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Abstract This work investigates a novel metamaterial concept using the Wave-
based Finite Element Method. The metamaterial comprises a periodic-like structure 
manufactured through fused filament deposition, featuring internal cavities filled 
with water. Experimental characterization of the dynamics of the periodic system 
without internal fluid confirms good agreement with numerical predictions obtained 
through frequency response function measurements. Furthermore, the dynamic be-
havior of the two-phase periodic metastructure is experimentally examined, where 
waves interact within the heterogeneous medium consisting of both fluid and solid 
phases. In this case, the resulting wave characteristics depend on the properties of 
both phases. It was shown that the fluid-filled metastructure exhibits vibration re-
duction through the whole frequency range compared to the case lacking internal 
fluid. Additionally, it was seen that the frequency range near the second attenuation 
band of the periodic metastructure without fluid can be enlarged after the fluid in-
clusion within the cavities of its unit cells, as a consequence of mass increase and 
damping effects. Consequently, this work presents a promising avenue for meta-
structure design, with potential applications in structural dynamics and acoustics. 
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1 Introduction 

The study of periodic and quasi-periodic structures opened possibilities to explore 
several properties that are not naturally encountered in nature, such as waveguiding 
[1], bandgap formation, confinement and mode localization phenomena [2], invisi-
bility cloaks [3], mode conversion [4], and some negative equivalent properties such 
as refractive index, elastic modulus, and Poisson’s ratio [5]. Such structures are 
usually referred to as metastructures just because they can exhibit apparent proper-
ties, as listed earlier, which are not typically observed in conventional systems. 
Probably, in the context of structural dynamics, the most studied phenomenon re-
lated to periodic structures is what one knows as bandgaps, which comprise fre-
quency ranges where only evanescent wavemodes are allowed to occur [6]. This 
phenomenon can arise from Bragg-scattering [7], periodic arrangements of resona-
tors within a host structure [5], or specially designed unit cells incorporating inertial 
amplification mechanisms (IAMs) [8]. 

In certain scenarios, both metastructures and conventional systems can exhibit 
complex dynamic behavior due to multiphysics problems. These may involve fluid-
structure interaction (FSI), thermoelasticity, piezoelectric materials, magnetic 
forces, acoustic-structure interaction (ASI), viscoelasticity, and more. In this work, 
particular emphasis is placed on the dynamics of systems with enclosed fluid. The 
coupling of fluid dynamics with structural systems has been a longstanding concern 
in various fields, including structural engineering, aeroelasticity, hydroelasticity, vi-
broacoustics, wind engineering, ocean engineering, biomechanics, offshore engi-
neering, aerospace engineering, and civil engineering. For instance, in previous re-
search by Jamshidiat and SenGupta [9], a method based on traditional finite element 
(FE) procedures was developed to predict the natural frequencies and modes of an 
aircraft fuselage considering the enclosed fluid medium.  

Although extensive research on FSI has been conducted in the aforementioned 
fields, it is crucial to consider the dynamics of metamaterials interacting with acous-
tic fluids. One notable investigation by Spadoni et al. [10] focused on studying the 
dynamic behavior of closed-cell crystalline foams to explore the potential of these 
relatively uncharted metamaterials. The authors highlighted that the complex mi-
crostructure of closed-cell crystalline foams inherently possesses internal reso-
nances, facilitating local resonance phenomena. Through a classical vibroacoustic 
model, Spadoni et al. [10] demonstrated that truncated-octahedron (or Kelvin 
foam), face-centered cubic rhombic dodecahedron, and Weaire-Phelan foams ex-
hibit superanisotropic properties, capable of behaving selectively as either a fluid or 
a solid. These foams display pentamode characteristics and feature regimes charac-
terized by film resonances and a high density of states. These extraordinary proper-
ties can find effective utilization in various engineering and scientific disciplines, 
such as aerospace engineering, civil engineering, mechanical engineering, and 
acoustics, particularly in the design of metamaterials for specific purposes. The 
study of Spadoni and collaborators [10] also revealed the existence of persistent 
modes in the foams, i.e., those modes that remain unaffected by the presence or 
absence of an entrained acoustic fluid. It was observed that the propagating shear 
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modes, away from film resonances, are persistent modes, suggesting the hydrostatic 
behavior of the fluid-filled unit cell   ̶ in this case, the fluid does not influence the 
volumetric deformations of the foam. 

