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Abstract

Electric drivelines are the source of tonal noise which can be particularly unpleasant in many industrial settings,

and in particular in vehicles. Different approaches are investigated to minimize this phenomenon, based on the

control of the electromagnetic source for example, or on the optimization of the structural design. This paper

introduces a framework allowing time-efficient reduction of noise radiation without affecting electromagnetic

performance of electric motors, based on the combination of reduced order model and optimization of viscoelas-

tic properties of potting resins. Although viscoelastic resins are frequently used in electric motors, they are

primarily used for insulation, protection, and mechanical stability. The originality of this work is to endow

them with a new functionality by dimensioning them in such a way as to reduce acoustic radiation. Indeed,

the elastodynamic properties of resins depend on the frequency and on the temperature, and can be optimized

to reduce the vibrations and thus the radiated noise. The design is complex because it involves coupled mul-

tiphysical phenomena that cannot be considered separately, and because the numerical models considered are

large-scale models. A methodology is proposed in this paper and applied to the case of a high-speed electric

motor. To guarantee fast and accurate estimation of the acoustic power in the optimization process, a reduced

order model of the engine is developed from a multi-model basis taking into account the thermal and frequency

dependencies of the materials. The numerical optimization thus carried out allows to identify the optimal resin

properties, and a motor is coated to experimentally validate the results. Experimental characterization thus

confirms that the radiated noise can be considerably reduced by using a suitable resin. This work opens the

way to a new design strategy for electric motors providing resin coating with an acoustic function.

Keywords: Electric motor, Vibroacoustics, Viscoelastic, Optimization, Reduced-Order10

Modeling

1. Introduction

Electric motors are more and more used in the transport industry, identified as a green energy likely to

help to meet the environmental requirements. The principle is based on the conversion of electrical energy to

mechanical one, usually by employing electromagnetic phenomena. Compared to more conventional combustion15

engines, these devices have a specific acoustic signature, as the vibratory and noise come from a new physical

source. In particular the noise emitted features both pure tonal components due to the magnetic field, and
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modulated high-frequency tones due to the Pulsed Width Modulation. Studies show that an increasing level

of these high frequency tonal components leads to a feeling of aggressiveness, powerful and unpleasantness [?

]. It is thus important to take these specific phenomena into account for design purposes. The mechanism20

of noise emission is quite well-known: the phase current in the stator coil generates time-varying Maxwell

forces in the air gap between the stator and the rotor poles, these forces induce vibrations that propagate in

the structure of the stator, and are radiated. The prediction of the vibroacoustic behavior thus require to

use adequate multiphysic tools to capture all the physical phenomena. Classically, the excitation is computed

thanks to an electromagnetic simulation on a 2D Finite Element Model of a stator cross-section, then the forces25

on the electromagnetic mesh are projected on a 3D structural Finite Element Model of the stator. The vibratory

response is then computed based on the modal superposition method, and finally the noise radiated is computed

using the Finite Element Method, the Boundary Element Method or an analytic estimation of the Equivalent

Radiated Power (ERP) level. The methodology has given rise on a huge literature where the approach is applied

to permanent magnet synchronous motor (PMSM) [? ? ? ? ? ? ], on a wound-rotor synchronous machine30

[? ], or on a Switched-Reluctance Motor [? ], among others. Models are of increasing complexity, taking into

account the anisotropy of the stator [? ? ? ? ], the non-uniformly distribution of electromagnetic forces or the

effect of the windings [? ]. Despite the maturity of the global simulation process, computation times are huge

as it implies the use of large structural Finite Element Models: reducing vibration and noise using optimization

studies then becomes prohibitive with regard to the calculation time required to carry them out. Nevertheless35

the approach is feasible and has been applied to investigate optimal configurations for intrinsic properties of the

structure or for electromagnetic forces. For instance, in [? ], two parameters of the rotor shape, the claw angle

and the trailing edge size are optimized to reduce noise of a claw-pole alternator. In the case of a PMSM, [? ]

proposes an optimization configuration for the slot opening width, the pole arc ratio, the magnet shape and the

stator yoke thickness ; an optimization strategy of rotor slot fit is also proposed in [? ]. [? ] shows that magnet40

skewing is a better solution to reduce the noise over a wide frequency band than optimizing slot opening width

and magnet shape form ; optimization of V-shaped skewed slots for noise reduction is also investigated in [? ].

[? ] performs an optimization on five geometric parameters, [? ] obtains a high noise level reduction on a wide

speed range with small changes on the shape of the rotor poles, and investigates the impact of uncertainties.

