

N−kQ
(k)
B

}
. (42)
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Solving this system enables the determination of various responses of general
periodic structures, which includes PCs or EMs, for example, in modal
coordinates, by considering the expressions introduced in Eqs. (40) and (41),
as well as relations embedded in Eq. (22). Physical responses can afterward
be obtained by considering the relationship given by Eq. (20).

It should be noted that the size of Eq. (42) depends on the number of
wave modes collected in Eqs. (32) and (33), and it is a choice that must be
made during simulations. It can vary from 2 to 2× (nL-CC + nR̃) when the
reduction of boundary DoFs is performed exploring MAC indices and U is not
truncated during the orthogonalization procedure (cf. Subsection 2.3), from 2
to 2× nSVD when the reduction of boundary DoFs is performed in the same
way, but left singular vectors in U are filtered-out during orthogonalization,
or from 2 to 2× nL when boundary DoFs are not reduced, i.e., are kept as
physical coordinates.

4. Numerical experiments

In the subsections which follow, one illustrates the use of the GBMS
together with the WFEM for conducting fast and accurate dynamic analyses
of periodic structures, which may involve calculating dispersion curves, forced
responses, harmonic deformed patterns, among other related results. Subsec-
tion 4.1 encompasses the investigation of a periodic structure designed by
exploiting unit cells with IAM. Some numerical issues and computational chal-
lenges that ensue when full-order unit cells models are used with the WFEM
are covered in Subsection 4.1.1, demonstrating one of the motivations for this
work. Main guidelines for enabling a broader understanding of how to reduce
internal and boundary DoFs of unit cells in periodic structures are given
in Subsections 4.1.2 and 4.1.3. Afterward, the performance of the proposed
modeling technique, which combines reduced-order models for unit cells with
the WFEM, is investigated for an EM whose unit cells embed rectangular
spiral resonators in Subsection 4.2, and for a PC characterized by a unit cell
that has an internal void of arbitrary shape, and several boundary DoFs, in
Subsection 4.3. Lastly, complementary results and discussions, seeking to
further clarify the benefits of the proposed modeling approach and situate
the current work within the state of the art, are provided in Subsection 4.4.

For all examples given below, convergence analyses were performed to
assess the reliability and accuracy of the computational results in the frequency
band ranging from 0Hz to fmax = 5000Hz, with frequency increments of 5Hz.
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The unit cell mesh was considered converged when the relative error between
successive mesh refinements in the larger natural frequency of the cell, was
less than 1%, as calculated by the following equation:

Errormesh =
fcoarser − ffiner

ffiner
, (43)

where fcoarser is the largest natural frequency calculated using the coarser
mesh, and ffiner is the largest natural frequency calculated using the finer
mesh, both smaller than fmax and related to the same mode.

The error between frequency response functions (FRFs) calculated using
the WFEM and GBMS (HWFEM + GBMS) and the reference solution obtained
by the FEM (HFEM) was quantified through two methodologies. The first
one, is simply the relative error between FRFs peaks, measuring mass and
stiffness variations, calculated as follows:

REfr j =
fWFEM + GBMSj − fFEMj

fFEMj

, (44)

with fFEMj and fWFEM + GBMSj corresponding to resonance frequencies identi-
fied in the FRFs computed by the FEM and WFEM, respectively, associated
to the same vibration mode. Conversely, the second error metric between
FRFs, known as Cross Signature Scale Factor (CSF), measures the degree
of similarity between responses in terms of amplitude. It is sensitive to
damping changes and its value ranges from zero to one, operating similar to
the MAC index (cf. Subsection 2.3). A value of zero means that the FRFs
are completely uncorrelated, while values near one indicate a high degree
of correlation or similarity between them. The CSF applied to single-input
single-output systems is written as [77]:

CSF(ω) =
2
∣∣HH

WFEM + GBMSH
T
FEM

∣∣
HH

WFEM + GBMSH
T
WFEM + GBMS +HH

FEMH
T
FEM

, (45)

where the superscript H denotes the Hermitian operator.
All reference FRFs shown below were obtained with finite elements, by

employing the direct method (DM), as periodic structures often exhibit defect
modes (whether introduced intentionally or not) that are characterized by
localized vibrations [78–80] and are not adequately captured by the traditional
modal superposition method. This choice, however, should not be seen as a
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big challenge, as computational time remain non-prohibitive for all examples
under investigation in this work. It should be clarified, nonetheless, that these
reference FRFs could alternatively be calculated using a properly enriched
modal superposition method, which incorporates an adequate basis enrichment
procedure with residual vector calculations [81–85].

As the duration of steps involved in the performed simulations are reported
later, it is clarified that they have been executed on a DELL XPS 8920
desktop computer equipped with an Intel(R) Core(TM) i7-7700 CPU running
at 3.60GHz and 32.0GB of RAM. Additionally, our codes were developed
in MATLAB® and no drastic optimizations (such as partial compilation of
functions via the mex functionality) have been implemented. Routine good
practices, such as pre-allocating variables, were followed, however.

4.1. Phononic crystal incorporating inertial amplification mechanism

The first problem investigated in this work is a PC composed of N = 10
unit cells, featuring IAM, inspired by Mizukami et al. [86]. The PC is assumed
to be made of polylactic acid (PLA) with an elastic modulus of 3.5GPa, a
density of 1250 kgm−3, Poisson’s ratio of 0.35, and hysteretic damping of
η = 1%. Its dimensions are depicted in Fig. 3a, with ∆ = 112mm. The unit
cell FE model was generated using plane stress state assumptions, with the
out-of-plane depth equal to 30mm. Four- and three-noded FEs with linear
interpolation functions were employed, resulting in the FE mesh shown in
Fig. 3b. Specifically, this mesh was generated using a global element size

(a) (b)
Input DoFOutput DoF

x

y

(c)

Figure 3: Phononic crystal incorporating IAM: (a) unit cell geometry and dimensions
(mm), (b) its corresponding FE mesh, and (c) finite periodic structure represented along
with the input and output DoFs used for computing harmonic forced responses.
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of 0.25mm, which resulted in a finite element model with 32148 nodes and
30684 elements.

All harmonic forced responses computed for the IAM-based PC in the
following subsections are associated with its motion in the y-direction. Specif-
ically, they correspond to transfer FRFs, with excitation occurring at the
central node of the rightmost edge of the PC and responses obtained at its
opposite side, at the leftmost edge, also at the central node of the periodic
system, as shown in Fig. 3c.

4.1.1. Numerical challenges in the use of the WFEM

In this subsection, we briefly demonstrate one of the motivations for
the present work. As a computational method, the WFEM is prone to
several numerical issues, as illustrated by Waki et al. [72] and Mencik [71].
Beyond numerical challenges that usually arise from wrongly computed wave
modes, selecting an adequate basis to convert physical DoFs and loads to
the modal space is sometimes not an easy task. This preceding step is of
utmost importance for forced response calculations, as they are dependent
on the basis formed by the wave modes, cf., e.g., Eqs. (40) and (41). The
challenges increase for dynamic analyses in higher frequency ranges, as a finer
mesh is required to accurately capture the structural behavior. This, in turn,
may necessitate calculating a larger number of wave modes in the WFEM to
ensure proper convergence of the FRFs, leading to the involvement of large
size matrices in the wave-based modeling approach.

Considering that only the internal DoFs of the IAM-based PC are reduced
through the CB MOR method with a satisfactory number of fixed interface
modes, equal to 38 (determined in accordance with subsequent discussion
in Subsection 4.1.2), Fig. 4 shows that, when the full wave basis with 50
left-going wave modes is employed to compute the FRF, represented by the
magenta solid line, numerical issues (instabilities) arise at particular frequency
bands. This occurs for reasons discussed earlier in Subsection 3.2. Since
the investigated PC has a unit cell length which cannot be freely modified
without disturbing its overall geometry (cf. Fig. 3), the strategy proposed in
[72, 73, 76] to mitigate numerical problems, consisting of reducing the length
of the unit cell along the direction of wave propagation, cannot be considered.