Dorodnitsyn and Damme [11] introduced and experimentally investigated a novel 
acoustic metamaterial incorporating an entrained fluid. The authors tackled the in-
teraction between waves traveling through combined media, consisting of both fluid 
and solid components, which leads to coupled elastic waves with dynamics influ-
enced by both phases. Notably, the acoustic metamaterial studied in [11] exhibits a 
negative refractive index behavior, owing to the opposite signs of the system’s 
group and phase velocity. This research has opened up a new and straightforward 
pathway for designing acoustic metamaterials with exceptional properties not read-
ily found in nature. These findings hold promise for various practical engineering 
applications and contribute to the vibroacoustic community. 

Most of the time, analytical expressions are employed with the aim of modeling 
the aforementioned FSI problems. However, it is well known that these expressions 
are limited to approximate theories, and as a result, the established models are valid 
only under certain specific conditions. One cannot leave mentioning that the major-
ity of analytical models in FSI typically represent simple systems, such as fluid-
filled shells. In addition, mainly seminal works published in the fifties and sixties 
have been focused on wave propagation behavior in empty and fluid-filled cylindri-
cal shells with real wavenumbers, which may not accurately reflect various practical 
conditions [12, 13]. 

In an attempt to address some of these limitations, Bao et al. [14] presented closed-
form expressions and conducted a theoretical study on dispersion curves of empty 
and fluid-filled cylindrical shells under axially symmetric waves, relying on Bessel 
functions, based on expressions derived by Kumar and Stephens [15]. Parametric 
analyses considering the wall thickness of both empty and fluid-filled systems were 
performed, yielding results similar to those reported in [15]. In summary, Bao et al. 
[14] demonstrated that dispersion curves of such cylindrical shells can exhibit 
purely real, purely imaginary, and complex branches. The degree of coupling be-
tween the internal fluid and the shell was found to be strongly influenced by the 
shell thickness. Furthermore, it was observed that the internal fluid could consider-
ably alter the wave propagation characteristics of the cylindrical shell. It has the 
ability to shift the cut-off frequencies of the wavemodes, providing a valuable mean 
to control the dynamic behavior of a metamaterial, which was not discussed at that 
time. Moreover, Bao et al. [14] emphasized that certain branches seen in the disper-
sion curve of the fluid-filled cylindrical shell arise exclusively due to the presence 
of the fluid and may be purely evanescent. This realization suggests that fluid-filled 
systems can be exploited for designing specially engineered structures with out-
standing vibration attenuation performance for those pursuing such goals. 

Fuller and Fahy [16] derived closed-form expressions to predict the characteristics 
of elastic and acoustic wave propagation in a cylindrical elastic shell filled with 
fluid. The authors showed that when two fields, such as structural and acoustic, are 
coupled, the resulting wave behavior becomes complex. They demonstrated that 
when a cylindrical shell is filled with fluid, a fluid loading term arising from the 
presence of the fluid acoustic field must be considered in the system’s free vibration. 
Naturally, the magnitude of this term can vary significantly , determining the level 
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of coupling between the shell and the fluid. Fuller and Fahy [16] also conducted 
several parametric analyses considering factors such as the shell wall thickness and 
the density ratio between the shell material and the internal fluid that provide valu-
able insights into the dynamics of more complex fluid-filled systems. 

As seen before, earlier studies have effectively formulated analytical expressions 
to comprehend wave propagation in fluid-filled elastic pipes despite their inherent 
simplifications. These expressions often provide a clearer and easier interpretation 
of wave propagation phenomena compared to numerical methods. However, as dis-
cussed previously, it is widely recognized that analytical solutions have limitations, 
as they are constrained to simple geometries and classical wave theories. They are 
also constrained to a narrow range of vibroacoustic problems due to complex inter-
actions that may occur between the acoustic fluid and the structure. To address these 
limitations, Mencik and Ichchou [17] resorted to a numerical method known as the 
Wave-based Finite Element Method (WFEM), in which the governing elasto-acous-
tic equations of motion are discretized using the FEM, and the problem is formu-
lated and solved in the space spanned by wave-modes. The authors showed two 
mathematical strategies for handling fluid-filled structure problems: the ( ),U p  and 
( ),U Ψ  formulations. In the first approach, the equations of motion for the acoustic 
fluid and the structure depend on the acoustic pressures of the fluid ( )p  and the 
structural ( )U  degrees of freedom (DoFs), resulting in an asymmetrical set of equa-
tions. On the other hand, the second approach is a modified version of the ( ),U p  
formulation that introduces the acoustic velocity potential Ψ  to formulate the 
elasto-acoustic problem symmetrically. Mencik and Ichchou [17] demonstrated the 
robustness of their numerical approach compared to analytical formulations, such 
as the one presented in [16]. It was confirmed that the simplifying assumptions used 
in the analytical formulation are not entirely adequate and may hinder the accurate 
assessment of the dynamic behavior of fluid-filled systems. 

