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Abstract. This paper presents a new image clustering method (DEEM)
based on convolutional neural networks and the theory of belief func-
tions used to encode uncertainty between clusters. The algorithm learns
to generate mass functions for a given image through a training pro-
cess that minimises a loss between the conflict computed from pairs of
images and their dissimilarities. DEEM extends NN-EVCLUS and pro-
vides a gateway to the entire realm of deep learning, capitalising on all
its advancements. It enables the full exploitation of the benefits offered
by customisable layers, sophisticated optimisation algorithms, and other
state-of-the-art techniques. DEEM can learn from the data itself, with-
out requiring external labels but we can incorporate prior on labels if
available as proposed in NN-EVCLUS. The first results are shown on
the MNIST dataset (digit recognition).
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1 Introduction

Clustering is a data analysis technique wherein data points are grouped based
on their inherent similarities. The groups or clusters, are formed such that data
points within the same cluster are more closely related to each other than to
those in other clusters. Clusters can then be used to get insights in the data for
further classification or interpretation.

Managing uncertainty in clustering is an important topic because real-world
data often contains noise, outliers, and ambiguities, leading to uncertainty in
the assignment of data points to clusters. By addressing uncertainty, clustering
algorithms can produce more reliable and interpretable results, ensuring that
the identified clusters accurately represent the underlying structure of the data.

In order to represent uncertainty, various formalisms can be used such as
fuzzy sets [3, 18], probability theory [7, 15] or belief functions [4, 13]. Using belief
functions, doubt between clusters is explicitly represented. In practice, doubt
allows the end-user to visualise the contours of clusters which helps in making
informed decisions and drawing meaningful insights from the clustering process.



2 L. Guiziou et al.

When it comes to image clustering, there are two primary approaches. On
one hand, features can be extracted from the input, such as color histograms or
merged pixel blobs [10, 22]. On the other hand, the image itself can be treated as
an input vector for conventional clustering methods. Despite the latter not fully
considering the image structure, they can still yield satisfactory results. Both
input methods may involve the use of deep clustering methods [17]. However,
convolutional neural networks (CNN) are a class of method that leverages data
structure for clustering. While often employed in supervised settings, recent ap-
plications of CNN have explored unsupervised and self-supervised learning. One
common approach consists in a CNN serving as an encoder for the data, produc-
ing an output suitable for clustering methods like k-means. In the self-supervised
setting, the clusters are used as a feedback to train the encoder like in [6]. The
head of the CNN is then coupled with a MLP trained with the pseudo-labels
using a discriminative loss.

Our approach, DEEM, diverges from traditional encoders as it directly pro-
vides cluster membership from input images, where the uncertainty is encoded
by belief functions. Moreover, the option of partially or weakly supervised train-
ing is inherently integrated into the loss function, as detailed in the following
section. DEEM is based on a recent method called NN-EVCLUS proposed by
T. Denoeux [8]. Initially developed for clustering feature vectors with shallow
networks, NN-EVCLUS is feature dependent, which requires to pay particu-
lar attention to feature relevance. DEEM handles image inputs which outstrips
feature limitations. In addition, images can be processed by particular networks
such as CNN, which have already shown great performance in supervised learning
[12]. To our knowledge, this is the first neural network-based clustering method
able to generate belief functions from images. By fully exploiting the benefits
offered by customisable layers, sophisticated optimisation algorithms, and other
state-of-the-art techniques, DEEM can represent a valuable method for image
clustering under uncertainty and be used as a mass function generator.

The presentation of the method is described in Section 2 and Section 3
presents the results.

2 Method

2.1 Background on belief functions

A mass function on a finite set Ω is defined as a mapping of each element of the
power set 2Ω onto [0, 1]:

m : 2Ω 7→ [0, 1]
A → mΩ(A) s.c.

∑
A mΩ(A) = 1,mΩ(A) ≥ 0

(1)

When mΩ(S) > 0, A is called a focal set, and if mΩ(∅) = 0 then the basic
belief assignment (BBA) is said normal. A mass function can be transformed
into several other functions which allows the end-user to get insights about the
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content of a mass and to make easier some computations [20, 21]. One of these
functions is the plausibility defined as

Pl(A) =
∑

B∩A ̸=∅

m(B),∀B ⊆ Ω (2)

As a particular case, the contour function related to m is defined as pl : Ω 7→
[0, 1]. It maps each singleton ω ∈ Ω to its plausibility: pl(ω) = Pl({ω}).

