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Abstract

A fractional order constitutive behavior law is proposed in this paper to describe

the viscoelasticity of the nonlinear rod. The fractional governing equation of the

nonlinear viscoelastic rod is established. An effective algorithm based on the shifted

Legendre polynomials is used to solve the governing equation directly in the time

domain. The effectiveness of the proposed numerical algorithm is confirmed by the

convergence analysis. Its accuracy is verified by the comparison with the analytical

solution of a dimensionless equation. The dynamic response of the viscoelastic rod

under various loading conditions is analyzed. The influence of loading parameters

on the dynamic characteristics of the rod is investigated according to the evolution

of displacement and stress.

Keywords: Nonlinear viscoelastic rod, Differential equation, Fractional order

constitutive model, Numerical solution, Dynamic analysis.

1. Introduction

Viscoelastic materials are widely applied in the fields of biology, physics and

engineering [1; 2]. However, the mechanical behavior of viscoelastic materials is
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significantly affected by various loading conditions. The mechanical behavior of

viscoelastic materials changes with time [3; 4]. The viscoelasticity of the graphene

reinforced polymer nanocomposites was investigated by using coarse-grained molec-

ular dynamics [5]. The interfacial interactions between graphene and polymer

affected the dynamic modulus of the nanocomposites, which improved the un-

derstanding of failure mechanisms of composite in nanoscale. The viscoelastic

behaviors of loaded elastomers were modelling based on their experimental sur-

faces tensions [6]. The developed method permitted a numerical simulation for the

dynamic moduli in filled elastomers.

In recent years, more and more attentions have been paid on the fractional

calculus in the field of mathematic, physics and mechanical engineering [7–9]. The

fractional order operator is an effective tool in describing the viscoelastic behavior,

especially in establishing the time-varying model [10–13]. Fractional viscoelastic

model is widely used because they can describe the behavior of viscoelastic ma-

terials with fewer parameters [14]. Denis et al. [15] proposed a hysteretic model

using the fractional derivative to describe the mechanical behavior of fiber rein-

forced composites. The results indicated that it predicted more accurately the

residual stress and plastic strain of the composites. Loghman et al. [16] employed

a fractional order Kelvin-Voigt model to describe the viscoelasticity of the micro-

beam. The numerical results showed that the effects of the fractional derivative

were considerable, especially when the amplitude of vibration was high.

Rod is considered to be an essential structure in aerospace, biomechanics and

mechanical engineering [17–19]. Its dynamic behavior is considered as a main

scientific issue to improve the accuracy of the numerical modeling. Alp et al. [20]

solved the motion equation of the cycloidal rod in the Laplace domain by using the

complementary function method to study their dynamic response in the damping

and free vibration. Adhikari et al. [21] obtained the stiffness and mass matrix of

the rod according to the conventional finite element method, and analyzed the free

and forced axial vibration of the damped nonlocal rod. Mazur-Śniady et al. [22]

researched the axial vibration of a finite period composite rod under two various

moving random loads by using the perturbation method. Malara et al. [23] used
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the boundary element approach to solve the differential equation, and analyzed

the response statistics of the fractional order rod under random excitation. Du et

al. [24] proposed a unified model to describe the static equilibrium of the elastic

rods with large deformations. A nonlinear optimization algorithm based on the

total potential energy was introduced to effectively solve the equilibrium problem

of the rod with various boundary conditions. Ausas et al. [25] used Cosserat rods

to modelling one-dimensional solid with large deformations in Newtonian fluids.

An active response was obtained for the planar non-shaearable solid according to

the time dependent strain energy. Zhang [26] proposed a new high order finite

difference method based on nonlocal elasticity theory to predict the axial vibration

behavior of variable density elastic nanorods. Shakhlavi [27] used Galerkin and

multi-scale methods to analyse the vibration characteristics of the viscoelastic rod

with thermal environment.