On the other hand, if a reduced number of wave modes is employed to
compute the FRF of the IAM-based PC, neglecting the highly evanescent
waves for which Im(kj) ≫ Re(kj), j ∈ {1, 2, . . . , 2× 50}, Fig. 4 also reveals
inaccuracies near the defect modes occurring approximately at 2000Hz and
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Figure 4: Comparison between the magnitude of accelerance-type FRFs obtained by the
traditional FEM employing the DM and the WFEM. For the latter method, only the
internal DoFs were reduced through the CB MOR method, with a converged number
of fixed interface modes equal to 38 (step (3) in Fig. 1). Wave bases were formed by
employing 50 (full wave basis) and 3 left-going wave modes. The corresponding input and
output DoFs used to calculate these FRFs are shown in Fig. 3c.

3500Hz. These inaccuracies typically occur for driving points’ FRFs, for which
evanescent modes are likely to influence the system’s dynamics, but can also
be noticed at transfer points’ FRFs, as demonstrated in Fig. 4. This occurs
due to the absence of certain modes in the wave mode basis, which hinders
the accurate representation of localized modes, similar to what happens in the
forced response computation by the traditional modal superposition-based
technique, without enrichment by, e.g., residual vector(s).

Therefore, results shown in Fig. 4 illustrate the importance of considering
evanescent wave modes to accurately compute FRFs of periodic structures for
a particular example. The consideration of high-order evanescent modes can
also be appealing in other conditions, for example, to study periodic structures
embedded with defects, where wave reflection and diffraction phenomena
occur at the defect locations [87]. Accordingly, in the following simulations,
forced responses calculated by the WFEM were obtained using the full wave
basis formed by the wave modes, whether or not reduced unit cell models
have been employed. The investigation of alternative strategies to derive the
wave mode basis used in the WFEM in a more efficient or optimized way is
beyond the scope of this work but can be found elsewhere [47].

It should be clarified that the instabilities seen in Fig. 4 can also be
mitigated by employing alternative eigenvalue problems to solve Eq. (28).
Although not presented here for the sake of brevity, we found that improved
accuracy of solutions can be achieved by solving the (N,L) eigenproblem
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[71] instead of Zhong’s eigenproblem (S+ S−1 approach, Eq. (29)). However,
numerical issues (instabilities) still persist in some frequency bands, making
the (N,L) approach unable to address all the issues seen in Fig. 4. It should
be noted, however, that the (N,L) eigenproblem can only be applied to
symmetric unit cells. This is the case for the cell being now considered,
but the other periodic structures studied in this work all have asymmetric
geometric features. Specifically, the (N,L) method is unsuitable for analyzing
the EM with rectangular spiral resonators (cf. Subsection 4.2) and the PC
with an internal void of arbitrary shape and several boundary DoFs (cf.
Subsection 4.3). In summary, although the (N,L) eigenproblem may exhibit
better stability compared to Zhong’s eigenproblem, its applicability is limited
to a much narrower class of structures, characterized by symmetric unit cells.

Another strategy that significantly improves the computation of forced
responses by the WFEM and helps to fix instability issues is to compute the
propagation constants µj numerically, avoiding the direct use of the quadratic

formula
(
µj =

1
2

(
λj ±

√
λ2
j − 4

))
, cf. Subsection 3.2. This can be achieved,

for example, by obtaining µj from the companion matrix corresponding to
the polynomial equation. In MATLAB® [61], this algorithm is implemented
as roots. To illustrate this matter, Fig. 5 shows dispersion curves (wavenum-
bers) obtained by directly using the quadratic formula and by applying the
proposed scheme. These curves were calculated after reducing both the inter-
nal and boundary DoFs of the unit cell, using eigenvectors from the “global”
eigenproblem (14) and the MAC-based approach to eliminate redundant ones
from the projection basis. Considering criteria that are discussed next in
Subsections 4.1.2 and 4.1.3, results were obtained using 38 fixed interface
modes in the CB method (step (3) in Fig. 1) and 16 modes in the L-CC
method (step (4) in Fig. 1). One clarifies that reduced-order unit cell mod-
els were employed here only to avoid handling large-scale matrices, thereby
circumventing tasks demanding not-insignificant amount of time.

As can be observed in Fig. 5, the simple modification in the method
used to compute the propagation constants notably improves the accuracy of
results and addresses instability issues found in the traditional approach (i.e.,
when µj is computed from the quadratic formula). These instabilities in the
wavenumbers kj indicate that the propagation constants µj have not been
computed accurately by direct application of the quadratic formula and, as a
consequence, the calculation of subsequent results can be compromised. In
particular, Eqs. (40) and (41), provided at the end of Subsection 3.3 and used
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Figure 5: Dispersion curves obtained using the quadratic formula and the proposed scheme
(companion matrix approach) for the calculation of propagation constants. Internal and
boundary DoFs were reduced with 38 fixed interface modes considered in the CB method
(step (3) in Fig. 1) and 16 modes in the L-CC method (step (4) in Fig. 1). The criteria for
selecting these quantities of modes are discussed in Subsections 4.1.2 and 4.1.3.

to obtain harmonic forced responses, show that µ can be raised to the power
of N , the number of unit cells making a finite periodic structure. Specifically,
terms of the form µN

j arise in these equations, which amplify inaccuracies
present in µj . This leads to numerical instability and erroneous forced response
predictions. The numerical computation of µj using the companion matrix
approach avoids these issues by ensuring that the propagation constants are
calculated with improved accuracy, thereby making the calculation of forced
responses by the WFEM more reliable.

Lastly, it should be anticipated that the use of CB and L-CC MOR
methods prior to step (5) in Fig. 1 is of utmost importance to guarantee
numerical stability for forced response computations employing the WFEM,
as well as to speed up calculations, as demonstrated later. In particular, the
CB method can replace internal DoFs by a reduced, yet accurate set of modal
DoFs, significantly improving subsequent operations, such as the dynamic
condensation step required by the WFEM. Similarly, the L-CC MOR method
enables deriving unit cell modal models with a reduced number of boundary
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equations, allowing the use of full wave bases to compute forced responses
in the WFEM, as needed, without encountering the numerical complications
described before. In summary, by combining both MOR strategies, the
dynamic behavior of general periodic structures can be efficiently assessed by
the WFEM with low computational costs and minimized numerical issues.
This aspect is treated in the next subsections.

4.1.2. Selection of threshold frequency used in the CB MOR method

In the literature, various threshold values n̂ used for retaining the most
relevant modes in the matrix of fixed interface modes Ξ can be found, as
discussed in Subsection 2.2. However, these values are heuristics, and, owed
to them, obtained reduced-order models may be inaccurate. To investigate
this matter, since the CB MOR method (step (3)) precedes the L-CC MOR
technique (step (4)) in the proposed methodology, as shown in Fig. 1, Fig. 6a
displays the magnitude of FRFs obtained by varying the parameter n̂, without
reduction of boundary DoFs, plotted against the reference FRF calculated by
FEM.

First of all, Fig. 6a reveals numerical issues in all FRFs computed using the
WFEM, at the same frequency bands for which problems were seen in Fig. 4.
These artificial, erroneous peaks (instabilities) are a consequence of incorrectly
computing the wave basis used for obtaining the forced responses of the PC
with the IAM-based unit cell, as discussed previously. In fact, full wave bases
often accumulate errors, especially when unit cells with several boundary
DoFs are considered. This fact emphasizes that, although a complete wave
basis is relevant for investigating the dynamic behavior of periodic structures,
some incorrectly computed high-order wave modes can harm the overall
accuracy of responses.