Numerical methods, including the WFEM, have strengths and weaknesses in en-
gineering applications. Challenges can arise when applying the WFEM to compo-
site structures and FSI problems. In such cases, a fine unit cell mesh is required to 
accurately capture the structural dynamics. A coarse mesh can fail to predict the 
eigenvalues and eigenvectors related to the wave propagation characteristics 
throughout the system. Droz et al. [18] addressed this issue and proposed a model 
reduction strategy that utilizes a reduced basis to model the structural dynamic be-
havior. Cut-on frequencies were identified within the analyzed frequency band, 
which allowed for the solution of a low-order modified eigenvalue problem for 
these frequencies. Eigenvectors associated with propagating waves (for which the 
real part of the wavenumber is much greater than its imaginary part) are chosen to 
form the reduced basis, using an iterative scheme to avoid redundant wave shapes, 
and then, a reduced eigenvalue problem, with size dependent on the number of prop-
agating waves in the analyzed frequency range, is solved. This methodology was 
validated through a three-layered sandwich beam, and an elastic pipe filled with 
acoustic fluid in ref. [18]. Additionally, Mencik [19] also presented a valuable way 
to increase the computational efficiency of the WFEM, based on the Craig-Bampton 
(CB) model order reduction technique. 

From this literature overview, which addressed various modeling strategies for 
tackling FSI problems, and also highlighted promising applications of FSI in the 
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dynamics of metamaterials, in this study one aims to propose a novel concept of 
metamaterial with completely closed unit cells filled with water, as depicted in 
Fig. 1. In this illustration, the metastructure consists of six identical unit cells, with 
the internal cavity represented by the blue color, indicating the confined water. 
Firstly, a numerical model of the system without internal fluid is developed using 
the WFEM. Based on the Bloch-Floquet theorem and the matrices provided by the 
FEM, dispersion curves for the underlying unit cell are computed. Experimental 
frequency response functions (FRFs) for longitudinal and bending dynamics, ob-
tained through hammer tests, are also made available and compared with numerical 
predictions. Subsequently, the dynamic behavior of the proposed fluid-filled meta-
structure is experimentally evaluated in order to understand its dynamic character-
istics.  

 

 
Fig. 1 A periodic metastructure filled with water fluid consisting of six identical unit cells. 

 
Beyond this introduction, this work has been divided into five sections. First, in 

Section 2, we review the WFEM, which can be used to model the fluid-filled meta-
structure shown in Fig. 1. Dispersion curves and numerical and experimental FRFs 
are shown in Section 3. Discussions about the dynamics of the system with and 
without fluid are supplied, as well. A summary of our findings and conclusions are 
given in Section 4. Acknowledgments and references are provided at last. 

2 Modeling 

Assume that one unit cell of the periodic structure portrayed in Fig. 1 is meshed 
employing three-dimensional FEs, considering the acoustic fluid and solid behav-
iors. Their corresponding mass and stiffness matrices are then extracted from con-
ventional FE software, and by considering fluid and structural damping effects, one 
can write [17]: 

 
.. .ˆˆ ˆ ˆˆ ˆ ˆ+ + =M q Cq Kq F , (1) 

where 
.

( )  represents derivatives with respect to time and: 
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 (2) 

In the two previous equations, ,jM  ,jC  jK  ( ){S,A}j∈  stand for mass, viscous 
damping and stiffness matrices of structure (S) and acoustic-fluid (A) parts; R  
stands for the fluid-structure coupling matrix; 

..
ˆ ,U  

.
ˆ ,U  ˆ ,U  and AF̂  are generalized 

acceleration, velocity, displacement, and load vectors of the structure domain; 
..
ˆ ,p  .