Different from the above methods, fractional models possess memory character-

istics and the advantages of less parameters and high accuracy. They have become

the powerful mathematical modelling tools to describe the material mechanical be-

haviors [28–31]. Patnaik et al. [32] employed a fractional-order nonlocal model to

study the static and dynamic response of plates with different loading and boundary

conditions. Stefański [33] used fractional order model to describe the wave prop-

agation and discussed the further application in electromagnetic cloaking. Javadi

and Rahmanian [34] applied the fractional Kelvin-Voigt model to describe the vis-

coelastic behaviors of materials. The influence of parameters in the model on the

resonance of the beam was analysed under various excitations. Cao et al. [35] an-

alyzed the dynamic analysis of viscoelastic columns under different external loads

and the stress and strain at different times based on the fractional order model.

Dang and Chen [36] analyzed the dynamic characteristics of viscoelastic arch with

variable cross section based on fractional order model. Sun et al. [37] numerically

analyzed fractional order viscoelastic plates in the time domain, and also analyzed

the effect of damping coefficient on their vibration amplitude.

Development of an effective numerical algorithme for obtaining the approximate

solutions of fractional differential governing equations has become a main research
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issue. Ibraheem et al. [38] proposed an optimal variational iteration method to

solve partial and ordinary fractional differential equations. Usman et al. [39]

employed linearized sepctral and semi descrete methods to solve the fractional

nonliear differential equation. The proposed method converted the highly nonlinear

problems into a set of linear equations.

Orthogonal polynomials play an important role in solving fractional differential

equations. Heydari et al. [40] used a numerical algorithm based on the Chebyshev

polynomials to sovel the time fractional system. The proposed method transformed

the fractional system into an algebraic system to approximate the unknown solu-

tion. Heydari et al. [41] solved a variable fractional order nonlinear coupled system

based on shifted Legendre polynomials. Cao et al. [42] calculated the numerical

solution of PMMA viscoelastic beam by using the shifted Legendre algorithm.

Hesameddini and Shahbazi [43] solved the two-dimensional fractional integral e-

quation using shifted Legendre polynomials. Hosseininia et al. [44] solved the

extended Fisher Kolmogorov equation by using the shifted Legendre polynomial

and the collocation method. The efficiency and accuracy of the shifted Legendre

method are confirmed in the literature. In this paper, the shifted Legendre poly-

nomials is employed to solve the fractional governing equations of the viscoelastic

rod.

In this paper, a numerical algorithm based on shifted Legendre polynomials is

used to obtain the approximate solutions of the fractional governing equation of

nonlinear viscoelastic rod. The solutions are obtained directly in the time domain.

Convergence analysis is performed to verify the effectiveness of the proposed al-

gorithm. The evolution of the displacement of the viscoelastic rod under different

loading conditions is analysed. The influence of loading parameters on its dynamic

characteristics is investigated.

Section 2 introduces the definitions and characters of Caputo derivative and

fractional order derivative. In section 3, the fractional order constitutive equation

is used to establish the differential equation for the fractional order nonlinear vis-

coelastic rod. Section 4 presents the definition of shifted Legendre polynomials

and deduces the differential operator matrix. In section 5, the convergence anal-
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ysis is given, the numerical solution of a dimensionless equation is obtained, and

compared with the analytical solution. In section 6, the dynamic characteristics

of viscoelastic rod are studied and discussed. Section 7 is the conclusion of the

research work.

2. Caputo fractional order derivative

In the section, the definition and some properties of Caputo fractional order

derivative are given.

Definition 1: Caputo fractional order derivative [15]

Dα
xf(x) =


dmf(x)
dxm , α = m ∈ N+

1
Γ(m−α)

∫ x
0

f(m)(y)
(x−y)α−m+1 dy, 0 < m− 1 < α < m

(1)

where α is fractional order derivative, 0 < α < 1, the function f(x) is continuous,

Γ (∗) is the Gamma function

Γ (z) =

∫ ∞
0

e−xxz−1dx (2)

By this definition, the following formula is obtained

Dα
xx

n =


Γ(n+1)

Γ(n+1−α)x
n−α, n = 1, 2, ...

0, n = 0
(3)

The properties of Caputo fractional order derivative are

Dα
xC = 0 (4)

Dα
x [µf(x) + ξg(x)] = µDα

xf(x) + ξDα
x g(x) (5)

where C, µ and ξ are constants.