Given two mass functions, m1 and m2, defined on the same frame of discern-
ment Ω, their combination through the conjunctive rule is

(m1 ∩m2) (C) =
∑

A∩B=C

m1(A)m2(B),∀C ⊆ Ω (3)

From this combination, a conflict can arise when the intersection is empty be-
tween A and B:

κ = (m1 ∩m2) (∅) =
∑

A∩B=∅

m1(A)m2(B) (4)

This conflict has been used in several algorithms based on belief functions such
as target association [1] or the evidential hidden Markov model [16] since it is
related to the likelihood. It has a very important role in NN-EVCLUS as shown
subsequently.

2.2 NN-EVCLUS for feature vector clustering

NN-EVCLUS relies on a shallow neural network parameterised by θ taking
as inputs a d-dimensional feature vector xi ∈ ℜd and generating a vector
of masses mi. Together, the BBA form a collection called credal partition
m = {m1, ...,mN} for N objects [9]. The number of outputs in the last layer of
the network depends on the complexity of the mass that the end-user considered
as necessary to represent the uncertainty on clusters. Classically, the singletons,
the pairs and the whole frame are often sufficient. The remaining description does
not depend on this limitation but due to the calculation complexity, adding more
subsets will considerably increase the computation time.

The core idea of NN-EVCLUS is to quantify the conflict between each pair of
mass functions (mi,mj) and to use this conflict to update the network parame-
ters. Therefore, NN-EVCLUS has some analogy with the siamese network (SN)
[5] since the network parameters are fixed for a given pair of inputs (xi,xj). In
a SN, the true labels of individual inputs are not known, but we have to know
whether each pair represents a similar (e.g. label "1") or a dissimilar (label "0")
object. Based on this prior knowledge, the parameters of a SN are updated
according to the cross-entropy loss or a contractive loss.

In NN-EVCLUS, the loss function is slightly different and the method unsu-
pervised. It is defined as

L =

N∑
i=1

∑
j>i

(δij − κij(θ))
2 (5)
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where κij(θ) is the conflict between the mass functions mi and mj generated
after the forward pass using xi and xj as inputs and with network parameters
θ. The value δij is the dissimilarity between the two inputs. Dissimilarity can be
computed in many ways. In the simplest case, we will use the Euclidean distance.
The values are then scaled between 0 and 1 to be comparable to conflict. This
approach presupposes that the greater the distance between images, the more
likely the masses are to be in conflict. The main idea behind this loss is that if
the network generates two conflicting masses while the inputs are similar, then
the parameters should be updated in consequence. Conversely, if two inputs are
similar and generate two masses with limited conflict, then the network behaves
properly.

2.3 DEEM for image clustering

An implementation of the shallow version of NN-EVCLUS was done in R by
T. Denoeux [8]. It requires inputs as feature vectors as defined in the original
version. The implementation includes the possibility to tune up to three layers
with an arbitrary number of neurons and using the ReLU activation function in
all layers. Our first implementation was done in Matlab, with the possibility to
manage any number of layers, to use all possible activation functions and various
optimisers.

We then explored the possibility to improve this implementation in order to
manage images as inputs and to change the loss. Therefore, the shallow network
was replaced by a CNN. These networks, trained in an unsupervised manner,
can extract useful visual features and representations that can be used for other
tasks [6]. Implementation was done in both Matlab and Pytorch with GPU
compatibility. The main contribution is to give the possibility to perform image
clustering in an end-to-end manner without the need of manual feature extrac-
tion. Here, the objective of the CNN is to output the evidential partition of the
images and does not aim to transform the images into features as auto-encoders
do. As with the previous method, the output masses enable clustering and the
calculation of the loss function, which depends on the conflict.