ˆ ,p  ˆ ,p  and SF̂  are generalized acceleration, velocity, displacement, and load vectors 
related to the internal fluid ( p̂  referring to pressure); ρ  is the fluid density; and 

T( )  is the transpose operator. 
As discussed in Section 1, the use of WFEM may become challenging in certain 

conditions where a high number of internal DoFs is found. To overcome this com-
putational trouble, DoFs that are not located in the unit cell’s left (L) and right (R) 
interfaces, namely internal (I), can be reduced by employing the CB model order 
reduction method. The procedure, basically, consists of establishing the following 
transformation matrix: 

 
C N

 
=  
 

I 0
α

Φ Φ
, (3) 

where I is an identity matrix, 1
C II IB

ˆ ˆ−=Φ K K  (B accounts for boundary DoFs com-
prising those located in both left and right interfaces), and NΦ  is a matrix of eigen-
vectors obtained from an eigenproblem that represents the dynamics of the consid-
ered unit cell with boundary DoFs constrained [19]. Since ˆ ,=q αq  the reduced set 
of equations of motion can be written as: 

 + + =Mq Cq Kq F  , (4) 

with T ˆ ,=M α Mα  T ˆ ,=C α Cα  T ˆ ,=K α Kα  and 

T .=F α F  It is worth noting that a 
modified version of the previously mentioned model reduction methodology might 
be employed to address structural systems interacting with enclosed acoustic fluids, 
as discussed elsewhere [20]. 

The reduced coupled fluid-structure equations seen before in Eq. (4) can be re-
written in the frequency domain as ,=Dq F  where 2 i ,ω ω= − + +D M C K  i is the 
imaginary unit, and ω  is the circular frequency. Following the basic procedure of 
the WFEM, the reduced DoFs and load vectors can be explicitly organized with 
respect to their position in the unit cell: 
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, (5) 

which may be used to obtain an expression that relates DoFs and load vectors of the 
left interface between two adjacent unit cells of a periodic structure, the ( 1)n +  and 
( ),n  i.e., ( 1) ( ) ( )

L L .n n n+ = +u Su b  This recurrence relation incorporates the unit cell state 
vector T T T

L L L ,{ }=u q F  a transfer matrix ,S  and a forcing vector related to external 
loads b  [21]. 

Bloch-Floquet theorem can be resorted to, so that the recurrence relation stated 
before leads to ( ) .j jµ− =S I φ 0  Here, jµ  and jφ ( {1,  ...,  2 }),bj n∈ ×  being bn  
the number of DoFs in the left (or right) interface of the unit cell, are eigen-solutions 
(wave-modes) of the transfer matrix eigenproblem that physically represent the 
propagation constant and wave shapes, respectively. Wavenumbers can be com-
puted from propagation constants as (ln ) / ( i ),j jk µ= − ∆  where ∆  is the length of 
the unit cell along the direction of wave propagation – assumed to be in the 

-direction,X cf. Fig. 1. As discussed by Waki et al. [22] and Mencik [23], the stand-
ard eigenvalue problem described earlier may be prone to numerical issues due to 
ill-conditioning problems. Thus, to alleviate potential computational challenges, 
one can resort to the alternative formulation T T T( )j jλ+ − =NJL LJN LJL z 0  [24], 
where jλ  and jz  are eigen-solutions of Zhong’s eigenvalue problem – expressions 
for ,N  ,J  and L  can be found in [25]. The set of wave-modes associated with the 
transfer matrix eigenvalue problem ( , )j jµ φ  can be retrieved from jλ  and ,jz  fol-
lowing the procedure outlined in [25]. 

Wave-modes computed as discussed previously can be grouped with respect to 
the direction of wave propagation, i.e., in positive- ( , )j jµ φ and negative-going 
waves ( , )j jµ∗ ∗φ  as follows [26, 27]: 

 1 1diag( , , ), diag( , , ),
b bn nµ µ µ µ∗ ∗ ∗= … = …μ μ

 1 1[ ] , [ ] ,
b b

q q
n n

F F

∗
∗ ∗ ∗

∗

  
= … = = … =   

   

Φ Φ
Φ φ φ Φ φ φ

Φ Φ
 (6) 

with subscripts q  and F  used to denote partitions of the wave shapes related to 
DoFs and loads, respectively. To develop expressions presented afterward, one 
highlights that eigenvectors must be normalized as described in [23]. In addition, 
since the wave-modes are computed for each desired frequency independently, 
some frequency tracking procedure might be used to better visualize dispersion 
curves, i.e., the relation between wavenumbers and frequency. Given a pair of wave-
modes related to eigenvalues aµ  and ,aµ

∗  with ,1/a aµ µ∗=  the wave-mode corre-
sponding to aµ  at the consecutive frequency ωω δ+  is chosen so that [28]: 
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b n
a ba a

ω ω

ω ω

ω ω δ ω ω δ
ω δ ω δω ω

∗ ∗

∗ ∗∈ …

 + + =  
+ +  

φ φ φ φ
J J
φ φφ φ
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where  denotes the norm of a vector and | |  denotes the absolute value of a 
scalar. 