3. Equation of motion

The fractional order model is applied to describe the stress-strain relationship

of the viscoelastic rod [45]:

σ(x, t) = E1ε(x, t) + E2D
α
t ε(x, t) (6)
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E1 and E2 are instant and prolonged elasticity modulus, respectively, Dα
t is α

fractional order operator defined by Caputo, σ(x, t) and ε(x, t) are stress and strain

respectively.

The relationship between strain and axial displacement is

ε(x, t) =
∂w(x, t)

∂x
(7)

The viscoelastic rod under external load is shown in Fig. 1. Where l is the

length of the rod, f(x, t) is the external load, and w(x, t) is the axial displace-

ment. Based on Ref. [23], the differential equation of fractional order nonlinear

viscoelastic rod under excitation load is obtained

ρ
∂2w(x, t)

∂t2
−E1

∂2w(x, t)

∂x2
−E2D

α
t

∂2w(x, t)

∂x2
+c0ρw(x, t)+c1ρw

3(x, t) = f(x, t) (8)

ρ is volumetric mass density, c0 and c1 are the characteristic parameters of Winkler-

kind loads.

Fig. 1. Viscoelastic rod under external load.

Boundary conditions

w (0, t) = w (l, t) = 0 (9)

Initial conditions

w(x, 0) = ∂w(x,0)
∂t = 0 (10)

4. Numerical algorithm

In this part, the numerical solution to the fractional differential equation is ob-

tained using the shifted Legendre polynomials algorithm. The differential operators

of polynomials with integral and fractional orders are represented.
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4.1. Polynomials definition

Definition 2: The shifted Legendre polynomials of n-order on [0, 1] is [46]

ln,k(x) =

n∑
k=0

(−1)n+k Γ(n+ k + 1)

Γ(n− k + 1)(Γ(k + 1))2
xk (11)

where k = 0, 1, 2, ..., n.

Let φ(x) represent a matrix consisting of a series of shifted Legendre polyno-

mials, which can be expressed as

φ(x) = [ln,0(x), ln,1(x), ...ln,n(x)]
T

= AH(x) (12)

where H(x) = [1, x, ..., xn]
T

,

A = [ajk]
n
j,k=0 , ajk =

 (−1)j+k Γ(j+k+1)
Γ(j−k+1)(Γ(j+1))2 , j ≥ k

0, j < k
(13)

By extending the shifted Legendre polynomials from the interval [0, 1] to the

interval [0, S], and the expression is

Ln,k(x) =
n∑
k=0

(−1)n+k Γ(n+k+1)
Γ(n−k+1)(Γ(k+1))2 ( xS )k

=
n∑
k=0

(−1)n+k Γ(n+k+1)
Γ(n−k+1)(Γ(k+1))2 ( 1

S )kxk
(14)

where k = 0, 1, 2, ..., n.

Therefore, φ(x) can be converted to

φ(x) = UH(x) (15)

where U = [ujk]
n
j,k=0 , ujk =

 (−1)j+k Γ(j+k+1)
Γ(j−k+1)(Γ(j+1))2 ( 1

S )jj ≥ k

0, j < k

Similarly

Ln,k(t) =
n∑
k=0

(−1)n+k Γ(n+k+1)
Γ(n−k+1)(Γ(k+1))2 ( xK )k

=
n∑
k=0

(−1)n+k Γ(n+k+1)
Γ(n−k+1)(Γ(k+1))2 ( 1

K )ktk
(16)

where k = 0, 1, 2, ..., n.

φ(t) = V H(t) (17)

where t ∈ [0,K], H(t) = [1, t, ..., tn]
T

V = [vjk]
n
j,k=0 , vjk =

 (−1)j+k Γ(j+k+1)
Γ(j−k+1)(Γ(j+1))2 ( 1

K )j , j ≥ k

0, j < k
(18)
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4.2. Displacement function approximation

The displacement function w(t) is continuous in [0,K], the approximation of

w(t) by shifted Legendre polynomials is

w(t) ≈ wn(t) =

n∑
k=0

bkLn,k(t) = BTφ(t) (19)

where BT = [b0, b1, ..., bn]. That

BT
〈
φ(t), φT (t)