Additionally, Fig. 6a also reveals that, as n̂ increases, the magnitudes of
FRFs calculated by the WFEM, with the reduction of internal DoFs, get
closer to the reference result in the pass bands. Furthermore, the discrepancies
between the curves, due to premature truncation of modes in the matrix of
fixed interface modes, are more prominent at higher frequencies, as shown by
the zoomed view in Fig. 6b. These disparities indicate that additional internal
DoFs must be included in the modal model to predict the dynamic behavior
of the IAM-based PC appropriately, or the effect of residual modes must
be taken into account, as performed in [31]. Furthermore, Figs. 6a and 6b
also show that the reduced modal models become stiffer when an insufficient
number of fixed interface modes is employed in the CB MOR method. This,
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Figure 6: Comparison between the magnitudes of accelerance-type FRFs obtained by the
traditional FEM employing the DM and the WFEM solely accounting for the reduction of
internal DoFs. For the latter method, parametric analyses were carried out with respect to
the threshold value used to determine the number of fixed interface modes, i.e., n̂ = 1.5, 3,
and 5. The corresponding input and output DoFs used to calculate these FRFs are shown
in Fig. 3c. (a) Complete frequency band and (b) zoomed view of higher frequencies.

for instance, often occurs when an insufficient number of normal modes is
used to compute forced responses using the modal superposition method
(without considering, e.g., residual vector(s)).

In the following subsections, with the aim of obtaining an accurate repre-
sentation of the interior dynamics of the periodic systems under investigation,
and to ensure that sources of discrepancies between the reduced and reference
models are mainly related to the reduction of boundary DoFs through the
L-CC method, n̂ is set to 5. Based on Figs. 6a and 6b, this value can provide
a very good match between the FRFs obtained using the reduced model and
the one calculated by the FEM.
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4.1.3. Selection of the threshold value used for the MAC in the L-CC MOR
method

Following the steps summarized in Fig. 1, the next one consists of reduc-
ing the boundary DoFs. This task can be accomplished by following the
developments shown earlier in Subsection 2.3. Accordingly, Fig. 7a depicts
the magnitudes of FRFs obtained using the WFEM by varying the TVMAC

parameter, with n̂ and n̄ fixed as 5 and 1.2, respectively, plotted against the
reference curve obtained using FEM — general discussions on the selection of
n̄ are provided in Subsection 4.4.2.
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Figure 7: (a) Comparison between the magnitudes of accelerance-type FRFs obtained by
the traditional FEM employing the DM and the WFEM with boundary and internal DoFs
of the unit cell reduced (n̂ = 5 and n̄ = 1.2). For the latter approach, parametric analyses
were carried out with respect to the threshold value used to determine the number of
modes in ψ̃R, i.e., TVMAC = 1, TVMAC = 0.9, and TVMAC ∈ [0.6–0.8]. The corresponding
input and output DoFs used to calculate these FRFs are shown in Fig. 3c. (b) Relative
error and (c) CSF between the reference curve and the one for which TVMAC ∈ [0.6–0.8].

Figure 7a depicts that, when the number of partitions of vibration modes
collected in ψ̃R corresponds to the same number of modes gathered in ψL, i.e.,
TVMAC = 1, numerical issues may still occur at some particular frequencies.
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Specifically, sharp and meaningful peaks occur mainly in frequency bands
at which wave propagation is highly evanescent in the FRFs, similar to
what has been noticed in Figs. 4 and 6a. This can be explained by the
fact that the frequency-based truncation criterion alone does not account for
modal shapes, and, therefore, redundant modes can usually be inadvertently
employed during the reduction of boundary DoFs. Typically, such modes are
related to high-order evanescent wave modes, posing numerical challenges for
their accurate calculation, often leading to issues in subsequent analyses (cf.
discussions in the previous sections).

Figure 7a also reveals that, as TVMAC decreases, the responses computed
by the WFEM using reduced-order unit cell models get closer to the reference
curve. In fact, when TVMAC ∈ [0.6–0.8], the magnitudes of the FRFs com-
puted using the WFEM perfectly superposes the reference result. Therefore,
findings stemming from what is shown in Fig. 7 illustrate the importance of
considering the MAC-based mode selection truncation criterion in conjunc-
tion with a frequency-based strategy, with the aim of mitigating numerical
issues, and also reducing the number of equations in the final modal model.
Regarding this last aspect, when TVMAC = 1, Eq. (17) collects 26 vectors,
whereas this number decreases to 16 for TVMAC ∈ [0.6–0.8]. The MAC-based
mode filtering criterion shows itself, therefore, as an effective strategy to
remove redundant boundary modes during the reduction of boundary DoFs.

The error analysis between the reference curve and the one for which
TVMAC ∈ [0.6–0.8] in Fig. 7a is calculated employing Eqs. (44) and (45),
being depicted in Figs. 7b and 7c, respectively. The relative errors between
the resonance frequencies identified by direct inspection of the magnitudes
of the FRFs obtained using the reference model and the reduced one, for
TVMAC ∈ [0.6–0.8], are negligible, with values lower than 0.2%, as observed
in Fig. 7b. Similarly, the CSF model correlation index shown in Fig. 7c also
indicates excellent agreement between the reduced and reference models, in
terms of amplitudes, with CSF values predominantly equal to one across the
entire analyzed frequency band.

Table 1 summarizes, on its left, data to assess the performance of the
model reduction strategy introduced previously in Subsections 2.2 and 2.3,
including the number of equations for the unit cell FE model in physical (full
model) and modal (reduced model) domains. In addition, it shows, on the
right, the timing data (CPU time) in seconds related to the computation of
the forced responses which have been presented in Fig. 7, using the WFEM
(n̂ = 5, n̄ = 1.2, and TVMAC ∈ [0.6–0.8]) and the FEM (DM).
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Table 1: Unit cell model-size details (left) and timing data (right) related to the calculation
of the magnitudes of FRFs depicted in Fig. 7a using the FEM (DM) and WFEM with
reduced-order unit cell models (TVMAC ∈ [0.6–0.8]).

Unit cell model details

Set of Full Reduced NR/NF
equations (NF ) (NR) (%)

Boundary 100 32 32
Internal 64196 38 0.06

Complete 64296 70 0.11

Timing data, presented in seconds

Step
Related GBMS FEM
equations + WFEM (DM)

CB MOR (4)–(9) 5.16 -
L-CC MOR (10)–(21) 0.22 -

Computation of
wave modes

(29)–(33) 3.36 -

Calculation of wave
mode amplitudes

(42) 1.29 -

Post-processing: evalu-
ation of physical DoFs

(40)–(41)
(22), (20)

0.27 14044

Other - 8.23 -

Total 18.53 14044

Table 1 clearly indicates that very small models can be obtained following
the previously introduced model reduction approach. The excellent accuracy
observed between the WFEM (TVMAC ∈ [0.6–0.8]) and the reference curve in
Fig. 7a is achieved with only 0.11% of equations compared to the full unit
cell FEM model. Specifically, the number of equations related to boundary
and internal DoFs were reduced by 32% and 0.06%, respectively.

In addition, Table 1 also shows that most of the time required for the
calculation of the forced response in Fig. 7a by the WFEM (TVMAC ∈
[0.6–0.8]) is attributed to data reading and matrix manipulations, denoted
by the field “Other”. One should note that this field does not comprise
generation of the FE model of the unit cell, neither the export process of
related matrices. The second most time-consuming task is the reduction of
interior DoFs through the CB method, involving the solution of the eigenvalue
problem in Eq. (6), and the algebraic system solutions required in Eq. (8),
necessary to assemble the matrices of fixed interface modes Ξ and constraint
modes Γ, respectively. The computation of wave modes, (µ,Φ) and (µ∗,Φ∗),
is the next on the list. Time consumption related to this task is mainly
attributed to the solution of Zhong’s eigenvalue problem stated in Eq. (29)
for each frequency. The remaining tasks, involving the reduction of boundary
DoFs through the L-CC MOR technique, the computation of Q and Q∗ using
Eq. (42), and the evaluation of physical DoFs (using Eqs. (40), (41), and
(22)), require negligible computational effort.

