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Abstract

Nuclear Medicine images are obtained by injecting small amounts of radio-
tracers into the body to track specific organs. Particular cameras detect radiations
emitted from the radio-tracers resulting in images that visualize the function of
the organs rather than their structure. The association of the cameras and radio-
tracers causes low resolution and low signal-to-noise ratio, therefore, the images
are often of poor quality. Image Quality Enhancement (IQE) is one possible so-
lution to this problem as it improves the clarity of the images by removing noise
and correcting distortions. In this paper, we propose a methodology based on ar-
tificial intelligence (AI) with the integration of an IQE step for the detection of
normal/abnormal parathyroid glands. Two different IQE techniques are employed,
one based on a statistical filter and the other on AI. The enhanced images are
processed with a Convolutional Neural Network (CNN), and Lasso regression for
features extraction and selection. Finally, several AI models are used for binary
image classification. The obtained results achieved an accuracy of 83% in distin-
guishing normal/abnormal parathyroid glands. IQE step significantly improves the
accuracy of the AI model by 16.9% over the initial accuracy of 71%, demonstrating
the importance of IQE in assessing image classification performance.

Image Quality Enhancement, Artificial Intelligence, Nuclear Medicine, Medical Imag-
ing, Parathyroid Glands.

1 INTRODUCTION
HyperParaThyroidism (HPT), is a prevalent endocrine disorder typified by elevated
or anomalous parathyroid hormone levels and hypercalcemia (Walker and Silverberg,
2018). HPT can impact one or more Parathyroid Glands (PGs) (Bilezikian et al., 2016).
PGs are typically 3-5 mm in size, and conventional imaging methods are unable to de-
tect them (Sung, 2015). To give an accurate diagnosis, physicians refer to clinical data,
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Nuclear Medicine (NM) images, but also other image modalities such as ultrasonog-
raphy (Khan et al., 2017). There are limitations in some image modalities such as
ultrasound to locate very small PGs (Lee et al., 2021).

Nuclear medicine (NM) is one remedy to this issue and improve the accuracy of
physicians’ diagnoses. NM is a field of medicine that uses radiopharmaceuticals to di-
agnose and evaluate the functioning of the body (Nieciecki et al., 2015). In NM, several
image acquisition techniques exist for PGs detection in NM, double isotope and double
phase are the most common. The first involves the injection of two isotopes, followed
by image acquisition, while the second implicates the injection of one isotope followed
by two time-domain acquisitions (Petranović Ovčariček et al., 2021). In the case of
double isotope, physicians proceed with image subtraction after normalization to ob-
tain an image with only PGs for diagnosis (Tlili et al., 2023) (Petranović Ovčariček
et al., 2021).

The problem with NM images is the limitation of the information as they are very
weak in signal, therefore, the images are highly noisy (Kim et al., 2020). Researchers
developed different medical assistance tools based on Deep Learning (DL) to assist
physicians in their diagnosis even if the related works remain limited. The study
in (Yoshida et al., 2022) proposed a transfer learning methodology by applying a pre-
trained RetinaNet (Lin et al., 2017) model to dual-phase 99mTc-sestamibi images. The
work included 281 patients with confirmed HPT, distributed as 92 for training, 45 for
validation, and 44 for testing. The model achieved a sensitivity of 82% and a mean
false positive indication of 0.44.

The authors in (Boukhennoufa et al., 2024) developed a medical assistance tool to
automatically subtract the dual isotope 99mTc-sestamibi and 123I images. The method-
ology consisted of combining the images with statistical features such as kurtosis and
entropy extracted from each image. The images were normalized and processed with a
CNN model for feature extraction, whereas the statistical features were processed with
a random forest model for the same objective as with the images. The combination of
the extracted features was processed with a support vector machine to predict a sub-
traction factor that was used to compute a subtracted image. The results yielded to a
mean correlation of 0.95 with the reference images (performed by physicians).