〉
=
〈
w(t), φT (t)

〉
(20)

Let

Q =
〈
φ(t), φT (t)

〉
= [δjk]

n
j,k=0 (21)

where δjk =
∫K

0
Ln,j(t)Ln,k(t)dt =

 K
j+k+1 , j = k

0, j 6= k.
. Q is a diagonal matrix of

order n+ 1 with positive diagonal elements, So Q is reversible. Therefore

BT =
〈
w(t), φT (t)

〉
Q−1 (22)

Similarly, the continuous function w(t) in the domain [0, S] can be approximated

as

w(x) ≈ wn(x) =

n∑
k=0

ikLn,k(t) = ITφ(x) (23)

where IT = [i0, i1, ..., in]. so

IT
〈
φ (x) , φT (x)

〉
=
〈
w (t) , φT (x)

〉
(24)

Let

P =
〈
φ (x) , φT (x)

〉
= [∆]

n
j,k=0 (25)

where δjk =
∫ S

0
Ln,j(x)Ln,k(x)dx =

 S
j+k+1 , j = k

0, j 6= k.
. P is a diagonal matrix of

order n+ 1 with positive diagonal elements, So P is reversible. Therefore

IT =
〈
w (t) , φT (x)

〉
P−1 (26)
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Two dimensional continuous function w(x, t) ∈ L2([0, S]× [0,K]) is written as

w(x, t) ≈
n∑
j=0

n∑
k=0

cjkLn,j(x)Ln,k(t) = φT (x)Cφ(t) (27)

where C = [cjk]
n
j,k=0 is the matrix coefficient to be solved.

4.3. Derivation of operator matrix

4.3.1. Integer order operator matrix

The expression of the first-order derivative of φ (x) with respect to x is [41; 42].

φ′(x) = (UH(x))′ = UH ′(x) = UPH(x) = UPU−1φ(x) = Nxφ(x) (28)

where P = [pjk]
n
j,k=0 , pjk =

 j, j = k + 1

0, j 6= k + 1
, and Nx = UPU−1.

Therefore, the polynomial’s first-order differential operator matrix is deter-

mined to be Nx.

The second-order derivative of φ (x) with relation to x is denoted by [47; 48].

φ′′(x) = (UH(x))′′ = U(H ′(x))′ = (UPU−1φ(x))′

= UPU−1φ′(x) = (UPU−1)2φ(x) = N2
xφ(x)

(29)

where N2
x =

(
UPU−1

)2
is the polynomial’s second-order differential operator ma-

trix.

An array of integer order operators is derived from the obtained first-order and

second-order operator matrices

φ(m)(x) = (UPU−1)mφ(x) = Nm
x φ(x)

φ(m)(t) = (V PV −1)mφ(t) = Nm
t φ(t)

(30)

The differential term in Eq. (8) is written as

∂w(x,t)
∂x ≈ ∂(φT (x)Cφ(t))

∂x = ∂φT (x)
∂x Cφ(t)

= φT (x)(UPU−1)Cφ(t)
(31)

∂2w(x,t)
∂x2 ≈ ∂2(φT (x)Cφ(t))

∂x2 = ∂2φT (x)
∂x2 Cφ(t)

= φT (x)(UPU−1)2Cφ(t)
(32)

∂2w(x,t)
∂t2 ≈ ∂2(φT (x)Cφ(t))

∂t2 = φT (x)C ∂2φ(t)
∂t2

= φT (x)C(V PV −1)2φ(t)
(33)
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4.3.2. Fractional order

If the matrix Nt, satisfying Dα
t φ (t), the following expression is obtained from

[41; 42].

Dα
t φ(t) = Dα

t (V H(t)) = V Dα
t H(t) = V FH(t) (34)

where F = [fjk]
n
j,k=0 , fjk =


Γ(j)

Γ(j+1) t
−α, j = k, j 6= 1

0, otherwise.