Another approach is investigated in [? ] where topology optimization based on element density as a design45

factor is used to redesign two shapes of a motor housing to reduce vibrations. Quantities at the heart of all

these optimization studies are geometric parameters.

This paper investigates a new paradigm by considering the embedding resins introduced in electric motors

as endowed with functional properties for vibroacoustic control, and proposes a complete methodology for

optimizing the complex multiphysics problem induced by their design. These resins are mainly used to protect50

fragile or exposed components and for thermal management, but they also present a viscoelastic behavior likely

to be interesting for vibration reduction, and little or not exploited. Indeed, viscoelastic materials present

high damping capacities in some temperature and frequency ranges: by comparing 12 resins with different

viscoelastic properties [? ] has shown that a reduction of peak equivalent radiated power values of 5 to 10

dB could be achieved. One of the difficulties of implementation in this comparison approach is related to55

the computation time required to solve each study case by the Finite Element Method, such that a global
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optimizaton study on the characteristic behavioral parameters of a resin is too time-consuming for industrial

applications. To undergo this problem, a structural model reduction strategy adapted to the study of electric

motors incorporating viscoelastic resins is presented in this paper: the method is based on a multi-model

reduction that allows to take into account the vibrations in the dynamic behavior of a structure as a function60

of parameters such as frequency and temperature. The method provides the optimal resin parameters. The

resulting selected resin has been implemented on the real motor to perform the experimental validation. The

paper is organized as follows: the equations used to compute the noise radiated by an electric motor working with

a Finite Element model are detailed in section 2. The vibroacoustic problem implying a full-scale model of an

electric motor is detailed in section 3, based on an adapted multi-model reduction strategy. Finally, results given65

by the optimization process are presented in section 4, and they are validated by comparison with experimental

results in section 5. The work was carried out in collaboration between FEMTO-ST research institute, Vibratec

company, expert in acoustic and vibration control, Moving Magnet Technologies (MMT) company, expert in

the design of electromagnetic solutions, in the framework of the FUI e-Silence project dedicated to the Silent

design of electrical machines.70

2. Multiphysics computation of the radiated noise

This section details the global approach to solve a vibro-acoustic problem for the case of an electric motor.

The methodology is applied on a patented high speed motor with 6 coils and 4 poles developed by MMT [?

] for a supercharger (see Fig.1). Fig. 2 shows the overall process used to compute the noise radiated by the

Fig. 1: View of the electric motor (Moving Magnet Technologies)

motor. An electric current feeds the windings mounted on the stator teeth to generate an electromagnetic flux,75

and thus to obtain a torque. In practice, the flux density is calculated at the motor’s air gap, which makes

it possible to obtain Maxwell’s stresses. The projection of the Maxwell forces onto the tooth meshing [? ? ]

is performed before the computation of the vibratory response of the electric motor. In the case of a motor

with resin, the viscoelastic behavior of the resins must be taken into account in the calculation of the vibratory

response: this question is investigated in detail in the next section. Finally, from the knowledge of the velocity80

3



field on the skin of the stator, it is possible to calculate the Equivalent Radiated Power (ERP) by taking or not

into account a radiation factor.

Electric current

Electromagnetic Forces

Radial and Tangen-
tial Mechanical Load

Viscoelastic behav-
ior of the potting resin

Vibratory Response

Radiated noise (Equiv-
alent Radiated Power)

Fig. 2: Global process for the computation of the noise radiated by an electric motor.

For the considered study, the radial and tangential mechanical loads to be applied on the inner face of the stator

teeth are input data provided by Vibratec from electromagnetic FLUX® simulations.

2.1. Finite Element Model of the motor and Dynamic Study85

The dynamic behavior of the motor is computed by the Finite Element Method (FEM) implemented in the

commercial software NASTRAN®. Fig. 3a shows the Finite Element Model for the studied electric motor. It

is composed of a stator with a transverse orthotropic behavior updated from vibratory tests to represent the

behavior of the stack of metal sheets, and of aluminium flanges [? ? ]. Fig. 3b shows the windings around

the stator teeth, a contact interface skin is introduced to calibrate the numerical model based on experimental90

measurements. The three steel pins are also included in the model to obtain the rigidity experimentally observed.

The model of the rotor is based on beam elements taking into account the stiffness provided by the ball bearings.

The rest of the structure is meshed with quadratic tetrahedrons elements.