Thus, the input data consists of vectorised and normalised raw images. Given
the large amount of data typically involved in general image databases, the
implementation relies on minibatches. These minibatches are then processed by
the CNN, which outputs the masses of the power set, including singletons, pairs,
the empty set, and the universal set. Given the complexity of the computation
depending on the number of elements and the number of focal sets, it is difficult
to add higher-order intersections to the calculation. For 10 classes, this results
in an output of 57 masses. The conflict is then extracted from these masses and
integrated into the loss function. In the DEEM code, it is possible to change the
loss function easily, but the configuration used for the tests remains the same
Mean Squared Error (MSE) loss as in Eq. 5. Conversely to the general approach
for image clustering which is based on prediction of the cluster assignments used
as pseudo-labels in a discriminative loss, DEEM relies on the MSE loss defined in
NN-EVCLUS. The way the dissimilarity δij is computed is critical, in particular
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for image since they have a structure conversely to standard features. If natural
images are considered, several dissimilarity measures proposed in the past can
be used [11].

In the original publication, T. Denoeux provided the gradient of the loss
with respect to all parameters. These gradients can be useful according to the
way the optimisation is implemented. In our case, when considering images, the
convolutional layers particularly make these computations and implementation
more difficult. Therefore, the gradients were found by automatic differentiation
(AD) [2] which allows the end-user to easily configure the network as desired for
a given application. The associated optimiser is Adam, which, once again, can be
easily swapped with others such as Stochastic Gradient Descent with Momentum
(SGDM) or Root Mean Squared Propagation (RMSProp). The DEEM code also
allows for real-time calculation of ARI and other evaluators. This calculation is
performed by evaluating the predicted clusters against the expected ones at each
iteration. In our case, clustering is done by assigning the class of the subgroup
where the plausibility function is the strongest. Thus, the plausibility calculation
is performed on the 10 sets, with the winning cluster being the one with the
highest value. Finally, it is difficult to define the stopping criterion for training
the network because the loss varies greatly, and a threshold condition would
not be adequate. For now, the number of iterations is the stopping criterion for
training.

3 Results

3.1 Clustering performances on digits

The network’s efficiency was initially evaluated using the MNIST standard
dataset, which is made of images of the ten digits. One of the primary challenges
involved configuring the network architecture and find a set of hyperparameters.
The convergence outcomes are significantly influenced by the selection of layers
and optimisation rules applied to each layer. One effective network configuration
is illustrated in Figure 1.

Fig. 1: Neural network for image handling of NNEVCLUS
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Validation of the implementation – Initial testing was conducted under
favorable conditions, recognising the substantial impact of dissimilarity calcula-
tions between images on convergence. Dissimilarities were first computed based
on known labels, facilitating the network’s convergence to an adjusted rand in-
dex (ARI) of 1 without any errors. Even though this method is not supervised
in the sense that the labels are not directly incorporated into the loss function,
it remains quasi-supervised. As a result, attempts to generalise on 60,000 images
after training on 5,000 images achieve high scores: an ACC of 0.97, an NMI of
0.92, and an ARI of 0.93.

Grad-CAM analysis [19] on the test data revealed a logical distribution of
areas of interest activated by neurons. Figure 2 depicts each class in a scenario
where the network confused digits 6 and 8.

Fig. 2: Grad-CAM for each cluster

Using distance on images – When dissimilarities were calculated solely
through cosine distance between images, without relying on labels, the network’s
performance decreased to an ARI of 0.25 and a rand index (RI) of 0.8. The
disparity between ARI and RI arises from clustering multiple classes, thereby
increasing the likelihood of errors across various classes. Errors predominantly
occurred with digits that are challenging to distinguish or bear high resemblance,
such as digits 1 and 7. This challenge is obvious in the dissimilarity matrix, where
certain classes appear closely related. Besides, using distances between images to
represent dissimilarity is a risky approach. Indeed, a simple translation between
similar images significantly increases the distance. Therefore, other methods of
computing dissimilarity can be employed. First, there is the extraction of image-
specific features with methods such as Scale Invariant Feature Transform (SIFT)
or Oriented FAST and Rotated BRIEF (ORB). Then, there are methods for com-
paring colour histograms, which are not suitable in our case where the images
are black and white. Finally, there are methods that consider the structure of
the data, such as Structural Similarity Index Measure (SSIM), or other con-
tour detection methods like Fourier Descriptors, Shape Context Matching, and
others. For now, this paper focuses solely on exploiting distances by applying
dimensionality reduction to the images.