At the preoperative level with 99mTc-sestamibi single-photon emission computed
tomography, the study (Sandqvist et al., 2022) proposed to predict the presence of over-
looked parathyroid hormone using six predictors such as calcium level and parathyroid
hormone. The data were extracted from 349 patients with confirmed primary HPT
or multi-glandular disease, and a decision tree with Bayesian hyperparameter opti-
mization methodology was employed for the classification purpose. A 5-Fold cross-
validation technique was used, where it achieved a true-positive prediction rate of 72%
for multi-glandular cases and a misclassification rate of 6% for primary HPT patients.

In another study using clinical data (Samaras et al., 2024), the objective was to
distinguish patients with primary HPT and Multi-Glandular Disease with an explain-
able machine learning methodology. The data were extracted from 134 patients and
were highly imbalanced: 26 patients with MGD, and the rest with primary HPT, this
issue was solved randomly by oversampling the MGD class. The used data were gen-
der, age, size of the abnormal gland, number of affected glands, and multiplication of
the parathyroid hormone with the calcium level in blood. A benchmarking of several
ML algorithms such as LightGBM and support vector machine was proposed with a
SHAP explainability methodology. The reported results indicated that the oversam-
pling methodology contributed to assessing the specificity from 66.67% to 81.48%.

The different works showed promising results in HPT diagnosis using different
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Figure 1: Overview of the proposed methodology

types of data. Nevertheless, the problem of noisy images is still not yet addressed. One
remedy is to apply Image Quality Enhancement (IQE): an important step to improve the
precision of DL models. IQE consists of removing noise and improving the brightness
of images to highlight important features (Bhardwaj et al., 2018). To the best of our
knowledge, there is no other study including an IQE step for PGs detection.

In this paper, we propose a new process for normal/abnormal PGs detection by
applying two IQE techniques on only dual-isotope static images. The first employs
a statistical filter approach, while the second is based on AI. The filtered images are
passed into a DL model and a Lasso regression for feature extraction and selection.
Finally, AI models are benchmarked for image classification.

The remainder of the paper is organized as follows: Section 2 details the used data
and the proposed methodology. Section 3 presents and discusses the results of the
proposed approach. The work is concluded in Section 4.

2 MATERIALS AND METHODS
In this section, the patient’s demographics, the used data, and the proposed methodol-
ogy are explained.

2.1 Patients and data characteristics
Between June 2012 and December 2023, 923 patients underwent dual isotope (99mTc-
sestamibi/123I) planar scintigraphy. The acquisitions were realized on a Discovery
NMCT 670 or an Infina GE Healthcare. First, 18.5 MBq +-10% of 123I was adminis-
tered intravenously. 3h later, 740 MBq +/- 10% of 99mTc-sestamibi was injected. 5 min
later, the acquisition started with planar imaging of the thyroid region (PINHOLE) for
10 min and mediastinum Low Energy High Resolution (LEHR) for 5 min (dual iso-
tope setting with photopeak’s centered over 140,5 keV +/-7,5% and 159 keV -5% +
10% window for 99mTc-sestamibi and 123I, respectively). A subtraction of the two
PINHOLE images is performed using XELERIS Software by the physicians. They
begin by extracting the thyroid from the 123I image, which is merged with the 99mTc-
sestamibi image. Next, the images are normalized according to the thyroid intensity
in both images. This ensures that both images are uniformly scaled. The subtraction
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is performed and adjusted then between the two normalized images (Tlili et al., 2023).
This results in a Subtracted Image (SI), used by the physicians to identify abnormal
PGs.

Due to the absence of images in the Picture Archive and Communication Systems,
scintigraphy with no thyroid fixation in some cases, and cases judged doubtful case
by physicians, 215 patients were removed. The characteristics are summarized in Ta-
ble 1. In this study, 5 images per patient are used: LEHR of 99mTc-sestamibi and 123I,
PINHOLE of 99mTc-sestamibi and 123I, and the Subtracted Image. The image size is
128×128 pixels with a grayscale channel.

Table 1: Patient’s characteristics summary

Patients Age Gender Weight Height
number range F:M range range

708 [18−99] 601:222 [40−167] [143−189]

2.2 Proposed methodology
Figure 1 highlights the overall process of the proposed methodology, starting with raw
images as inputs to the AI modeling where the objective is to detect abnormal PGs.