Lastly, Table 1 demonstrates that the CB and L-CC MOR methods com-
bined with the WFEM, considerably accelerate the computation of harmonic
forced responses. The analysis of the IAM-based PC using the wave-based
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approach with reduced-order unit cell models reduces the time required for
calculating an FRF by approximately 760 times compared to traditional FEM.
Of course, this disregard some preparatory steps which are essential to run a
WFEM analysis — but for which we see similar counterparts in the traditional
FEM, such as model preparation and the generation of meshes.

4.2. Elastic metamaterial with rectangular spiral resonators

The second example where the strategy depicted in Fig. 1 has been
applied corresponds to an EM embedded with rectangular spiral resonators,
featuring N = 10 unit cells. The periodic system is assumed to be made
of steel, for which one admits an elastic modulus of 200GPa, density of
7850 kgm−3, Poisson’s ratio equal to 0.3, and hysteretic damping factor
η = 1%. The dimensions of the considered unit cell are summarized in Fig.
8a, where ∆ = 120mm, and a constant width of 5mm has been assigned to
the rectangular portions of the spiral. It was discretized using four-noded
Reissner-Mindlin plate elements, which uses linear shape functions, having
thickness of 30mm along z. The adopted FE mesh can be seen in Fig. 8b,
generated using a global element size of 1mm, resulting in a finite element
model with 9845 nodes and 9025 elements. The FRFs shown afterward have
been obtained considering the input and output DoFs illustrated in Fig. 8c,
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Figure 8: Elastic metamaterial with rectangular spiral resonators: (a) unit cell geometry
and dimensions (mm), (b) its corresponding FE mesh, and (c) finite periodic structure
represented along with the input and output DoFs used for computing harmonic forced
responses.
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being associated with the z-direction. The harmonic force is applied at the
rightmost node of the 10th unit cell, at the center of the EM, while the
responses are calculated for the node situated at the leftmost edge of the
periodic system, in the 1st unit cell, at its midpoint.

Accordingly, Fig. 9a presents a comparison between the magnitudes of the
FRFs obtained using the traditional FEM (DM) and the WFEM using unit
cells’ models that have boundary and internal DoFs reduced (n̂ = 5, n̄ = 1.2,
and TVMAC = 0.6). As can be observed, there is a very good correspondence
between both curves. Minor discrepancies among the FRFs can be noticed at
higher frequencies, where the WFEM-related curve is slightly shifted to the
right. This behavior is similar to the results seen previously in Subsection
4.1.2, where the discrepancies between the reference result and those obtained
by the WFEM were shown to be related to a lack of convergence in the fixed
interface modes in the CB method. If it becomes necessary to improve the
accuracy of the FRF obtained using the WFEM in Fig. 9a, the simplest option
would be to slightly increase the value of n̄. Alternative approaches would
involve (1) increasing the TVMAC parameter, or (2) considering the influence
of residual modes during the reduction process as outlined in [31]. However,
it should be noted that an excessive increase of n̄ or TVMAC may introduce
numerical instabilities into the forced response computation, especially if the
additional high-order wave modes are not adequately derived, as illustrated
previously. In general, the fewer the number of boundary DoFs, the lower the
chances of encountering such numerical issues. Naturally, this limited number
of modal DoFs should still be sufficient to describe the system dynamics;
otherwise, it will compromise the accuracy of the results.

The relative error analysis between the resonance frequencies identified
from the FRFs shown in Fig. 9a is depicted in Fig. 9b, confirming minimal
discrepancies between both results. Figure 9b also reveals that the devia-
tions between the reference curve and the one obtained using the WFEM
are primarily concentrated at higher frequencies, consistent with previous
observations regarding Fig. 9a. In fact, the maximum relative error identified
in Fig. 9b is less than 0.5%, calculated for the highest resonance frequency of
the EM within the band of analysis. The CSF values shown in Fig. 9c further
support these conclusions, with values close to one across the whole frequency
range. Slightly lower CSF values can be observed above 3500Hz in Fig. 9c,
for specific frequencies, indicating minimal amplitude discrepancies between
the FRFs obtained by the FEM and the WFEM, this latter accounting for
the model reduction strategy proposed inhere.
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Figure 9: (a) Comparison between the magnitude of accelerance-type FRFs obtained by
the traditional FEM employing the DM and the WFEM with boundary and internal DoFs
of the unit cell reduced (n̂ = 5, n̄ = 1.2, and TVMAC = 0.6). The corresponding input and
output DoFs used to calculate these FRFs are shown in Fig. 8c. (b) Relative error and (c)
CSF between the reference curve and the one related to the WFEM.

Table 2 presents the number of equations for the EM models before
and after reducing its unit cell FE model, along with a breakdown of the
computational time needed for calculating the FRFs in Fig. 9a. As can be
observed on the left, a significant reduction in the number of equations is
achieved by reducing the unit cell FE model following the theory described
earlier. The reduced modal model comprises a total number of equations equal
to only 0.29% of the number of equations present in the full unit cell model,
with 9.24% and 0.10% of equations observed in the internal and boundary
regions, respectively.

Furthermore, Table 2 also shows that the reduced unit cell model can be
used with the WFEM to calculate the magnitude of the FRF depicted in
Fig. 9a 72 times faster than the traditional FEM. To perform this task, most
of the computational time is spent with internal reduction of the unit cell’s
DoFs (step (3) in Fig. 1), due to relatively high number of fixed interface
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Table 2: Unit cell model-size details (left) and timing data (right) related to the calculation
of the magnitudes of FRFs depicted in Fig. 9a.

Unit cell model details

Set of Full Reduced NR/NF
equations (NF ) (NR) (%)

Boundary 1212 112 9.24
Internal 57858 60 0.10

Complete 59070 172 0.29

Timing data, presented in seconds

Step
Related GBMS FEM
equations + WFEM (DM)

CB MOR (4)–(9) 55.98 -
L-CC MOR (10)–(21) 6.02 -

Computation of
wave modes

(29)–(33) 32.88 -

Calculation of wave
mode amplitudes

(42) 14.27 -

Post-processing: evalu-
ation of physical DoFs

(40)–(41)
(22), (20)

0.92 8455

Other - 7.48 -

Total 117.55 8455

modes needed to assemble Ξ, as a result of several resonance frequencies of
the rectangular spiral-like resonator (due to its low out-of-plane stiffness),
and the calculation of Γ via Eq. (8). The remaining time required for each
task reported in Table 2 is proportionally comparable to the time needed for
performing the analysis of the IAM-based PC, cf. Table 1. Interestingly, the
evaluation of the response related to the physical DoF of interest (output)
took only 0.92 s, for 1000 frequency values. This provides a promising outlook
with regard to obtaining an harmonic deformation pattern of the complete
EM, since one would need to evaluate a maximum of N × 59070 = 590700
responses, related to the physical DoFs of the structure. This would require
approximately 0.92/1000× 590700 ≈ 540 s to obtain a deformation pattern
related to a given frequency.

4.3. Phononic crystal with an internal void of arbitrary shape and several
boundary DoFs

The last periodic system for which the procedures illustrated in Fig. 1 are
exemplified corresponds to a PC with N = 10 unit cells, each one portraying
an internal void of arbitrary shape. This structure is particularly interesting
for investigation, as it exhibits several boundary DoFs, which poses challenges
when applying the WFEM if adequate MOR is not considered. At this time,
one should clarify one does not consider the presence of a fluid inside the
internal void of the unit cell, i.e., the void can be thought of comprising
a vacuum, but without consideration of eventual pressure gradients which
would ensue from such hypothesis. Also, the unit cell is assumed to be made
of PLA, with the same material properties reported in Subsection 4.1.