Lastly, the forced response of a finite structure with N  unit cells can be calculated 
using the following expressions [21]: 

 
1

( ) 1 1 1 ( ) 1 ( )
L

1
,

n N
n n N n n k k k n k

q q q B q B
k k n

−
− ∗ + − ∗ − − ∗ + − ∗

= =

= + + −∑ ∑q Φ μ Q Φ μ Q Φ μ Q Φ μ Q  (8) 

 
1

( ) 1 1 1 ( ) 1 ( )
L

1
,

n N
n n N n n k k k n k

F F F B F B
k k n

−
− ∗ + − ∗ − − ∗ + − ∗

= =

− = + + −∑ ∑F Φ μ Q Φ μ Q Φ μ Q Φ μ Q  (9) 

being ( )k
BQ  and ( )k

B
∗Q  amplitudes of externally applied loads in the wave-basis 

space; (1)≡Q Q  and ( 1)N∗ ∗ +≡Q Q  wave-mode amplitudes for the first (1) and 
( 1)N +  unit cells. Equations (8) and (9) can be used to enforce boundary conditions 
and establish a linear system of equations for the unknowns Q  and .∗Q  Solving 
this system enables the determination of any response of the periodic structure. For 
the sake of clarity, in our case, aiming to simulate a free-free condition, (1)

L =F 0  
and ( 1)

L
N + =F 0  must be written, so that one obtains [29]: 

 

1 ( )
1

1
*1

1 ( )

1

 

N
k k

F F BN
kF F

N N
N k kF F

F F B
k

− ∗ ∗
− ∗

=
∗−

∗− −

=

 
      =    

    −
  

∑

∑

Φ Φ μ Q
QI Φ Φ μ
QΦ Φ μ I Φ Φ μ Q

. (10) 

3 Experimental and numerical results 

In the following, experimental and numerical results will be presented, as well as 
the experimental procedures we employed. Section 3.1 first presents manufacturing 
considerations and details about the FE model of a unit cell of the periodic structure 
without confined fluid. Related numerical and experimental findings are compared 
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in Section 3.2, where FRFs of the fluid-filled metastructure are made available to 
assess its wave propagation characteristics. 

3.1 Manufacturing considerations and finite element model 

The three-dimensional systems examined in this study comprise rectangular par-
allelepiped unit cells with external dimensions equal to 60 mm × 10 mm × 30 mm 
( 60 mm)∆ = , containing a perfectly centered internal rectangular parallelepiped 
void, measuring 53.6 mm × 6 mm × 23.6 mm. The numerical and experimental 
analyses presented here initially focus on the dynamic behavior of the periodic 
metastructure illustrated in Fig. 1 without internal fluid. A three-dimensional model 
of the system was created using computer-aided engineering (CAD) software and 
was subsequently made in separate parts using additive manufacturing, as depicted 
in Fig. 2a. Due to manufacturing limitations, the base of the periodic structure was 
printed first, resulting in the configuration depicted in Fig. 2b. Subsequently, the 
cap was produced with a nominal thickness of 2 mm, leading to the geometry dis-
played in Fig. 2c. Finally, the cap was bonded to the base of the metastructure using 
cyanoacrylate superglue, completing the system shown in Fig. 2d. 

 

 
(a) Fused-filament deposition manufactur-
ing of the periodic metastructure. 

 
(b) Base. 

 
(c) Cap. 

 
(d) Assembled system. 

Fig. 2 Manufacture details of the periodic metastructure with voids (without fluid). 
 