Regarding the boundary conditions applied to the Finite Element Model of the electric motor, it is considered

to be free and a mechanical torque in radial and axial direction is applied on the inner face of the stator teeth.

Free boundary conditions enable the analysis to proceed without needing to account for the actual integration

conditions, which remain unknown, thereby simplifying the model and focusing on inherent structure behavior.

The torque is representative of the 4th engine order and results from the integration of Maxwell’s efforts at

the motor’s air gap. This specific engine order is investigated as it leads to the highest radiated noise on the

frequency band of interest because it directly excites the ovalization mode (2,0) of the stator (see Fig. 4).

The dynamic equation governing the behavior of the electric motor without the potting resin is written in the

frequency domain as

−ω2MÛ+ (1 + jηe)KeÛ = F̂e, (1)

where ω is the pulsation, M is the mass matrix of the whole electric motor, ηe is the structural damping1, Ke

1Without loss of generality, this expression assumes homogeneous structural losses. It easily extends to non-homogeneous
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Fig. 3: (a) Finite Element Model of the electric motor, (b) 2D View: the coils are fixed on the teeth of the stator with an adhesive.

represents the stiffness matrix. F̂e is the mechanical load vector and Û is the displacement field vector. The95

velocity field required for the computation of the next step is deduced from the displacement field obtained by

solving Eq. 1.

2.2. Acoustic computation

The Equivalent Radiated Power is first approximated from the velocity of elements located on the external

surface of the stator:

ERP (ω) =
1

2
ρaircair

∑
i∈skin

V 2
i,n(ω)Si, (2)

where ρair is the air density, cair is the speed of sound in air, Vi,n is the averaged normal velocity of element i

at frequency ω and Si is the surface of element i belonging to the external surface skin of the stator. As the

radiation efficiency is not constant over the frequency range of interest, the radiation factor σ(ω) (Fig. 5(a)) is

introduced to compute the corrected Equivalent Radiated Power [? ],

ERP σ(ω) = σ(ω)ERP (ω). (3)

Fig. 5(b) shows the evolution of ERP σ according to the frequency for the electric motor without potting

dissipation.
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Fig. 4: Critical vibration mode on the frequency band of interest: Ovalization mode (2,0).

resin. This figure shows that the level of ERP exceeds 80 dB on two frequency ranges, around 4 kHz and 7 kHz.100

As expected, the ovalization mode (2,0) already mentioned is responsible for the first maximum observed close

to 4 kHz. The contribution of this particular mode to the ERP around 7 kHz is however limited as the acoustic

radiation in this range is mainly due to the eigenmode whose shape is shown in the figure. This latter is a

priori less efficient in terms of acoustic radiation than the previous one, but the spatial distribution of the

electromagnetic excitation combined with the shape of the mode and its radiation efficiency results in an overall105

high pressure level mainly due to this particular mode.
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Fig. 5: Radiation factor σ evolution according to the frequency (a), ERPσ of the motor without potting resin (b)

3. Optimization of electric motor vibroacoustics by tuning viscoelastic resins

Windings can be encapsulated (potted) or impregnated with viscoelastic resins. As an illustration, the

windings of the motor considered here are embedded in a resin volume shown in magenta in Fig. 3b. In electric

motors, resins are commonly used for electric insulation, thermal management, corrosion protection, chemical110

protection, and position holding. The new idea is to select them on the basis of their viscoelastic properties to

minimize the radiated noise. An adapted rheological model is proposed to describe the viscoelastic behavior of

the resins and introduced in the dynamic equations. The challenge is then to reduce computational times to

allow the optimization study.

3.1. Dynamic behavior of the motor including viscoelastic resins115

Taking into account the viscoelastic behavior of the potting resin, the dynamic equation of the electric motor

in the frequency domain is written,

−ω2MÛ+ (1 + jηe)KeÛ+KZ(ω, T )Û = F̂e, (4)
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where KZ(ω, T ) is the frequency- and temperature-dependent stiffness matrix associated to the potting resin.

It should be emphasized that, even if the notation is similar, the degrees of freedom differ from Eq. 1 as they

include those of the resin. Also, the mass matrix includes here the inertial properties of the resin.