Relevant dimensions of the cell are provided in Fig. 10a, without detailing
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the arbitrarily chosen dimensions of the hole for the sake of simplicity. In fact,
this shape was generated using splines passing through a set of 33 control
points. Additionally, a thickness (along z) of 20mm was assigned to the unit
cell. The PC was modeled using solid FEs with three DoFs per node, which
use linear shape functions. The corresponding mesh comprises a combination
of 8-node hexahedrons and 4-node tetrahedrons, as illustrated in Fig. 10b.
This mesh was generated using a global element size of 1.5mm, resulting
in a finite element model with 34440 nodes and 28574 elements. Lastly,
Fig. 10c schematizes the input and output DoFs, along the z-direction, used
to compute the FRFs provided in what follows. The harmonic excitation
location is at the 10th unit cell, at the rightmost node located at the bottom
corner of the periodic system, while the response is calculated for the opposite
corner, located at the 1st unit cell, at the leftmost node on the top of the PC.
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Figure 10: Phononic crystal with an internal void of arbitrary shape: (a) unit cell geometry
and dimensions (mm), (b) its corresponding FE mesh, and (c) finite periodic structure
represented along with the input and output DoFs used for computing harmonic forced
responses.

In accordance with these aspects, Fig. 11a shows a comparison between
the magnitudes of FRFs obtained by the FEM (DM) and the WFEM with
reduced-order unit cell models (n̂ = 5, n̄ = 1.2, and TVMAC = 0.6). As one
may observe, a very good agreement exists between the curve obtained by
the reference model and the one calculated by resorting to the wave-based
propagation approach. A small frequency shift between the curves in Fig. 11a
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can be noticed at higher frequencies, mainly as a consequence of neglecting
high-order modes during the reduction of boundary DoFs employing the
L-CC MOR, resembling findings reported previously in Subsection 4.2 and
the results related to the absence of convergence of fixed interface modes in
the CB method in Subsection 4.1.2.
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Figure 11: (a) Comparison between the magnitudes of accelerance-type FRFs obtained by
the traditional FEM employing the DM and the WFEM with boundary and internal DoFs
of the unit cell reduced (n̂ = 5, n̄ = 1.2, and TVMAC = 0.6). The corresponding input and
output DoFs used to calculate these FRFs are shown in Fig. 10c. (b) Relative error and
(c) CSF between the reference curve and the one related to the WFEM.

The error analysis between the responses depicted in Fig. 11a, obtained
using the FEM and WFEM, can be found in Figs. 11b and 11c. Firstly, Fig.
11b shows that the maximum relative error between the resonance frequencies
identified from the curves shown in Fig. 11a is less than 1.2%. The maximum
relative error occurs for the 10th resonance frequency, being mainly attributed
to the frequency discretization with increments of 5Hz we employed — i.e.,
smaller increments could improve the accuracy of results by providing finer
resolution around the resonance peaks. In general, for lower frequencies, the
relative error between resonance frequencies is zero, whereas it tends to be
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more prominent for higher-order modes. In terms of amplitude, Fig. 11c shows
that the CSF is virtually larger than 0.9 throughout the whole frequency
band, which confirms the good amplitude match between the forced responses
depicted in Fig. 11a.

The number of equations in physical and modal domains of the unit
cell, and CPU time needed for calculating the FRFs shown in Fig. 11a, are
summarized in Table 3. As one may observe, 97200 internal equations and
6120 boundary ones are reduced to only 54 and 86, respectively. Furthermore,
a reduced modal model with only 0.13% of equations in comparison with
the physical model was obtained following the model reduction methodology
illustrated by steps (3) and (4) in Fig. 1.

Table 3: Unit cell model-size details (left) and timing data (right) related to the calculation
of the magnitudes of FRFs depicted in Fig. 11a.

Unit cell model details

Set of Full Reduced NR/NF
equations (NF ) (NR) (%)

Boundary 6120 86 1.40
Internal 97200 54 0.05

Complete 103320 140 0.13

Timing data, presented in seconds

Step
Related GBMS FEM
equations + WFEM (DM)

CB MOR (4)–(9) 4195.28 -
L-CC MOR (10)–(21) 236.82 -

Computation of
wave modes

(29)–(33) 15.39 -

Calculation of wave
mode amplitudes

(42) 7.10 -

Post-processing: evalu-
ation of physical DoFs

(40)–(41)
(22), (20)

0.96 25234

Other - 40.72 -

Total 4496.27 25234

In addition, Table 3 also shows that most of the computational time related
to the calculation of the forced responses seen in Fig. 11a is attributed to the
reduction of internal DoFs, similarly to what has been reported before in Table
2, for the EM with rectangular spiral resonators. For the system considered
now, this occurs due to the high number of internal equations in its unit
cell model (almost twice the number of internal equations of the EM), which
makes the solution of Eqs. (6) and (8) slower. Table 3 additionally clarifies
that the reduction of boundary DoFs was the second most time-consuming
task, as the PC has a substantial number of boundary DoFs, which increases
the dimensionality of Eq. (14). Time needed for data reading and matrix
manipulation ranked third. Remaining tasks, including the computation of
wave modes, calculation of wave mode amplitudes, and evaluation of the
forced response, exhibited negligible computational cost compared to the
other operations.

In the present case, employing the reduction steps introduced in Subsec-
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tions 2.2 and 2.3 prior to invoking the WFEM speeds up the computation
of harmonic forced responses by around 6 times. This reduction rate is not
as high as the rates reported in Subsections 4.1 and 4.2, which are related
to the unit cells portraying IAM and local resonators, of 760 and 72 times,
respectively. This is attributed to the high number of internal DoFs found in
the PC model, which leads to challenges in applying the CB MOR method,
as we have just discussed. Improvements in this matter could be achieved by
resorting to algebraic condensation, as reported in [34, 35]. Notwithstanding,
it should be noted that, as the number of unit cells of a finite structure
increases, the computational efficiency of WFEM becomes even more pro-
nounced, due to its capability of handling large-scale periodic systems, and
the high performance of the developed model reduction approach.

Lastly, it should be highlighted that no numerical issues have been identi-
fied in the computation of the forced response in Fig. 11a by the WFEM, nor
in Fig. 9a. As discussed previously, by reducing the internal and boundary
DoFs of a unit cell, one avoids handling large-size models, which not only
decreases the computational cost during calculations but also reduces the risk
of numerical instabilities such as those seen in Figs. 4, 6, and 7, for example.
Therefore, in general, it is often preferable to work with smaller and simpler
models, provided that they accurately capture the dynamics of interest. On
the other hand, it should also be noted that the use of size-reduced unit cell
models is mandatory for investigating the problems considered in this work
by the WFEM, otherwise, prohibitive computational costs and memory re-
quirements would result. Actually, the full-order unit cell models would make
the analysis over the considered frequency range infeasible for the WFEM,
rendering the method impractical for such structures.

4.3.1. On the selection of consistent modes in Eq. (17) by the MAC indices

In this subsection, one aims to elucidate the use of Eq. (18) to obtain
the partitions of vibration modes which get collected in ψ̃R (cf. Eq. (17)).
Accordingly, Fig. 12 shows the MAC indices calculated between ψL and ψR

(cf. Eqs. (13), (15) and (16)) for the unit cell related to the PC with an
internal void of arbitrary shape.