To conduct numerical investigations on the previously depicted system, the terms 

appearing in the equations of motion for the unit cell, as shown in Eq. (1), are re-
duced to S

ˆ ,=M M  S
ˆ ,=C C  S

ˆ ,=K K  ˆˆ ,=q U  and S
ˆ ˆ=F F . The mass and stiffness 

matrices mentioned earlier are obtained from conventional FE software employing 
linear interpolation functions and material with linear behavior and utilizing the FE 
mesh illustrated in Fig. 3. Specifically, 4-noded tetrahedral elements with three 
DoFs per node are used, i.e., encompassing translations in the X, Y, and Z-directions 
cf. Fig. 1. Furthermore, the modelling of the unit cell incorporates a total of 75242 
FEs, which satisfactorily ensures the model convergence up to the maximum ana-
lyzed frequency of 5000 Hz. The structure is made of polylactic acid (PLA), for 
which one assumed an elastic modulus of 2.24 GPa, density of 1052.6 3kg m ,−  and 
Poisson’s ratio of 0.3. Viscous damping was not considered in this study ˆ( )=C 0 . 
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However, dissipation effects in the system’s forced responses were accounted for 
through hysteretic damping, i.e., using S ,ˆ (1 i )η= +K K  with η  being the structural 
damping coefficient, set to 0.02. Moreover, a complete wave basis comprising 714 
left- and right-going wave-modes (i.e., 357bn = ) was employed to characterize the 
dynamics of the unit cell under investigation. This choice was based on the demon-
strated relevance of some evanescent wave-modes in the dynamics of the examined 
system, during numerical validations of the wave-based approach against FE anal-
yses. These evanescent wave-modes may be reflected by the internal boundaries 
near the excitation location and, therefore, should not be neglected when computing 
responses for a finite system with relatively small length. It is noteworthy that even 
when considering the complete wave basis to describe the behavior of the meta-
structure, one solves a significantly smaller linear system of equations compared to 
traditional FEM. 

 

 
(a) Unit cell mesh. 

 
(b) Cut revealing the internal void and wall mesh. 

Fig. 3 Finite element mesh used to model the unit cells of the periodic metastructure shown in 
Fig. 1, without internal fluid, using the Wave-based Finite Element Method. 

3.2 Comparison between numerical and experimental results 

First and foremost, the theory briefly discussed in Section 2 can be employed to 
calculate the dispersion curves for an infinite and undamped ( 0)η =  metastructure 
consisting of unit cells without internal fluid. Since the analyzed system does not 
exhibit any non-reciprocal properties in terms of wave propagation characteristics, 
the dispersion curves show symmetry with respect to the frequency axis. Therefore, 
Fig. 4 displays only the positive values of Re{ }jk  and the corresponding negative 
values of Im{ }jk  to visualize the dispersion branches. In Fig. 4, only the first four 
pairs of wavenumbers, related to wave-modes that propagate (or spatially decay) to 
left and right directions, were depicted instead of all those 714 computed for con-
venience. It is important to note that these wave-modes are related to propagating 
and evanescent modes and may be associated with longitudinal, bending, torsional, 
and shear wave types. The focus here is on the wave-modes that most influence the 
longitudinal and bending dynamics in the X- and Y-directions, respectively, cf. 
Fig. 1, whose corresponding dispersion branches are duly identified in Fig. 4. 
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Fig. 4 Dispersion curves, positive values of Re{ }jk  and negative values of Im{ },jk  and 
bandgaps frequency ranges (Im{ } 0)jk ≠  computed for the undamped ( 0)η =  unit cell of the 
periodic structure shown in Fig. 1, without confined fluid. The correspondence between wave-
numbers depicted in Re{ }jk  and Im{ }jk  is illustrated by the dispersion curves with matching 
colors and line styles. 

 
In addition to the dispersion curves shown in Fig. 4, bandgap frequency ranges 

are also illustrated, corresponding to those frequency ranges for which Im{ } 0.jk ≠  
To aid comprehension, these frequency bands are highlighted using shaded areas in 
colors that correspond to those used to plot the negative values of Im{ }.jk  Further-
more, to enhance clarity, a summary of these bandgap frequency ranges is provided 
in Table 1. Thus, based on the curves shown in Fig. 4 and the results provided in 
Table 1, it is evident that the investigated system exhibits four distinct forbidden 
zones up to 5 kHz. 

 
Table 1 A summary of the bandgap frequency ranges (Im{ } 0)jk ≠  seen in Fig.4, computed for 
an undamped ( 0)η =  and infinite metastructure made with the unit cell shown in Fig.1, without 
internal fluid. 