Due to H(t) = V −1φ(t), Dα
t φ(t) can get be expressed

Dα
t φ(t) = Ntφ(t) = V FV −1φ(t) (35)

The fractional order term in the Eq. (8) is

Dα
t
∂2w(x,t)
∂x2 ≈ Dα

t

[
φT (x)(UPU−1)2Cφ(t)

]
= φT (x)(UPU−1)2CDα

t φ(t)

= φT (x)(UPU−1)2CV FV −1φ(t)

(36)

4.4. Transformation of the governing equation

The governing equation of the rod can be expressed by using the differential

operator matrix defined previously

ρφT (x)C(V PV −1)2φ(t)− E1φ
T (x)(UPU−1)2Cφ(t)− E2φ

T (x)(UPU−1)2CV FV −1φ(t)

+c0ρφ
T (x)Cφ(t) + c1ρ(φT (x)Cφ(t))3 = f(x, t)

(37)

Convert boundary conditions to φT (0)Cφ (t) = 0

φT (l)Cφ (t) = 0
(38)

Convert initial conditions to φT (x)Cφ(0) = 0

φT (x)C(V PV −1)φ(0) = 0
(39)

Eq. (37) can be transformed into algebraic equations, in which the coefficient

matrix are identified by using the least square method.
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5. Convergence analysis and dimensionless equation

5.1. Convergence analysis

w(t) is a sufficiently smooth function on [0,K], qn (t) is the interpolation poly-

nomial of w at ti, ti (n = 0, 1, ..., n) is the root of n+1 degree Chebyshev polynomial

at [0,K], then there is

w (t)− qn (t) =
w(n+1) (ξ)

(n+ 1)!

n∏
i=0

(t− ti), ξ ∈ [0,K] (40)

Therefore, it can be obtained

|w (t)− qn (t)| ≤ An(K)
n+1

22n+1 (n+ 1)!
(41)

whereAn = max0≤t≤K
∣∣w(n+1) (t)

∣∣.
Theorem 1. Suppose w(t) is a continuous differentiable function,wn (t) =

DTφ (t) is the shifted Legendre polynomials expansion of the exact solution w(t),

D = [d0, d1, ...dn] , φ (t) = [φ0 (t) , φ1 (t) , ...φn (t)].

Let w̄n (t) =
n∑
i=0

āiφi (t) be an approximate solution, there are real numbers λ

and µ, such that

‖w (t)− w̄n (t)‖2 ≤ λ
An(K)

n+1

22n+1 (n+ 1)!
+ µ

∥∥D − D̄∥∥
2

(42)

The norm on the right is the Euclidean norm of a vector.

Proof. R [t] is a space of real-valued polynomials of order ≤ n, wn (t) and

w̄n (t) are in space R [t], w̄n (t) is the best approximation of w(t).

‖w (t)− w̄n (t)‖2 ≤ ‖w (t)− wn (t)‖2 + ‖wn (t)− w̄n (t)‖2 (43)

According to Eq. (41), we can get

‖w (t)− wn (t)‖2 =
(∫K

0
|w (t)− wn (t)|2dt

) 1
2

≤
(∫K

0

[
An(K)n+1

22n+1(n+1)!

]2
dt

) 1
2

≤
√
K An(K)n+1

22n+1(n+1)!

(44)
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Then

‖wn (t)− w̄n (t)‖2 =

(∫K
0

[
n∑
i=0

(
di − d̄i

)
φi (t)

]2

dt

) 1
2

≤
(∫K

0

[
n∑
i=0

∣∣di − d̄i∣∣2] [ n∑
i=0

|φi (t)|2dt
]) 1

2

=

[
n∑
i=0

∣∣di − d̄i∣∣2] 1
2
(

n∑
i=0

∫K
0
|φi (t)|2dt

) 1
2

=
∥∥D − D̄∥∥

2

(
K

n∑
i=0

1
2i+1

) 1
2

(45)

So λ =
√
K,µ =

√
K

(
n∑
i=0

1
2i+1

)
.

The above theorem is proved.

5.2. Dimensionless equation

The structure of the dimensionless equation is consistent with the governing

equation of nonlinear viscoelastic rod (Eq. (8)). The shifted Legendre polynomials

algorithm is used to determine the numerical solution. The coefficients in the

equation are dimensionless. Its analytical solution is known and it is used to verify

the accuracy of the proposed algorithm.