As one may observe in Fig. 12, some partitions of eigenvectors collected
in ψL are very close to the vibration shapes of the unit cell at its right side,
gathered in ψR, corresponding to the MAC numbers close to 1 in the main
diagonal of the bar chart. As discussed before, in Subsections 2.3 and 4.1.3,
keeping similar vibration modes partition pairs in Eq. (13) is understood by
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Figure 12: Bar chart illustrating the MAC indices between the partitions of vibration
modes collected in ψL and ψR for the unit cell related to the PC with an internal void of
arbitrary shape.

us to not correspond to the best practice, as they might cause numerical issues
when computing forced responses, as demonstrated in Fig. 7a. Therefore,
redundant modes can be removed from the set of mode partitions in ψR, so
that Eq. (17) holds. Naturally, this task requires the definition of a threshold
value for the MAC, as it determines which mode pairs are sufficiently similar
to be considered redundant. It is important to mention that Eq. (17) can
also be cast in an alternative form, as ΨLR =

[
ψ̃L ψR

]
, where the partitions

of vibration modes collected in ψR are fully retained in the transformation
matrix, and ψL gets filtered out in an analogous fashion.

Figure 12 also depicts that most of the left and right partitions of vibration
modes collected in ψL and ψR are rather different, as a result of small values
of MAC numbers found in the main diagonal of the bar chart. For such cases,
the partitions of vibration modes are dissimilar or unrelated, and therefore,
they must be kept in ΨLR to guarantee proper representation of the unit
cell interfaces’ dynamic behavior after performing the model reduction. It
should be pointed out that, for the periodic structure being considered now,
few partitions of vibration modes become neglected in the MAC-based mode
selection procedure due to the asymmetry of the underlying unit cell (cf. Figs.
10a and 10b). This means that ΨLR must be assembled with several mode
shapes from both the left and right interfaces of the unit cell. However, this
is not true for the IAM-based PC and EM investigated in Subsections 4.1 and
4.2. For the unit cells related to these periodic structures, several modes at
the left interface of the unit cell are very similar to those at its right interface,
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as can be seen from MAC indices shown in Fig. 13. As a consequence, many
partitions of vibration modes can be omitted from ΨLR in Eq. (17) without
compromising the representation of the interface dynamics, leading to a more
efficient reduced model. Therefore, the utilization of the MAC-based mode
filtering procedure is very important for performing the reduction of boundary
DoFs, as it reduces the number of equations in ΨLR. It is worth noting that,
in the traditional reduction of boundary DoFs, which employs Eq. (13), with
ψL and ψR computed locally, the number of modal boundary DoFs is doubled
to satisfy the Bloch-Floquet periodicity condition [31] — an approach that is
not as efficient as the method introduced in this work.
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Figure 13: Bar chart illustrating the MAC indices between the partitions of vibration modes
collected in ψL and ψR for the unit cells that incorporate (a) IAM and (b) resonators with
rectangular spirals.

Lastly, Fig. 14 shows two sets of eigenvectors related to the motion of
the boundaries of the unit cell with an interval void of arbitrary shape,
normalized for better visualization, for two scenarios: (1) a condition where
(ψ21)L is completely different from (ψ21)R, as demonstrated by the shape of
the modes and the MAC index value of 0.07; and (2) a situation where (ψ9)L
is nearly identical to (ψ9)R, clearly evidenced by their modal shapes and the
MAC number of 0.79. These results illustrate the adequacy of utilizing the
MAC-based mode selection procedure in conjunction with the traditional
frequency-based criterion for reducing the boundary DoFs of the unit cell of a
periodic structure. A boundary (interface) mode with high spatial similarity
to another one should, accordingly, be removed from the projection basis, as
it can be understood as almost collinear with its companion. As discussed
before, this strategy is able to mitigate numerical issues that may occur in
the WFEM and reduces the number of redundant equations in modal models,
while respecting the constraints imposed by the periodicity conditions of the
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Bloch-Floquet theorem.
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Figure 14: Eigenvectors related to the motion of the boundaries of the unit cell with an
interval void of arbitrary shape (cf. Fig. 10b) for two distinct eigenvalues/frequencies. On
the left, a condition where the eigenvector at the left interface is unrelated to itself at the
right side; and, on the right, a situation of reasonably large spatial similarity between
them.

4.4. Complementary results and discussions

In this subsection, one aims to better situate the methodologies proposed
in this work with respect to the state of the art. First, in Subsection 4.4.1,
the reduction of boundary DoFs using the proposed model-order reduction
technique is compared with the approach currently reported in literature, by
computing harmonic forced responses. The pros and cons of both approaches
are discussed and clarified with numerical simulations. Then, in Subsec-
tion 4.4.2, the truncation of boundary modes using MAC- and SVD-based
procedures are discussed.

4.4.1. Comparing the proposed (global) and local approaches for the reduction
of boundary DoFs

The reduction of boundary DoFs using L-CC is often performed by solving
an eigenvalue problem related to the boundary DoFs of the unit cell, i.e.,
at a local-level [31, 34, 35, 40–43, 45]. In this setting, instead of the global
eigenvalue problem in Eq. (14), one has to consider:(

K̄BB − ςjM̄BB

)
Υj = 0, (46)
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where ςj and Υj =
{
(Υj)

T
L (Υj)

T
R

}T
, for j ∈ {1, . . . , nL+nR}, are the eigen-

values and eigenvectors associated with the local eigenproblem, respectively.
In light of this, Eqs. (15) and (16) should be considered taking into account
the eigenvectors resulting from the solution of Eq. (46).

The related literature shows that, when the L-CC approach is used with
eigenvectors of local-level eigenproblems, frequency-based truncation criterion
can fail for the selection of the most-relevant, low-frequency modes in ψL and
ψR. Then, grouping the selected modes into Eq. (13) provides a “sub-optimal”
basis to perform the reduction of boundary DoFs. To alleviate this issue,
various mode selection strategies have been proposed in the literature, such as:
1) assuming extended, non-clearly defined frequency-based truncation criteria;
2) calculating response sensitivities due to boundary modes; 3) implementing
iterative routines to verify response convergence as the number of boundary
modes increases; 4) assuming a relationship between the number of boundary
modes and the number of interior modal DoFs, based on a given criterion;
or, 5) employing trial-and-error approaches. Although these techniques can
be useful, their application generally requires careful consideration, typically
involving additional steps for the reduction of boundary DoFs. In view of these
aspects, an alternative approach has been proposed to perform the reduction
of boundary DoFs in this work (cf. Subsection 2.3 and previously shown
results), seeking to improve the mode selection procedure and to enhance the
overall accuracy of the reduction process, in comparison to existing techniques.

To further investigate this matter, Fig. 15 presents FRFs calculated for
each periodic structure previously analyzed in Subsections 4.1, 4.2, and 4.3,
considering both the proposed (global) approach (with results from Figs.
7a, 9a, and 11a repeated for convenience) and the local method currently
reported in the literature, alongside reference FRFs obtained with the FEM.
For the calculation of FRFs using the local approach, most parameters were
chosen equal to those used for the global method, i.e., n̂ = 5 and n̄ = 1.2.
Notwithstanding, the rank of ΨLR = [ψL ψR] is commonly reduced based on
its SVD (ΨLR = UΣVT) when the local method is adopted, as discussed in
[45], for example. Then, for this reduction, one discards left singular vectors
whose singular values do not satisfy σj/max(diag(Σ)) > ϵ, where σj denotes
the jth singular value (jth entry on the diagonal of Σ), and ϵ represents an
additional parameter (threshold) that must be introduced. It plays a similar
role to the TVMAC used in the proposed (global) approach; both thresholds are
effectively employed to rank-reduce ΨLR. As proposed by several researchers,

46



0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000
10−7

10−5

10−3

10−1

101
103

Frequency (Hz)

M
ag

ni
tu

de
(m

s−
2

N
−
1
)

FEM (DM)
GBMS + WFEM (global)
GBMS + WFEM (local)

(a)

0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000
10−4

10−3

10−2

10−1

100
101
102

Frequency (Hz)

M
ag

ni
tu

de
(m

s−
2

N
−
1
)

FEM (DM)
GBMS + WFEM (global)
GBMS + WFEM (local)

(b)

0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000
10−2

10−1

100
101
102
103
104

Frequency (Hz)