Line styles used in Fig. 4 Bandgap frequency ranges (Hz) 
and  (1756 – 1971), (4586 – 5000) 
and  (3321 – 4221) 
and  (4031 – 4436) 

 
To validate the previously observed numerical predictions regarding the bandgap 

frequency ranges calculated for an infinite system, the wave propagation behavior 
of a finite system with 6N =  unit cells is considered, cf. Fig. 2d. Accelerance-type 
FRFs are measured in the longitudinal and transversal directions (X- and Y-direc-
tions, respectively), with the experimental setups for these measurements shown in 
Figs. 5a and 5b. For the investigation of the longitudinal behavior of the periodic 
system, the experimental scheme shown in Fig. 5a was utilized. An accelerometer 
PCB 352C22 was positioned at the leftmost face of the structure, while an impulsive 
force was applied at its right end. Both the input and output positions were located 
precisely at the center of the relevant cross-sections. On the other hand, the bending 
behavior of the system was examined using the experimental setup depicted in Fig. 
5b. In this case, the structure was spatially reoriented to minimize the influence of 
nylon strings on the free vibration of the system. For this scenario, the accelerometer 
was again placed at the midpoint of the leftmost boundary, but in the XZ-plane. The 
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hammer excitation force was directed along the Y direction, being applied at the 
rightmost edge of the structure. Comparisons between numerical and experimental 
findings are presented in Figs. 5c and 5d for longitudinal and bending dynamics, 
respectively. It is important to note that the numerical curves were computed using 
the theory discussed in Section 2, specifically by applying Eq. (8). 

 

 
(a) Setup used to investigate the longitudinal 
behavior of the periodic metastructure. 

 
(b) Setup used to investigate the bending be-
havior of the periodic metastructure. 

 
(c) A comparison between numerical and ex-
perimental FRFs corresponding to the input 
and output locations seen in Fig. 5a. 

 
(d) A comparison between numerical and ex-
perimental FRFs corresponding to the input 
and output locations seen in Fig. 5b. 

Fig. 5 Experimental setups and comparisons between numerical and measured FRFs used to in-
vestigate the longitudinal and bending behavior of the periodic metastructure portrayed in Figs. 1 
and 2, without internal fluid. 

 
As one may notice from Fig. 5c, the numerical prediction matches well the exper-

imental result obtained through the hammer test across the entire frequency range 
considered. Both resonance frequencies related to the longitudinal motion of the 
system are accurately predicted, corresponding to approximately 1960 Hz and 
3890 Hz. In addition, the experimental FRF also exhibit strong agreement with the 
wave-based model far from the resonance conditions. Moreover, the numerical pre-
dictions regarding the wave propagation behavior of longitudinal modes, provided 
by the Bloch-Floquet theorem, as depicted in Fig. 4, are further supported by these 
FRFs. This means that the finite system did not experience attenuation zones in the 
considered frequency range regarding the propagation of longitudinal waves, since 
the dispersion curve seen in Fig. 4, related to this kind of motion, is purely real. 
Lastly, the coherence function depicted in Fig. 5c confirms the good quality of the 
experimental data, indicating a well-conducted experiment. 
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On the other hand, a comparison between numerical and experimental results de-
picted in Fig. 5d reveals that the wave-based model does not accurately describe the 
bending motion of the periodic structure without fluid, even with its longitudinal 
dynamics being properly predicted, as shown by Fig. 5c. In fact, the natural fre-
quencies computed using the WFEM are larger than those identified from experi-
mental data, indicating that the model exhibits a stiffer behavior. However, it is 
noteworthy that the number of resonance peaks observed in the numerical results 
perfectly matches those related to experiments – cf. indicated in Fig. 5d. Further-
more, the predictions derived from the Bloch-Floquet theorem regarding the atten-
uation zone of bending modes are confirmed by the numerical FRF shown in 
Fig. 5d. This shows that the finite system exhibits two forbidden zones up to 5 kHz, 
as illustrated by the shaded areas in red. These attenuation zones are close to the 
steep valleys related to the blue curve, potentially corresponding to the actual atten-
uation zones of the tested finite system. Nevertheless, the forbidden zones identified 
through experiments are slightly shifted to the left, as previously discussed for the 
natural frequencies. This frequency shift can be attributed mainly to our assumption 
of a linear, isotropic constitutive relationship for the material, which does not fully 
reflect the system’s actual behavior, as well as uncertainties in the PLA material 
properties assumed by us. For instance, the material is known to exhibit viscoelastic 
behavior [30], and the additive manufacturing process we employed favors the re-
sulting media to possess orthotropic symmetry [31]. Notwithstanding, we chose to 
consider a linear model for our analysis, which still yields a fair match with the 
experimental data. It is also worth mentioning that the coherence function associ-
ated with the bending-type motion test is good, similarly to the results shown in 
Fig. 5c, also indicating well-conducted experiments. 