The dimensionless equation is expressed as

600
∂2w(x, t)

∂t2
− ∂

2w(x, t)

∂x2
−Dα

t

∂2w(x, t)

∂x2
+ 100000w(x, t) +w3(x, t) = f(x, t) (46)

These are the boundary conditions

w (0, t) = w (1, t) = 0 (47)

where α = 0.35, the exact solution of Eq. (46) is w(x, t) = x3(1− x)3t2.

Substitute the exact solution into Eq. (46), and we get

f(x, t) = 1200x3(1− x)3 − 6[x3(1− x)− 3x2(1− x)2 + x(1− x)3]t2

− 6[x3(1− x)− 3x2(1− x)2 + x(1− x)3] Γ(3)
Γ(3−α) t

2−α

+ 100000x3(1− x)3t2 + [x3(1− x)3t2]3

(48)

The shifted Legendre polynomials algorithm is applied to solve the differential

governing equation at n = 6, the exact solution and numerical solution are denoted
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by w(x, t) and wn(x, t), respectively. The numerical solution is essentially consis-

tent with the analytical solution, as illustrated in Fig. 2. The absolute error is

en = |wn(x, t)− w(x, t)|.

0
1

0.01

1

w
(x

,t
)

y

0.5

x

0.02

0.5
0 0

(a) exact solution

0
1

0.01

1

w
n(x

,t)

t

0.5

x

0.02

0.5
0 0

(b) numerical solution

Fig. 2. n = 6, numerical solution and exact solution at different points.

As can be clearly seen from Fig. 3, an increase in the number of terms n leads

to a gradual decrease in absolute error and a higher accuracy of the numerical solu-

tion. The validity and accuracy of the shifted Legendre polynomial algorithm are

proved. It is further demonstrated that the algorithm is an effective algorithm for

analyzing the dynamic characteristics of fractional order viscoelastic rod. There-

fore, the following dynamic analysis of a viscoelastic material rod retains n = 6 for

calculation.
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Fig. 3. Absolute error when n is different.
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6. Dynamic analysis

In this part, the dynamic characteristics of nonlinear viscoelastic rod are exam-

ined using the shifted Legendre algorithm.

The geometrical characteristics and material properties of viscoelastic rod are

shown in the following Tab. 1 [23], calculation by assumption c0 = 1.34× 10−4s−2

and c1 = 1.34× 10−4m−2s−2.

Table 1: Geometrical characteristics and material properties of viscoelastic rod.

Physical quantity Symbol Value Unit

Length l 1 m

Cross-sectional area A 1 m2

Density ρ 7500 kg/m3

Instant elasticity modulus E1 2× 1011 Pa

Prolonged elasticity modulus E2 2× 1011 Pa sα

6.1. The effect of uniformly distributed axial load

The fractional order viscoelastic rod differential equation is directly derived in

the time domain using the shifted Legendre algorithm. The numerical solutions

of displacement for various uniformly distributed axial load, at different times and

locations, are shown in Fig. 4.

As shown in Fig. 4, when uniformly distributed axial load of different magni-

tudes are applied to the viscoelastic rod, the displacement at both ends of the rod

is always zero, independent of time, and conforms to the boundary conditions. The

displacement of the viscoelastic rod is the largest at 0.5 m, and the displacement

change is symmetric about x = 0.5 m. The displacement of the rod increases with

applied uniform load. When the same uniform load is applied, the displacement

will increase with loading time.

6.2. The effect of linearly distributed load

Apply linear loads to the viscoelastic rod, such as f = ax + b. Fig. 5 shows

the numerical displacement solutions at the time of t = 0.5 s and t = 1 s when the
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Fig. 4. The displacement change of the rod under different uniformly distributed

axial load.

viscoelastic rod is subjected to the various linear loads.
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Fig. 5. Displacement of the rod under different linearly distributed load.