M
ag

ni
tu

de
(m

s−
2

N
−
1
)

FEM (DM)
GBMS + WFEM (global)
GBMS + WFEM (local)

(c)

Figure 15: Comparison between the magnitudes of accelerance-type FRFs calculated for
(a) the PC incorporating IAM; (b) the EM with rectangular spiral resonators; and (c) the
PC with an internal void of arbitrary shape. These FRFs were obtained by the traditional
FEM employing the DM and the WFEM with boundary and internal DoFs of the unit
cell reduced. For the WFEM, both global (n̂ = 5, n̄ = 1.2, and TVMAC = 0.6) and local
(n̂ = 5, n̄ = 1.2, and ϵ = 1× 10−4) approaches were adopted. The corresponding input and
output DoFs used to calculate these FRFs are shown in Figs. 3c, 8c, and 10c.
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e.g., [45, 64, 88, 89], the threshold value ϵ = 1× 10−4 is used in the following.
The results given in Fig. 15 indicate that, in general, the global (unit

cell-level) reduction process which is reported in this work seems to provide
more accurate FRFs than the local approach. Although Fig. 15a does not
reveal noticeable differences between the FRFs calculated for the IAM-based
PC using the global and local approaches, Figs. 15b and 15c show increasing
errors when using the local approach, particularly for the PC with internal
void. Table 4 presents the relative error norm [90] between the reference curves
and those obtained with the WFEM, considering the reduction of boundary
DoFs using both the local and global approaches, over the whole analyzed
frequency range. As clearly observed, the proposed (global) reduction method
consistently yields lower error norms in comparison with the local approach.

Table 4: Relative error norm between the reference curves and those obtained with the
WFEM in Fig. 15, considering the reduction of boundary DoFs using both the local and
global approaches. For both cases, the reduction of internal DoFs is performed with the
CB method.

Method used for reducing
the boundary DoFs

PC incorporating
IAM (Fig. 15a)

EM with rectangular spiral
resonators (Fig. 15b)

PC with an internal void of
arbitrary shape (Fig. 15c)

Local 0.06 0.34 0.62
Global (proposed) 0.03 0.20 0.18

Possible sources for the discrepancies between the FRFs presented in Fig.
15, obtained by reducing the boundary DoFs globally, as proposed, or locally,
should also be of interest. Note that, for both cases, the boundary DoFs
are reduced following similar procedures, differing solely on the construction
of ΨLR. First, the FRFs in Figs. 15a and 15b, calculated using the local
approach, are less accurate than those obtained with the global approach
(cf. Table 4), which seems due to insufficient numbers of modal DoFs being
employed to reduce the boundary DoFs of the unit cells, as summarized
in Table 5. In this table, the numbers of modal, boundary DoFs related
with the unit cells containing IAM and local resonators in the shape of
rectangular spirals are lower when the local approach is used, in comparison
with those resulting for the global method. On the other hand, the significant
discrepancies between the FRFs obtained using the local and global reduction
of boundary DoFs in Fig. 15c do not bear the same cause, as Table 5 reveals
that more modal DoFs are employed by the local approach. This suggests
that the eigenvectors calculated using Eq. (14) can provide a more effective
basis for reducing the boundary DoFs than those obtained from Eq. (46).
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This can possibly be explained by the fact that the eigenvectors calculated
from Eq. (14) take into account the dynamic behavior of the whole unit cell,
which appears to significantly influence the accuracy of the model reduction
process. In fact, the third example investigated in this work, shown in Fig.
10c, is characterized by a unit cell whose interfaces’ dynamic behavior cannot
be well described “in isolation”, by means of eigenvectors retrieved from a
local eigenproblem, over the entire analyzed frequency range, an observation
which is conjectured to have its roots on the particular geometric features of
the unit cell (which ultimately determine its overall dynamics).

Table 5: Unit cell model-size details with boundary DoFs reduced using the global approach
(cf. Tables 1, 2, and 3) and the local approach. For the global method, n̂ = 5, n̄ = 1.2, and
TVMAC = 0.6 were used, while for the local method, n̂ = 5, n̄ = 1.2, and ϵ = 1 × 10−4

were applied. In all examples, the number of internal DoFs remains unchanged regardless
of whether the local or global approach is used, as n̂ = 5 for both cases.

Set of equations
PC incorporating
IAM (Fig. 3b)

EM with rectangular spiral
resonators (Fig. 8b)

PC with an internal void of
arbitrary shape (Fig. 10b)

Global (Table 1) Local Global (Table 2) Local Global (Table 3) Local
Boundary 32 6 112 48 86 100
Internal 38 38 60 60 54 54

Complete 70 44 172 108 140 154

4.4.2. Comparing MAC- and SVD-based procedures for reduction of boundary
modes

Although the previous results indicate that the reduction of boundary
DoFs using the proposed (global) approach performs better than the local
method, one further investigates both model reduction techniques by varying
the number of boundary DoFs and considering that they can be truncated
using the MAC or SVD procedures. Accordingly, Fig. 16 presents the relative
error norm between reference and WFEM-related FRFs and the corresponding
number of boundary DoFs related to the calculation of FRFs for the PC
with an internal void of arbitrary shape, assuming the input and output
locations depicted in Fig. 10c. In both cases, the reduction of boundary DoFs
is performed using the same parameters introduced previously, i.e., n̂ = 5
and TVMAC = 0.6 for the global approach, and n̂ = 5 and ϵ = 1× 10−4 for
the local strategy. The value of n̄ is varied as a free parameter, so one is able
to assess its influence on the quantities of interest. Note that the number of
internal DoFs (fixed interface modes in the CB MOR) equals 54 for all cases,
as n̂ = 5.
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Figure 16: Relative error norm between reference and WFEM-related FRFs (a) and the
corresponding number of boundary DoFs (b), calculated for the PC with an internal void
of arbitrary shape. In the WFEM, the reduction of boundary DoFs is performed using
either the local or global approach, with the parameters n̂ = 5 and TVMAC = 0.6 used for
the global approach, and n̂ = 5 and ϵ = 1× 10−4 for the local strategy. The number of
internal DoFs equals 54 for all cases, as n̂ = 5.

Firstly, Fig. 16a reveals that the FRFs calculated by reducing the boundary
DoFs using eigenvectors computed from Eq. (14) (global approach) are, in
general, much more accurate than those obtained using eigenvectors derived
from Eq. (46) (local approach), further highlighting what has been discussed
previously and shown in Fig. 15 and Table 4. In fact, the minimum relative
error attained by computing FRFs using the local approach, employing either
the SVD or MAC-based procedures for filtering modal, boundary DoFs,
considering n̂ = 5 and ϵ = 1 × 10−4, is 0.33 for n̄ = 4.5 (cf. the solid
blue curve), which is more than twice as large as the relative error norm
achieved with the global approach for n̄ = 1.2, equal to 0.16, with n̂ = 5,
TVMAC = 0.6 (cf. the solid red curve). Overall, the curves plotted in Fig. 16a
show that larger values of n̄ can deteriorate the accuracy of harmonic forced
responses, due to challenges in the computation of high-order evanescent wave
modes (cf. discussions in Subsection 4.1) for both local and global reduction
strategies. Interestingly, the MAC-based mode selection procedure can make
the computation of harmonic forced responses by the WFEM more stable
compared to the SVD technique, for lower n̄ values, when the reduction
of boundary DoFs is performed using the proposed (global) approach (cf.
the dashed red curve). On the other hand, both the MAC and SVD-based
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frequency truncation techniques play a similar role, removing some redundant
boundary modes when the local eigenvalue problem given by Eq. (46) is
solved, considering n̄ ranging from 1.2 to 4.5 (solid and dashed blue curves).
For n̄ = 5, the same curves show that the MAC can be advantageous over the
SVD technique, as it allows the computation of a FRF with lower relative
error norm between the reference and WFEM-related results.