Four different potting resins are considered here on the basis of their thermal properties compatible with the

requirements of the engine. They are referred as A, B, C and D. The resins are characterized on a Metravib

DMA+ 300 viscoelastic machine providing the values of the storage modulus and loss factor over temperature

(from -30 to 170 ◦C) and frequencies (from 1 to 31.5 Hz). Fig. 6 shows the evolution of these parameters for

resin A.
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Fig. 6: Evolution of the storage modulus E′ (a) and the loss factor η (b) according to the temperature for several frequencies for
the resin A

Only the case of resin A is detailed in this section, the characteristics of the other resins are provided in Appendix

6. Through application of the Arrhenius law (Fig. 7), it is verified that viscoelastic resins comply with the

Time-Temperature Superposition (TTS) principle. The coefficient of determination R2 linking the experimental

results and the Arrhenius model is very close to 1, meaning that the global behavior is well recovered. The

small observed discrepancies result in slight errors when constructing the master curve, and in the long-term

behavior, but it may not drastically affect short-term predictions on the domain of study. The master curve for

the results is thus determined by applying the TTS principle, with the Arrhenius law providing the necessary

temperature dependence to correctly shift the data. A fractional Zener model [? ] is selected to describe the

evolution of the behavior of the coating resins. The complex modulus hence writes

E∗(ωaT
) =

E0 + E∞(jωaT
τ)α

1 + (jωaT
τ)α

. (5)
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Fig. 7: Arrhenius law used to model the shift factor aT according to T for resin A

The order of the fractional derivative α as well as the relaxation time of the material τ are determined by [? ]

α =
2

π
arcsin

(
ηmax(E∞ − E0)

2
√
E∞E0 + (E∞ + E0)

√
1 + η2max

η2max(E∞ + E0)2 + (E∞ − E0)2

)
(6)

and

τ =
1

2πaT fηmax

(
E0

E∞

) 1
2α

. (7)

Fig. 8 shows the fractional Zener model identified from the master curve of resin A obtained for a reference

temperature T0 of 72◦C. The experimental and analytical master curves are close even if there are some differ-

ences. Experimentally, the high and low frequency moduli are not constant and the evolution of the loss factor

is not perfectly symmetrical on both sides of ηmax. More complex rheological models could be used for better

correlation, such as the Generalized Maxwell Model [? ], at the cost of higher number of parameters to iden-120

tify. However, the parameters of the fractional Zener model have a strong physical meaning and are very good

candidates to play with in optimization procedures whose results cane easily be handled by resin manufacturers.

Table 1 lists the parameters identified for the four resins from the master curves for a common reference

temperature of 72◦C. It is important to note that the glass-transition temperature is also frequency dependent.

A B C D
E∞ 4000MPa 6000MPa 5500MPa 2500MPa
E0 20MPa 220MPa 55MPa 25MPa
Tg ∼ 65 ◦C ∼ 110 ◦C ∼ 60 ◦C ∼ 20 ◦C

a72◦Cfηmax
93.65Hz 3× 10−8 Hz 140Hz 2.5× 104 Hz

ηmax 0.95 0.8 0.85 0.85
Ea 2.1× 105 J/mol 1.9× 105 J/mol 1.9× 105 J/mol 105 J/mol

Table 1: Fractional Zener model parameters for the resins

Finally, according to the fractional Zener model and the time-temperature superposition principle, the dynamic
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Fig. 8: Identified fractional Zener model for resin A

equation writes

−ω2MÛ+ (1 + jηe)KeÛ+Kv
E0 + E∞(jωaT

τ)α

1 + (jωaT
τ)α

Û = F̂e (8)

with Kv the localization matrix associated to the potting resin. The validity of this equation is restricted to

homogeneous potting, however it easily extends to non-homogeneous cases.125

The equation to be solved includes a frequency-dependent stiffness matrix and the size of the operators is

larger than 3.106 degrees of freedom which leads to very high calculation costs, about 36min for a frequency

step. The corrected ERP computation on a frequency band ranging from 400 to 8000Hz and comprising at

least 228 frequency steps, requires more than 5 days. Consequently, running a vibroacoustic optimization to130

find the optimal resin parameters is practically unrealistic. In this context, a model reduction strategy has been

developed to significantly reduce the computation time and allow the optimization procedure.