From raw images, statistical features are extracted and are used later in the process:
kurtosis, mean pixel value, standard deviation, and entropy. The objective of these
features is to help the AI model in PGs diagnosis. These characteristics can help the
model understand extracting patterns between images of normal/abnormal PGs cases.
For instance, in the images of abnormal glands, the mean pixel value may be larger
than in normal glands. Also, since the quantity of used data is not very high, adding
these features means adding more data, hence, enlarging the population. The next step
of the methodology consists of image normalization, as explained in Subsection 2.1,
the normalization performed by physicians is one important step in order to subtract
the images. Also, in the AI pipeline, image normalization is a very important step to
increase performance and speed up the learning convergence. For these reasons, the
images in this study are normalized using the MinMax normalization method (Zhang
et al., 2024). Specifically, each image type is normalized globally, meaning that the
images are scaled in function of the minimum and maximum pixel values of the whole
dataset. For example, in LEHR 99mTc-sestamibi of each patient, the images are normal-
ized with the minimum and maximum pixel values of all the LEHR 99mTc-sestamibi
images. This ensures that the images are normalized uniformly and the characteristics
of all the data are taken into account. Equation 1 represents the normalization, where
NI,RI, t,n represents Normalized Image, Raw Image, one of the image types, and the
number of patients, respectively.

NIMinMax =
RIt −min(RI1, ...RIn)

max(RI1, ...RIn)−min(RI1, ...RIn)
(1)

The second step of the process is about enhancing the quality of images, once the
images are normalized, they’re processed with two different techniques and compared
differently according to the diagnosis results. The first is based on a statistical filter
called Non-Local Means Denoising (NLMD) (Buades et al., 2011). The latter is an
image processing technique for IQE, it reduces the noise by averaging similar pixels
throughout the whole image. In opposition to other statistical filters that consider only
neighborhood pixels, NLMD locates patches of pixels with similar patterns across all
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Figure 2: SCUNet architecture from (Zhang et al., 2023). Licensed under a Creative
Commons Attribution 4.0 International License (CC BY 4.0). No modifications were
made

the images. These patterns are used to remove noise more effectively, but also preserve
the details of the images. NLMD is a form of segmentation as it merges the pixels
with similar characteristics into patches. NLMD computes the denoised pixel value
by using a weighted average of all the image pixels as shown in Equation 2. Where i
and j are positions of the pixel values. P̂,P are the denoised pixel value at position i,
original pixel value at position j, respectively. w is the similarity weight between pixels
at position i and j. Finally, C represents a normalization factor ensuring that weight
sum to 1 shown in Equation3.

P̂(i) =
1

C(i) ∑
j

w(i, j)P( j) (2)

The weights are computed with an Euclidean distance as represented in Equation 3,
where I(i) and I( j) are patches centered around i and j. A filtering parameter h is used
to control the degree of smoothing, defined as 0.8 in this study.

w(i, j) = e−
∥I(i)−I( j)∥2

h2 ,C(i) = ∑
j

w(i, j) (3)

NLMD ensures that pixels similar to one in the position i contribute more to its de-
noising value, reducing noise while preserving important details. For all these reasons,
NLMD is chosen in this work. The second IQE technique is based on AI using a Swin-
Conv-UNet (SCUNet) denoising network. It is a combination of Swin transformers,
Convolution Neural Network (CNN), and U-NET model. A Swin-Conv (SC) block is
used as the main backbone of the U-NET model (Zhang et al., 2023). SCUNet per-
forms in a segmentation way where it groups patches of similar patterns. To the best of
our knowledge, it is the state-of-the-art image denoising model. For these reasons, it is
used in this study to provide a fair comparison with NLMD as they both perform with
the patch principle. Figure 2 details the architecture of the SCUNet model. The images
are first passed to a convolution filter of size 3, followed by the SC block, the U-NET
model with residual connections, and finally, another SC block and a convolution filter
of size 3 to reconstruct the denoised image.