Using distance on reduced images – To enhance the reliability of the dis-
similarity matrix, visualisation techniques and dimensional reduction algorithms
such as principal components analysis (PCA) and uniform manifold approxima-
tion and projection (UMAP) were employed as it can improves clustering per-
formance [14]. Utilising UMAP as an unsupervised method to project the data
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and derive meaningful dissimilarities based on distance significantly improved
clustering performance, resulting in an ARI increase up to 0.65. In addition,
using t-distributed Stochastic Neighbor Embedding (t-SNE) reduction increases
the ARI up to 0.73.

Using pre-clustering on reduced images – As we have seen, the closer
the dissimilarity matrix is to the labels, the easier it is for the algorithm to con-
verge. However, there’s nothing to rule out the use of an initial unsupervised
clustering to obtain the dissimilarity matrix. The interest of this method then
lies in the generalisation of this model. Indeed, on 60,000 test images, a conven-
tional method consisting in reducing the images via UMAP and then applying
clustering with K-means is relatively time-consuming, taking 25 seconds on aver-
age compared with 0.5 for DEEM. In addition, DEEM’s generalisability is much
better, as shown in Table 1.

DEEM K-means Hierarchical
ACC 0.96 0.84 0.83
NMI 0.89 0.75 0.76
ARI 0.91 0.71 0.76

Table 1: Comparison of clustering methods on 60K testing MNIST images

3.2 Effect of dissimilarity calculation method

As specified in Section 2.2, the loss function calculates the difference between
conflict and dissimilarity of two objects. For this reason, the calculation of the
later is crucial for clustering. Different distances calculation methods can be em-
ployed such as Euclidean distance or cosine distance among others. Furthermore,
extracted features as for original NN-EVCLUS can be used to generate the dis-
similarity matrix instead of the set of images. To illustrate the dependence of
the network on the dissimilarity, clustering was carried out on a two-class digit
clustering for several dissimilarity matrices. To do so, a set of 10 matrices were
designed from the perfect binary one to fuzzier ones.

As shown on Figure 3a, a random Gaussian noise is added to the previous
binary matrix for different range of standard deviation ranging from 0 to 0.8.
Each of the 10 clustering was performed 30 times to take into account variability
in the convergence. Finally, results are expressed thanks to ARI. The mean of
results for each matrix is shown on Figure 3b. The algorithm decently tolerates
fuzziness until the seventh point corresponding to 0.53 standard deviation of
the Gaussian noise added, which is pretty much encouraging. After that, the
algorithm struggles to achieve convergence. Moreover, Gaussian noise was chosen
to be the closest from real cases, but conventional random noise also provides
similar results. Finally, the first point of the diagram draws our attention to
its low value. Indeed, perfect dissimilarity leads to a drop in performance. In
such a case, the loss function seems to be highly sensitive to small changes.
This leads to instability during training, with small fluctuations in the predicted
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dissimilarities causing disproportionately large changes. Using ADAM optimiser,
a lower learning rate helps to get through the issue and gives a perfect percentage
of convergence. The architecture was not optimised which can also explains the
sensitivity.
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Fig. 3: Noised distance experimentation

4 Conclusion

DEEM is an extended version of NN-EVCLUS algorithm to handle images in-
stead of feature vectors. The layers and optimisers were adapted for a highly con-
figurable neural network. We firstly showed performance of the new algorithm
on MNIST data in a favorable configuration where distances where determined
thanks to the labels. By the desire to have a true unsupervised learning, the
next tests were conduced using distance dissimilarity which leads to confusion
between close digits such as 1 and 7. In order to improve the performance, dis-
similarity where calculated on UMAP reduction, and highly increased the ARI.
Finally, further work remains to be done, particularly in try to cluster acoustic
emission spectrograms. The results of DEEM were promising on several applica-
tions, either on standard benchmarks and from our laboratory. Its generalisation
capabilities were also highly encouraging. Current work is on an extensive ex-
perimental validation of DEEM and its comparison with other algorithms of the
literature on large datasets. Finally, as NN-EVCLUS did, it is possible to add
constraints to some of the labels. This feature seems promising, but has yet to
be quantified in terms of the number of apriori used.
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