Fig. 5 clearly shows that the evolution of the displacement of viscoelastic rod

under linear load is consistent, which is symmetrical in the middle, and reaches the

maximum value at x = 0.5 m. The displacement of viscoelastic rod is related to a

and b in the linear loads. In Fig. 5(a), b is fixed as constant 1, and when a rises,

the displacement increases as well.; in Fig. 5(b), a is fixed as constant 0.2, and

the displacement also increases with the increase of b. The numerical calculation

results are in good agreement with the actual observation results, which verifies

the efficiency of the algorithm.
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6.3. The effect of harmonic load

The viscoelastic rod is subjected to a harmonic load in the form of f =

A cos(Bt), A and B are amplitude and frequency respectively. The displacement

changes of the viscoelastic rod under different harmonic loads and different times

are shown in Fig. 6.
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Fig. 6. Displacement of the rod under different simple harmonic loads.

It can be clearly seen from Fig. 6 that harmonic load is applied to the viscoelas-

tic rod, and the change of displacement is basically zero at both ends of the rod

and reaches the maximum value in the middle of the rod. When the viscoelastic

rod is subjected to the same load, as the amount of time increases, the rod’s dis-

placement will also rise. When the viscoelastic rod is exposed to various harmonic
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loads, the displacement of the rod will rise with an increase in A when B is fixed,

and decrease with an increase in B when A is fixed.

6.4. The evolution of stress under uniformly distributed axial load

Eq. (6) states that by using the algorithm, the numerical solution of stress

can be obtained. The stress values of viscoelastic rods under uniformly distributed

axial load are shown in Fig. 7.
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Fig. 7. Stress of the rod under different values of uniformly distributed load.

The stress variation diagram of viscoelastic rod subjected to different uniformly

distributed axial load can be clearly seen in Fig. 7. The stress value is also

symmetrical about x = 0.5 m. The stress value is zero when the loading time is 0.
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At the same loading time, the rod has the highest stress value at both ends. The

displacement of the rod increases with value of uniformly distributed load. The

value of stress in the middle of the rod is smallest, which is consistent with the

evolution of the displacement.

7. Conclusions

The fractional differential governing equation of the nonlinear viscoelastic rod is

established by using the fractional order constitutive model. An effective numerical

algorithm based on the shifted Legendre polynomials is proposed to solve directly

the fractional governing equation in the time domain. The convergence analysis

is performed to validate the proposed method and confirm its efficiency. The

numerical solution of the displacement of the viscoelastic rod is obtained under

various external loading conditions.

1. The fractional order behavior law is successfully implemented in the gov-

erning equation of the nonlinear rod to take into account the viscoelasticity of the

material.

2. When the uniformly distributed axial load and linearly distributed axial load

are applied on the rod, the displacement increases with the value of the load and

time.

3. The displacement of the rod increases with time, when the simple harmonic

load is applied. The displacement increases with the amplitude of the load and

decreases with the frequency.

4. The stress of the viscoelastic rod under different values of uniformly dis-

tributed axial load is calculated. The maximum value of stress is at the ends of

rod and the minimum value is in the middle of the rod.
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self-heating phenomenon in viscoelastic materials subjected to cyclic loadings

accounting for prestress, Mech Syst Signal Pr. 58-59 (2015) 115–127, http-

s://doi.org/10.1016/j.ymssp.2014.12.006.

[4] S. Sepehr Tabatabaei, R.D. Mohammad, Modeling and adaptive identification

of arterial behavior;a variableorder approach, J Comput Sci-Neth. 62 (2022)

101691, https://doi.org/10.1016/j.jocs.2022.101691.

[5] J. Yang, Daniel Custer, C.C. Chiang, Z.X. Meng, X.H. Yao, Un-

derstanding the mechanical and viscoelastic properties of graphene re-

inforced polycarbonate nanocomposites using coarse-grained molecular

dynamics simulations, Comp Mater Sci. 191 (2021) 110339, http-

s://doi.org/10.1016/j.commatsci.2021.110339.

[6] M. Viktorova, R. Hentschke, F. Fleck, F. Taherian, H.A. Karimi-Varzaneh,

A mesoscopic model for the simulation of dynamic mechanical properties of

filled elastomers:Filled binary polymer blends, Comp Mater Sci. 212 (2022)

111597, https://doi.org/10.1016/j.commatsci.2022.111597.