The IQE methodologies are summarized in Figure 3 where IQE1 and IQE2 repre-
sent the NLMD and SCUNet techniques, respectively. The two IQEs are used sepa-
rately for the five different images (PINHOLES 99mTc-sestamibi, 123I, and subtracted),
(LEHR 99mTc-sestamibi and 123I).
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Figure 3: Image Quality Enhancement process

In the third step of the process and once the images are processed for IQE, a CNN
is used for feature extraction, to decrease the size of the images and preserve only the
important features for further processing. After a series of trials, the architecture in
Table 2 was found to be the best performing one for the diagnosis purpose. The input
layer is of shape 128×128×1 = 16384 features.

Table 2: CNN architecture for feature extraction

Layer Hyperparameters
Conv2D - 32 filters of size 3,

relu function
MaxPooling2D - filter size of 2

Conv2D - 64 filters of size 3,
relu function

Batch Normalization /
MaxPooling2D - filter size of 2

Conv2D - 128 filters of size 3,
relu function

MaxPooling2D - filter size of 2
GlobalAveragePooling2D /

Dense 128 nodes, relu function

The fourth step of the methodology consists of applying the Least Absolute Shrink-
age and Selection Operator (Lasso) regression (Tibshirani, 1996) for feature selection
before feeding them to AI models for classification. Lasso is a form of linear regression
that aims to reduce and remove non-relevant/redundant features to avoid over-fitting.
This is achieved by shrinking some features to zero, leaving only the most important
ones. Lasso prevents over-fitting problems and can do both feature selection and regu-
larization, which leads to more generalized models. A pair of features with correspond-
ing labels (0 for normal glands and 1 for abnormal). The objective is to minimize the
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function represented in Equation (4). y is the label, X are the features, β a coefficient
for each feature, n the number of patients, f the total number of features.

minimize

 n

∑
k=1

(
yi −

f

∑
z=1

Xkzβ j

)2

+λ

f

∑
z=1

|βz|

 (4)

Lasso is a modified version of linear regression by the addition of the penalty term
λ∑

f
z=1 |βz| that helps the model in the generalization process and avoids over-fitting.
The last step of the process consists of concatenating the statistical features ex-

tracted at the beginning from the raw images and the features resulting from the Lasso
regression into a single matrix that is used for binary classification. The latter is
achieved by benchmarking several Machine Learning (ML) algorithms. The training
is consolidated with a 10-Fold cross-validation technique. The data are divided into 10
folds, for 10 iterations, 9 folds are used for the model training and 1 fold for validation.
This ensures that all the data are used at least one time for training and once for testing,
it also reduces the variance in the performance providing trustful results, more reliable
model evaluation, and a robust model.
With this proposed methodology, it is ensured that only important features from the
enhanced images are used with an addition of the statistical information to enrich the
training of the ML models with the objective of improving the diagnosis. Also, the
quantity of data is not very high, for these reasons, the choice of ML models for image
classification is evident.

3 RESULTS AND DISCUSSIONS
In this section, the results of the proposed methodologies are detailed with discussions.

3.1 Image quality enhancement
In order to evaluate the IQE techniques, the two most common metrics for such tasks
are employed: Peak Signal-to-Noise Ratio (PSNR), and Structural Similarity Index
Measure(SSIM). Both metrics are used to evaluate the image-denoising, PSNR mea-
sures the quality of a denoised/reconstructed image compared to the original. A value
higher than 30dB indicates a high image quality enhancement, whereas a lower value
expresses a lower IQE. SSIM measures the similarity between two images by compar-
ing the luminance, contrast, and structure. Its values range between [0−1], from poor
quality to very high quality.
Table 3 shows the obtained results applying the two metrics on the used data, the values
are the mean across the whole data with the 5 different image types.
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Figure 4: Example application of NLMD and SCUNet on subtracted PINHOLE