To complement the results presented in Fig. 16a, Fig. 16b shows that the
number of boundary DoFs monotonically increases as n̄ grows. Particularly,
the truncation techniques based on the MAC and SVD seem to have negligible
influence on the number of boundary DoFs when the local eigenproblem is
used to obtain the interface modes in the L-CC model-order reduction scheme.
This result is consistent with previous discussions regarding the relative
error norm for the corresponding curves in Fig. 16a. In contrast, when the
global approach is employed, the SVD penalizes the number of boundary
DoFs more heavily than the MAC (red curves in Fig. 16b). One should also
emphasize that the increasing number of boundary DoFs seen in Fig. 16b, as
n̄ grows, is problematic for the wave-based approach because it significantly
increases computational cost and may introduce numerical instabilities in
the computation of FRFs and other responses — recall that the sizes of
wave-based matrices reviewed in Subsection 3.1 are directly related to the
number of boundary DoFs.

The results displayed in Fig. 16b additionally reveal that the number of
boundary DoFs associated with the minimum relative error of 0.33 in Fig. 16a,
achieved for n̄ = 4.5 when computing FRFs using the local approach with
the SVD-based truncation technique corresponds to 382. On the other hand,
the relative error of 0.16, achieved when the global approach is used adopting
n̄ = 1.2, is related with only 72 boundary DoFs, which is significantly lower
than the number obtained with the local approach.

These remarks add further support to the claim one has already discussed,
that eigenvectors obtained from Eq. (14) (global approach) can improve the
model reduction process in comparison to the traditional strategy currently
reported in the literature [31, 34, 35, 40–43, 45], which relies on eigenvectors
from Eq. (46) to reduce boundary DoFs. Besides, Figs. 16a and 16b likewise
show that the reduction of boundary DoFs using the local approach exhibits
a very slow convergence of the relative error norm for the response of interest,
as n̄ increases. This means that, for unit cell model reduction using the L-CC
method with eigenvectors from a local eigenproblem, increasing the number
of boundary DoFs yields only marginal improvements to the relative error
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norm, even when the referred increase is substantial.
Other aspects should be clarified, which make us believe MAC indices can

be more advantageous for selecting the most relevant boundary DoFs than the
SVD-based approach. Firstly, recall that the singular value decomposition of
ΨLR = UΣVT, whether ψL and ψR are determined from Eq. (14) or (46). To
rank-reduce ΨLR directly through its SVD, it is replaced by U (ΨLR → U),
taking into account those left singular vectors in U related to the largest
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Figure 17: Normalized singular values (σj/max(diag(Σ))) calculated for the PC incorporat-
ing IAM (a–b), EM with rectangular spiral resonators (c–d), and PC with an internal void
of arbitrary shape (e–f), considering that the reduction of boundary DoFs is performed
using the local (left) or global (right) approaches, for n̂ = 5.
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singular values, based on the criterion σj/max(diag(Σ)) > ϵ, for example
[45]. It turns out that, even for the same unit cell, the singular values σj,
which are used as a metric during the truncation of left singular modes, can
be altered due to changes in the input basis ΨLR that arise as n̄ is varied,
for instance. This issue is illustrated in Fig. 17, where σj/max(diag(Σ)) is
plotted for all unit cells investigated in this work, considering n̄ equal to
1.2, 3, and 5, as well as ψL and ψR computed using the local (Eq. (46))
and global (Eq. (14)) eigenproblems. These changes in the singular values
can influence the reduction of boundary DoFs, as they alter the number
of equations retained in the resulting modal basis, which is then used as a
projection operator in the L-CC method (matrix ΨLR), and should, thus, be
a point of attention. Another issue that can appear when the SVD approach
is employed to truncate boundary DoFs is that, depending on the unit cell,
the magnitudes of sequential singular values (j and j + 1, for example) can
involve an abrupt jump, which potentially makes challenging for one to define
or choose a consistent truncation threshold ϵ (cf. Fig. 17, for example). Such
abrupt changes may cause the exclusion of important modes during the SVD-
based truncation process, which is particularly concerning when they are
related to the first singular values, having the potential to compromise the
quality of reduced-order models depending on the value of ϵ.

The MAC-based truncation criterion introduced in Section 2.3 and dis-
cussed through this work, in turn, does not face the previously discussed
issues, as it focuses on the degree of similarity between the shapes of modes
at the left and right interfaces of a unit cell by calculating their MAC indices,
which serves as a truncation metric. Accordingly, the MAC is not as sensitive
to the input basis being influenced by n̄, for example, as the SVD is; and
it is not susceptible to abrupt changes in MAC indices, as typically occur
for singular values in the SVD approach, due to their dependence on the
algebraic structure of this decomposition. Therefore, in one’s assessment, the
MAC indices can be explored in a mathematically robust criterion, ensuring
a more stable, physically meaningful, and consistent selection of boundary
DoFs for reducing the model of a given unit cell.

5. Concluding remarks

This work has focused on computing harmonic forced responses of periodic
structures using the WFEM combined with a modified GBMS, employing
size-reduced unit cell FE models. Firstly, the internal DoFs of the unit
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cell models were reduced using the CB model reduction method, utilizing
fixed-interface modes and constraint modes. Then, the remaining boundary
DoFs, which correspond to physical coordinates, were reduced using L-CC,
where the following improvements have been considered:

1. An eigenvalue problem at the global level of the unit cell was solved after
applying the CB method to determine the boundary modes, in contrast
to a local eigenproblem, as currently considered in the literature;

2. A MAC-based mode selection procedure was employed to remove re-
dundant modes from the L-CC transformation matrix, while respecting
constraints imposed by the periodicity conditions of the Bloch-Floquet
theorem. This task has been alternatively performed using SVD in the
literature.

Numerical simulations demonstrated that highly-reduced unit cell FE models
can be obtained using the CB and L-CC model reduction methods.

By leveraging the advantages of the WFEM, harmonic forced responses
for three types of unit cells (an IAM-based PC, an EM with rectangular spiral
resonators, and a PC with an internal void of arbitrary shape and several
boundary DoFs) were rapidly and accurately computed, showing minimal
deviations compared to reference solutions. In the worst case, the relative
error between resonance frequencies of the models was smaller than 1.2%,
partially attributed to the frequency discretization adopted for computations.
In terms of FRFs amplitudes, CSF values mostly did not fall below 0.9,
indicating minimal discrepancies between the responses obtained using the
FEM and those obtained using the WFEM with the proposed model reduction
strategy. In all cases, numerical simulations demonstrated that the proposed
improvements in the reduction of boundary DoFs are of utmost importance
to ensure high accuracy of the reduced models, especially for unit cells
incorporating geometric features that render their boundary motions largely
influenced by their interior DoFs. Specifically, since an eigenvalue problem is
solved at the global level of the unit cell, it has been found that frequency-
based truncation criterion can be effectively used to determine modal bases
for the L-CC, as opposed to the local strategy available in literature. In
addition, simulations have also illustrated the robustness of the MAC-based
truncation procedure against the method based on SVD.

Lastly, it has been demonstrated that reduced-order unit cell models can
mitigate numerical issues that often occur when computing harmonic forced
responses using the WFEM by avoiding the calculation of computationally-
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troublesome highly-evanescent wave modes. Therefore, this work extends
the WFEM to challenging structural dynamics problems, involving unit cell
models with several DoFs and analyses in the mid- to high-frequency bands.

Future work perspectives include implementing algebraic condensation to
reduce both interior and boundary DoFs, aiming to further accelerate the
analysis of periodic structures using the WFEM and GBMS, and accounting
for the effect of residual modes during their reduction. Another relevant topic
consists of assessing the influence of other types of loads, such as distributed
ones, and of where they are applied, over the performance and accuracy of the
proposed modifications to the GBMS strategy for computation of harmonic
forced responses of periodic structures.
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