3.2. Model reduction based on multi-model basis and vibroacoustic optimization

Due to the high frequency-dependency of the material behavior, no single model can typically represent the

full complexity across the entire range of interest. Conventional reduction methods based on normal modes can

be applied changing the calculation frequency but such an approach is clearly too costly in terms of computing

time to allow the development of an optimization approach. The model reduction is a high challenge to

solve an electric motor optimization problem involving advanced viscoelastic resin models. The methodology

proposed here is the multi-model approach [? ]. This approach has proved effective in reducing models involving
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components with frequency- [? ? ? ] or speed-dependent behavior [? ], or highly damped components [? ],

and is thus a relevant approach for the case of electric motors in the presence of complex viscoelastic material

modeling. The principle consists in building a projection basis taking into account the softening and stiffening

of the resin as a function of the frequency. This basis is built by combining modal bases extracted for stiffness

obtained at different frequencies. In the studied case and thanks to the time-temperature superposition principle,

two modal bases are sufficient to represent the dynamics over the frequency and temperature ranges of interest:

a basis representative of the low frequency (or high temperature) behavior ΦLF and a high frequency (or low

temperature) basis ΦHF . The number of bases selected should be adapted according to the case studied. To

create ΦLF the p first modes are extracted by choosing ω equal to the minimum frequency ωHf of the studied

interval and solving, (
−ω2

iM+Ke + ℜ(Kv
E0 + E∞(jωBF τ)

α

1 + (jωBF τ)α
)

)
ϕi = 0. (9)

The high frequency basis ΦHF is obtained solving the same equation used to extract ΦLF but for ω = ωHF the

maximum frequency of the studied interval.

Finally, the low frequency basis ΦLF is enriched by the high frequency basis ΦHF using a Gram-Schmidt ortho-

normalization with respect to mass matrix to ensure the good conditioning of the problem. This multi-model

basis Φ is then used to project the operators of the full FE model and the reduced system is therefore written,

−ω2mq̂+ (1 + jηe)keq̂+ kv
E0 + E∞(jωaT

τ)α

1 + (jωaT
τ)α

q̂ = f̂e, (10)

where m = ϕTMϕ, ke = ϕTKeϕ, and kv = ϕTKvϕ are respectively the modal mass matrix, the modal stiff-

ness matrix for the non-resin part and for the potting, and f̂e = ϕT F̂e is the projected load vector. q̂ is the135

generalized coordinate vector such that Û = ϕq̂.

From a practical standpoint, DMAPs were developed to create and use this type of enriched basis to use

the NASTRAN solver. Fig. 9 shows the comparison between a direct calculation of the ERP (with a radiation

factor equal to 1) from the complete FE model (SOL 108 in NASTRAN) and after projection on the multi-140

model basis (SOL 111 in NASTRAN). The proposed approach captures well the behavior specific to viscoelastic

systems and the computation times are drastically reduced: 6 days 4 hours and 14 minutes for 242 frequency

steps in SOL108 against 54 min for 2501 frequency steps in SOL 111. Fig. 10 shows the flowchart covered so

far and how the corrected ERP is calculated.

By following this updated workflow, it is now possible to quickly calculate the Equivalent Radiated Power of

the electric motor by taking into account the viscoelastic behavior of the potting resin and the radiation factor

σ:

ERP σ
dB = 10 log

(
σ(ω)ERP (ω)

1× 10−12

)
. (11)

Fig. 11 presents the ERP σ
dB calculated when the engine is coated with resin A, for two different temperatures145

(40◦C and 120◦C). At 40◦C, the resin is in its glassy state and the mode (2.0) is outside the frequency band

of interest. The maximum ERP σ
dB is around 80 dB. However, when the temperature increases and exceeds the

glass transition temperature of the resin (65◦C for resin A), the elastic modulus decreases, which leads to an

overall softening of electric motor dynamic behavior. The radiating mode is then found in the frequency band
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Fig. 10: Updated workflow
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3.3. Vibroacoustic optimization procedure

The objective is to minimize the radiated noise by the electric motor over a frequency band from 2000

to 6000Hz and a temperature interval ranging from 40 to 140 ◦C by optimizing the viscoelastic properties of

the potting resin. Fig. 12 shows the workflow used during optimization and several DMAP routines have

been developed to link MATLAB and the NASTRAN solver. The optimization process aims at finding the155

parameters of an optimal fractional Zener model.

A preliminary parameter analysis is required to reduce the number of parameters and fasten the optimiza-

tion process. First, the maximum loss factor ηmax is fixed to 0.85 because as it does not vary much from one

tested resin to another. However, considering the loss factor as an optimization parameter would be of interest

in some situations, providing the available resins can be elaborated with the corresponding properties. The160

activation energy Ea is arbitrarily fixed at 2× 105 J/mol. As a consequence, only the parameters E0, E∞, and

fηmax
are selected for the optimization. To be confident in the ability of resin manufacturers to formulate the

required chemistry, the evolution of these parameters is bounded according to the results of the experimental

characterization (Table 1). However, the glass transition temperature bounds are extended as it is possible to

play with this parameter during the resin elaboration process. As a first step, the objective function aims at165

minimizing the maximum value of ERP σ
dB on the frequency (∆ω) range of interest, for a single temperature T .