Table 3: Performance evaluation of IQE techniques. P: PINHOLE, L: LEHR

Image type
IQE

technique PSNR SSIM

P. 99mTc-sestamibi
IQE1 38.54 0.98
IQE2 32.65 0.91

P. 123I
IQE1 37.46 0.97
IQE2 31.52 0.79

Subtracted P. IQE1 37.85 0.97
IQE2 32.42 0.85

L. 99mTc-sestamibi
IQE1 39.44 0.98
IQE2 33.47 0.92

L. 123I
IQE1 39.52 0.98
IQE2 30.65 0.75

The results report a dominance using IQE1 (statistical filter-based method), in com-
parison to IQE2 (AI-based method). The filter-based methodologies are simpler and
designed especially for special tasks, image denoising in this context, making them
highly effective for IQE purposes. Another reason is that filters apply a fixed set of op-
erations and treat the images individually according to their local characteristics which
leads to reliable results. On the other hand, AI-based methodologies for IQE are more
complex and require a large amount of data, which leads to the non-generalization of
new data. Finally, the dataset is very limited in terms of size which led to the SCUNet
model not performing well compared to NLMD. AI-based techniques may capture in-
formation that isn’t caught by traditional filters, but for this specific task in this work,
NLMD is more performant as the goal is to enhance the image quality, while features
(information) are extracted later in the process.

An example application of the two IQEs (NLMD and SCUNet) on two random sub-
tracted PINHOLES of two patients is shown in Figure 4. NLMD effectively reduces
the noise and enhances the key regions (indicated in circles) with arrows in the original
images while maintaining the important structures such as the edges of the images, also
in terms of metrics it achieved PSNR of 37.25, and 38.19, respectively in the two cases.
On the other hand, the application of the SCUNet (IQE2) filter in the same two cases
reports a decrease in the PSNR and SSIM with 4.1 and 0.07, respectively. It results
in partial noise removal without completely reducing it. Important structures, such as
edges, were slightly modified, resulting in a loss of information that could affect the
performance of ML models in terms of accurate image classification.
In summary, with IQE1 the noise is removed from images without modifying the struc-
tures which is the objective of the use case in this study. NLMD (IQE1) is selected over
SCUNet (IQE2) for the next steps and the rest of the process.
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3.2 Image classification
The images are processed with IQE1, and fed to the CNN for feature extraction and
Lasso regression for feature selection. A benchmarking of ML models for binary clas-
sification (normal/abnormal PGs detection) is applied. The images are associated with
the extracted statistical features explained in Subsection 2.2. The corresponding labels
are divided into 472 positive (abnormal), and 236 negative (normal). The imbalanced
data problem is solved by reducing the number of positive cases to 250. As a result,
250 positive and 236 negative cases are used to benchmark the ML models. The re-
maining positive cases aren’t discarded as they’re used in the test phase.
Table 4 reports the results with different ML models with various metrics: Accuracy,
Area Under Curve, and Recall. The best-performing model is presented in each image
type with the mean values reported by 10-Fold cross-validation. The results clearly
show that PINHOLE images outperform LEHR images. This was expected since physi-
cians primarily rely on the PINHOLE images for the diagnosis.

Table 4: Classification results with IQE1. P: PINHOLE, L: LEHR

Image type Model Acc AUC Recall
P. 99mTc-sestamibi LGBM 77% 74% 73%

P. 123I RF 75% 71% 71%
Subtracted P. LGBM 81% 80% 80%

L. 99mTc-sestamibi SVM 67% 66% 67%
L. 123I SVM 65% 65% 63%

Combined P. LGBM 83% 83% 81%

The combination of the 3 PINHOLE images improves the performance by 2.47%.
This suggests that using multiple images provides integral information, which increases
the model’s ability to make more accurate classifications.

To study the ability of the model to distinguish between the normal and abnormal
classes, an AUC metric was used that gave different results in Table 4. A Receiver
Operating Characteristic (ROC) curve with the combination of the 3 PINHOLE images
using LGBM is presented in Figure 5. The corresponding AUC is 0.83 (83%) which
expresses a good-performing model indicating the high ability to differentiate between
the two classes, meaning that the model does not tend to a particular class.

9



Figure 5: ROC curve with the test data

The results are good, but there is still room for improvement. A perfect AUC should
be 1.0 (100%), further future works needs to be oriented in a way to improve this value
by increasing the size of the dataset if available, or AI model improvement.