To experimentally assess the dynamic behavior of the system depicted in Fig. 2d, 
with unit cells completely filled with water, new experiments were conducted. 
Firstly, another periodic structure was manufactured, following the procedures de-
scribed in Section 3.1. The surfaces of the six-cell periodic system that could po-
tentially come into contact with water were sealed using varnish, to waterproof the 
prototype model. Subsequently, the internal cavities were filled with fluid, and the 
cap was glued to the superior part of the base of the periodic structure. By adopting 
the same experimental setups discussed earlier and shown in Figs. 5a and 5b, lon-
gitudinal and bending accelerance-type FRFs were measured employing hammer 
tests for the water-filled system. Associated results are provided in Fig. 6. The same 
figure also includes the experimental FRFs obtained for the metastructure without 
fluid, previously shown in Figs. 5c and 5d, for convenience and ease of comparison. 
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(a) Longitudinal FRFs corresponding to the 
input and output locations seen in Fig. 5c. 

 
(b) Bending FRFs corresponding to the input 
and output locations seen in Fig. 5d. 

Fig. 6 Comparisons between experimental FRFs measured for the periodic system portrayed in 
Fig. 1, with and without internal fluid, to investigate its longitudinal and bending dynamic be-
havior. 

 
First, Figs. 6a and 6b show that most resonance peaks exist in both conditions 

when the system is without or completely filled with fluid. This observation was 
previously made by Spadoni et al. [10], where these modes were referred to as per-
sistent modes. In addition, a comparison between the blue and green curves depicted 
in Figs. 6a and 6b reveals that the internal fluid significantly contributes to damping 
effects in the finite periodic system. This is evident from the noticeable attenuation 
of amplitudes at the resonance frequencies associated to the green curve in Fig. 6b. 
Turning attention to Fig. 6a, additional resonances emerge when the periodic system 
is filled with fluid, which may be associated with acoustic modes. Confirmation of 
this observation would require an examination of the system’s deformed shapes at 
the corresponding frequencies. Additionally, the results shown in Fig. 6b, related to 
bending dynamics, demonstrate that the region corresponding to the second exper-
imental attenuation zone is significantly wider when the cavities are completely 
filled with water, in comparison to the condition without internal fluid, as illustrated 
schematically using shading. This finding suggests a novel way to broaden attenu-
ation zones in metamaterials by leveraging the dynamic behavior of fluid-filled 
cells. Moreover, this realization confirms the outstanding performance of fluid-
filled metamaterials in vibroacoustics in terms of attenuating elasto-acoustic waves. 

Concluding remarks 

This study investigated the dynamic behavior of periodic structures with internal 
cavities completely filled with water and in the absence of it. We reviewed a general 
formulation based on the WFEM to analyze wave propagation phenomena in fluid-
filled systems. Utilizing this wave-based modeling approach, simulations were con-
ducted to investigate the dynamics of the periodic system without internal fluid. 
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Additionally, dispersion curves were computed using the Bloch-Floquet theorem 
for the unit cell lacking fluid, providing insights into the wave propagation charac-
teristics through the considered finite system. Experimental tests were conducted 
on a finite metastructure comprising six unit cells without fluid, and measured ac-
celerance FRFs exhibited good agreement with predictions provided by the wave-
based model. Furthermore, attenuation zones predicted by the Bloch-Floquet theo-
rem were confirmed in both numerical and experimental accelerance responses. 
Moreover, the dynamic behavior of the metastructure made with fluid-filled unit 
cells was experimentally assessed through hammer tests. A comparison between the 
experimental FRFs of the regarded periodic structure without and with internal fluid 
revealed that the frequency range near the second attenuation band observed in the 
former case can be significantly enlarged in the presence of fluid within the unit 
cells’ cavities. This indicates the potential of using such metamaterials as a novel 
passive vibration absorber mechanism in various vibroacoustic engineering appli-
cations. 
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