In this case, the optimization problem is described in Fig. 13.

Experimental Nastran

Matlab/DMAP Given Data

Characterization of the potting
resin viscoelastic behavior

Viscoelastic model and identi-
fication of the fractional Zener
model (E0, E∞, ηmax, fηmax)

Creation of useful tabular
material data (E, G, η, ν) and
writing of updated Nastran file

Dynamic response calculation
thanks to the multi-model

basis and NASTRAN SOL111

Objective function: ERPσ
dB

Optimal parameters →
Optimal potting resin

MATLAB®fmincon

function

Fig. 12: Optimization workflow
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Given T , ∆ω
Find E0, E∞, ηmax, fηmax

Minimizing fcost = ||ERP σ
dB(ω,E0, E∞, ηmax, fηmax

)||∞

Subject to −ω2mq̂+ (1 + jηe)keq̂+ kv
E0+E∞(jωaT

τ)α

1+(jωaT
τ)α q̂ = f̂e

25MPa ⩽ E0 ⩽ 220MPa
2500MPa ⩽ E∞ ⩽ 6000MPa
ηmax = 0.85
1× 10−17a.Hz ⩽ fηmax

⩽ 3× 104a.Hz

Figure 13: Optimization procedure for a single temperature

In case the optimization is related to a temperature range ∆T instead of a single one, the multi-objective

problem is solved by scalarization which consists in which consists in transforming the problem into a single-170

objective problem, where in this case the same weight is applied to all objectives. The objective function to be

minimized can thus be chosen as the average of the maximum ERP[dB]σ computed for NT values of temperature

Ti ∈ ∆T ,

fcost =
1

NT

NT∑
i=1

||ERP σ
dB(ω, Ti, E0, E∞, ηmax, fηmax)||∞. (12)

The optimization process is run using parameters of resin B as initial parameters because the noise level obtained

with this resin is low prior to any optimization process, and thus this resin is an interesting reference case. Fig.175

14 shows the convergence curve obtained for the vibroacoustic optimization at a temperature of 140 ◦C. The

optimization is performed in 4 h 26min thanks to the multi-model approach.

Fig. 14: Convergence curve for solving the vibroacoustic optimization problem at 140◦C

4. Results and discussions

When the optimization is carried out for a temperature of 40 ◦C , the values obtained for the parameters

are E0 = 125MPa, E∞ = 5985MPa, a72◦Cfηmax
= 9.98 × 10−8 Hz, and for an optimization for a temperature180

of 140 ◦C the values are E0 = 216.5MPa, E∞ = 5985MPa, a72◦Cfηmax
= 1.1 × 10−15 Hz. Fig. 15 presents

the evolution of the ERP σ
dB on the frequency band of interest for the two temperature cases (40 ◦C - case (a)
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and 140 ◦C - case (b)). For the two temperatures, the solution obtained with the initial parameters for the

fractional Zener model and resin B is compared to results given by the optimization, considering three Zener

parameters (E0, E∞, fηmax), or only one (fηmax) as optimization variables. Since the frequency band over185

which the radiated noise must be reduced is quite narrow (2000Hz to 6000Hz), the optimization process leads

to remove mode (2, 0) from this frequency range. This is a feasible solution as the optimal parameters remain

in the bounds corresponding to the tested resins.
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Fig. 15: ERPσ
dB at 40◦C (a) and 140◦C (b) for the fractional Zener initial parameters and for the optimal ones on the frequency

band of interest. Different optimization studies are done considering three Zener parameters (E0, E∞, fηmax ), or only one (fηmax ).

In the case where the temperature of the resin is 40 ◦C (Fig. 15(a)), with the initial parameters, the glass190

transition temperature of the resin is around 110 ◦C, and therefore already above 40 ◦C. Thus, to minimize

ERP σ
dB , the optimization results in increasing the high frequency modulus value E∞ up to 5985MPa, with an

upper bound fixed to 6000MPa. This modification tends to stiffen the dynamic behavior of the electric motor

and therefore to push the radiating mode towards high frequencies.