19



[7] N. Jiang, Y.Q. Feng, X.J. Wang, Fractional-order evolutionary game of green

and low-carbon innovation in manufacturing enterprises, Alex Eng J. 61 (2022)

12673C12687, https://doi.org/10.1016/j.aej.2022.06.040.

[8] I. Birs, I. Nascu, C. Ionescu, C. Muresan, Event-based fractional order control,

J Adv Res. 25 (2020) 191–203, https://doi.org/10.1016/j.jare.2020.06.024.

[9] Y.H. Wei, Q. Gao, On the series representation of nabla discrete

fractional calculus, Comput Math Appl. 430 (6) (2022) 127303, http-

s://doi.org/10.1016/j.ijnonlinmec.2017.11.010.

[10] H.Y. Xu, X.Y. Jiang. , Creep constitutive models for viscoelastic materials

based on fractional derivatives, Comput Math Appl. 73 (2017) 1377–1384,

https://doi.org/10.1016/j.camwa.2016.05.002.

[11] M.A. Ezzat, A.S. El-Karamany, A.A. El-Bary, M.A. Fayik, Fractional calculus

in one-dimensional isotropic thermo-viscoelasticity, C R Mecanique. 341 (2013)

553C566, https://doi.org/10.1016/j.crme.2013.04.001.

[12] E. Loghman, F. Bakhtiari-Nejad, E.A. Kamali, M. Abbaszade-

h, Nonlinear random vibrations of micro-beams with fractional

viscoelastic core, Probabilist Eng Mech. 69 (2022) 103274, http-

s://doi.org/10.1016/j.probengmech.2022.103274.

[13] A. Ouzizi, F. Abdoun, L. Azrar, Nonlinear dynamics of beam-

s on nonlinear fractional viscoelastic foundation subjected to moving

load with variable speed, J Sound Vib. 523 (2022) 116730, http-

s://doi.org/10.1016/j.jsv.2021.116730.

[14] Y.F. Gao, D.S. Yin, A full-stage creep model for rocks based on the

variable-order fractional calculus, Appl Math Model. 95 (2021) 435–446, http-

s://doi.org/10.1016/j.apm.2021.02.020.

[15] Y. Denis, F. Morestin , N. Hamila, A hysteretic model for fiber-

reinforced composites at finite strains: fractional derivatives, computa-

tional aspects and analysis, Comp Mater Sci. 181 (2020) 109716, http-

s://doi.org/10.1016/j.commatsci.2020.109716.

20



[16] E. Loghman , F. Bakhtiari-Nejad, K. E. Ali , M. Abbaszadeh, M. Amabili,

Nonlinear vibration of fractional viscoelastic micro-beams, Int J Nonlin Mech.

137 (2021) 103811, https://doi.org/10.1016/j.ijnonlinmec.2021.103811.

[17] X. Liu, Y.X. Zhao, W. Zhou, J.R. Banerjee, Dynamic stiffness method

for exact longitudinal free vibration of rods and trusses using simple

and advanced theories, Appl Math Model. 104 (2022) 401–420, http-

s://doi.org/10.1016/j.apm.2021.11.023.

[18] H. Lang, M. Arnold, Numerical aspects in the dynamic simulation of ge-

ometrically exact rods, Appl Numer Math. 62 (2012) 1411–1427, http-

s://doi.org/10.1016/j.apnum.2012.06.011.

[19] I.V. Kudinov, A.V. Eremin, V.A. Kudinov, A.I. Dovgyallo, V.V.

Zhukov, Mathematical model of damped elastic rod oscillations with

dual-phase-lag, Int J Solids Struct. 200-201 (2020) 231–241, http-

s://doi.org/10.1016/j.ijsolstr.2020.05.018.

[20] A.T. Alp, N.A. Reshad, T. Beytullah, Dynamic response of viscoelas-

tic tapered cycloidal rods, Mech Res Commun. 92 (2018) 8–14, http-

s://doi.org/10.1016/j.mechrescom.2018.06.006.

[21] S. Adhikari, T. Murmu, M.A. Mccarthy, Dynamic finite element analysis of

axially vibrating nonlocal rods, Finite Elem Anal Des. 63 (2013) 42–50, http-

s://doi.org/10.1016/j.finel.2012.08.001.
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