3.3 Ablation study
To study the impact of IQE1 on image classification with the different ML models, an
ablation study is performed. To achieve this, the proposed approach was repeated with-
out the image processing (IQE1) step. The aim is to evaluate the contribution of IQE1
to the global methodology, and whether the performance increases or not. The obtained
results as highlighted in Table 5 show a significant decrease in the performance, for ex-
ample, using combined PINHOLES, the accuracy dropped by 14.4% compared to the
methodology with IQE1 application. This significant decrease in accuracy emphasizes
the important role of IQE1 in assessing image classification performance. IQE1 im-
proves image quality by removing noise and highlighting darker regions, this improves
the relevance and details of images. By doing so, the ML models focus more on the
key features in the images, resulting in improved performance.
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Table 5: Classification results with IQE1. P: PINHOLE, L: LEHR

Image type Model Acc AUC Recall
P. 99mTc-sestamibi LGBM 67% 63% 62%

P. 123I RF 69% 69% 68%
Subtracted P. LGBM 70% 69% 69%

L. 99mTc-sestamibi SVM 58% 57% 58%
L. 123I SVM 61% 62% 63%

Combined P. LGBM 71% 70 70%

This study clearly demonstrates that IQE1 is crucial to ensuring that AI models
achieve optimal performance by providing cleaner, more targeted input images.

3.4 Performance limitations
As mentioned in Section 1, physicians usually rely on multiple data sources before
giving the final diagnosis. The proposed methodology demonstrates good performance
even when relying on a single type of data (static images). This highlights the ef-
fectiveness of the proposed approach in providing reliable insights with limited data,
especially in scenarios where access to multiple modalities is limited.

While the proposed methodology achieves an accuracy of 83%, the remaining 17%
represents cases where the model couldn’t give the real class label (as given and as-
signed by senior physicians). Figure 6 shows an example of misclassification, the pre-
dicted labels are in red, whereas the real labels are below each case. For the right case,
the affected PG can’t be observed in the image as it is in the posterior of the thyroid,
only its corresponding tomographic images could reveal the PG. On the other hand,
in the right case, the image reveals a gland in the blue circle, however, the diagnosis
report revealed that it was a thyroid gland and not a PG. The computed tomography
images were able to show this difference.
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Figure 6: Misclassification example

For future works, including tomographic images should be considered for an ac-
curate diagnosis, as it proved its efficiency (Öksüz et al., 2011) (Petranović Ovčariček
et al., 2021). Also, medical object detection and segmentation could be more accurate
as they only focus on specific regions of images.
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4 CONCLUSIONS
This paper presented a methodology for abnormal PGs detection using static dual-
isotope 99mTc-sestamibi and 123I PINHOLE and LEHR images. First, statistical fea-
tures were extracted to be combined with the images for classification. The images
were normalized using the MinMax technique. Then, an image processing approach
for IQE was applied using the statistical filter-based technique IQE1 (NLMD) and AI-
based approach IQE2 (SCUNet). The obtained results showed that IQE1 outperformed
IQE2 for this task, therefore IQE1 was selected for the rest of the process. Next, the
filtered images were fed to CNN for feature extraction and then to Lasso for feature
selection. Finally, the statistical features were combined with the selected features for
normal/abnormal PGs diagnosis. After extensive simulations, the results showed that
the proposed methodology achieved an accuracy of 83% by combining the PINHOLE
images. The results also showed that IQE1 improved the diagnosis results by 16.9%,
boosting image classification. The obtained performance indicates the potential of the
proposed methodology to be a reliable medical assistance tool by providing a primary
diagnosis using only one type of data.

COMPLIANCE WITH ETHICAL STANDARDS
This study was registered by the Clinical Research and Innovation Delegation of the
University Hospital Center of Besançon under the number 2023/796.
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Öksüz, M. Ö., Dittmann, H., Wicke, C., Müssig, K., Bares, R., Pfannenberg, C., and Eschmann,
S. M. (2011). Accuracy of parathyroid imaging: a comparison of planar scintigraphy, spect,
spect-ct, and c-11 methionine pet for the detection of parathyroid adenomas and glandular
hyperplasia. DIR, 17(4):297.
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