At 140 ◦C (Fig. 15(b)), the optimization converges after increasing the two asymptotic moduli E0 and E∞195

respectively up to 216.5MPa (upper limit 220MPa) and 5985MPa (upper limit 6000MPa), and reduces the

reduced frequency at which the maximum damping is observed a72◦Cfηmax
= 1.12 × 10−15 Hz (lower limit

1×10−17 Hz). It should be noted that the ERP σ
dB evolution on the frequency band of interest, after optimization

of the viscoelastic properties of the potting resin is similar at 40 and 140 ◦C.

Within the framework of the study presented in this paper and for the temperature and frequency bands of200

interest, respectively [40; 140]◦C and [2000; 6000]Hz, it does not seem necessary to solve an optimization for a

set of temperatures since the optimal solution at 140◦C which is close to optimal for lower temperatures as

shown in Fig. 16.

In terms of design of the potting resins, the results of the optimization for the considered configuration show

that it is necessary to focus on a resin that is as rigid as possible (asymptotic moduli) and having a high glass205

transition temperature. Moreover, it should be noted that if the mode (2, 0) had been out of the frequency band

of interest for the studied temperature range, or if several radiating modes had been present, it would have

been interesting to carry out an optimization on a set of temperatures using the objective function (Eq. 12) to

determine the best trade-off. Finally, in the study, the bounds of the design variables correspond to the range

of properties measured on the different of potting resins presented in Section 3. By relaxing the constraints, it210

would undoubtedly be possible to achieve configurations that further reduce the Equivalent Radiated Power.
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Fig. 16: ERPσ
dB evolution according to the frequency at 40◦C (blue dot) and 140◦C (red cross) with the optimal viscoelastic

properties obtained at 140◦C

5. Experimental validation

The aim of this section consists in validating the previous results by implementing the potting using an

optimal viscoelastic resin. As the authors do not possess the required skills to elaborate on-demand polymers,

it was decided to find a resin on-the-shelf with properties as close as those computed in the previous section,215

ie. as rigid as possible (as the optimal values of E0 and E∞ were close to the upper bounds) and with a high

glass transition temperature. The selected resin is referred as E. Its properties are given in table 2 : they have

been measured following the same procedures as for resins A to D.

E
E∞ 4000MPa
E0 100MPa
Tg ∼ 20 ◦C

a72◦Cfηmax
1× 10−17 Hz

ηmax 0.8
Ea 105 J/mol

Table 2: Fractional Zener model parameters for resin E

Fig. 17 presents a picture of the resin-coated electric motor.

Acoustic measurements were made in an anechoic environment, as shown in Fig. 18. The electric motor is220

suspended thanks to cables to be in free boundary conditions, two accelerometers are glued on the stator for

vibratory measurements, two microphones are positioned at 90◦ at 1m to measure the acoustic radiation. A

thermocouple is used to control the temperature level.

Fig. 19 shows the acoustic pressure level measured at 1m from the electric motor during an increase in rotational

speed from 0 to 125 000 rpm for different configurations: motor without resin ( ), motor with the optimal resin225

for a temperature of 70 ◦C ( ) and a temperature of 130 ◦C ( ). The rise in temperature is a consequence

of the operation of the engine. The optimal resin provides a significant acoustic gain since the noise level around

the critical speed at 61 000 rpm is reduced by 38 dB. Thus, the resin here succeeds in achieving its intended

purpose which was to minimize the infinite norm of the radiated noise, i.e. the maximum level of noise. The

addition of stiffness with the resin pushes the ovalization mode, which is mainly responsible for the radiation, out230
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Fig. 17: Stator with the potted resin.

Microphone

1 m

90°

Electric motor

(a)

Accelerometers

Thermocouple

(b)

Fig. 18: Experimental setup for acoustic and vibratory measurements on the electric motor: (a) Global overview, (b) Zoom on
the motor

of the frequency band excited during operation. The acoustic performance is preserved during the temperature

rise since the glass transition temperature of the selected resin is higher than the operational temperature. The

stiffness properties are thus maintained.
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Fig. 19: Comparison of the acoustic pressure level radiated by the electric motor for different configurations: without resin, with
the optimal resin at a temperature of 70◦C and with the optimal resin at a temperature of 130◦C.

6. Conclusions

This research work aims at taking advantage of the mechanical behavior of viscoelastic resins used in the235

coating of electric motors for the reduction of their acoustic radiation. These resins exhibit a frequency- and

temperature-dependent behavior, which can thus be optimized to reduce the vibration and acoustic levels.

For that purpose, an approach has been developed to estimate the noise radiated by an electric motor potted

with viscoelastic resins, and to identify optimal properties to minimize the radiated noise. First the dynamic

mechanical properties of a set resin have been identified as a function of frequency and temperature using a240

Dynamic Mechanical Analysis, and a fractional Zener model has been used to describe the viscoelastic behavior.

The dynamic behavior of the motor including the resins can thus be accurately estimated by introducing this

model in the dynamic equation. Then, to drastically reduce calculation times and make optimization possible,

a multi-model reduction method is implemented to capture the dynamic behavior evolution as a function of

frequency and temperature. The approach has been implemented in an industrial case, demonstrating that it245

is possible to estimate with precision and at a low computational cost the dynamic behavior of a structure in

the presence of a viscoelastic material. Finally, a method for optimizing the mechanical properties of resins to

minimize radiated noise over given temperature and frequency ranges has been developed. Numerical simulations

as well as experiments carried out on an engine equipped with a resin selected for its properties confirm that

an adequate choice of resin makes it possible to considerably reduce the radiated noise.250

The methodological developments of the research work in parametric identification of viscoelastic resin, dynamic
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simulation with viscoelastic materials, and model reduction in the presence of frequency dependent parameters

allow the design of an optimized resin for acoustics. It is important to emphasize that the approach developed

takes precise account of the resin in terms of quantity introduced and positioning, and relies here on the

functionalization of resin already used for protection or mechanical integrity purposes. The application potential255

is greater for machines that allow the addition of resins between teeth, such as variable reluctance machines,

which are reputed to be particularly noisy and for which there are no noise control solutions at source. Thus,

the proposed work paves the way to new considerations around potting resins in the field of electric motors.
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Appendices

The appendix presents the characterization and identification works carried out on resins B, C, D, E men-

tioned in Sec.3.
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Characterization results for resin B

Fig. 20 presents the arrhenius law and the evolution of the Young modulus and loss factor for resin B. Fig.270

21 presents the identifed frac- tional Zener model for resin B.
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Fig. 20: Resin B : (a) Arrhenius law used to model the shift factor aT according to T ; Evolution of the Young modulus (b) and
of the loss factor η (c) according to the temperature for several frequencies.
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Fig. 21: Resin B : Identified fractional Zener model.
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Characterization results for resin C

Fig. 22 presents the arrhenius law and the evolution of the Young modulus and loss factor for resin C. Fig.

23 presents the identifed frac- tional Zener model for resin C.
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Fig. 22: Resin C : (a) Arrhenius law used to model the shift factor aT according to T ; Evolution of the Young modulus (b) and
of the loss factor η (c) according to the temperature for several frequencies.
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Fig. 23: Resin C : Identified fractional Zener model.
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Characterization results for resin D275

Fig. 24 presents the arrhenius law and the evolution of the Young modulus and loss factor for resin D. Fig.

25 presents the identifed frac- tional Zener model for resin D.

27



(a)

2.6 2.8 3 3.2 3.4 3.6 3.8 4 4.2 4.4 4.6 4.8 5

·10−3

−4

−2

0

2

4

6

8

10

12

14

16

18

20

22

24

1/T [K−1]

lo
g(
a
T
)

TTSP
Arrhenius Polynom, R2 =0.99

(b)

−80−70−60−50−40−30−20−10 0 10 20 30 40 50 60 70 80107

108

109

1010

Temperature [◦C]

St
or

ag
e

m
od

ul
us

[M
Pa

]

1Hz
1.5Hz
2.5Hz
3.5Hz
5.5Hz
9Hz
13.5Hz
21Hz
32.5Hz
50Hz

(c)

−80 −70 −60 −50 −40 −30 −20 −10 0 10 20 30 40 50 60 70 80
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

Temperature [◦C]

ta
n
(δ
)

Fig. 24: Resin D : (a) Arrhenius law used to model the shift factor aT according to T ; Evolution of the Young modulus (b) and
of the loss factor η (c) according to the temperature for several frequencies.
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Fig. 25: Resin D : Identified fractional Zener model.
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Characterization results for resin E

Fig. 26 presents the arrhenius law and the evolution of the Young modulus and loss factor for resin E. Fig.

27 presents the identifed frac- tional Zener model for resin E.280
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Fig. 26: Resin E : (a) Arrhenius law used to model the shift factor aT according to T ; Evolution of the Young modulus (b) and
of the loss factor η (c) according to the temperature for several frequencies.
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Fig. 27: Resin E : Identified fractional Zener model.
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