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When considering the vibroacoustical behavior of the family of violin instruments, especially related to 
their construction, numerous beliefs and theories coexist that are not necessarily compatibles between 
each other. More specifically, the resulting sound or dynamics of the instrument are associated to 
tonewood properties and geometry, but with ranking and weights that vary according to beliefs and 
testimony of makers. This study presents an approach to understanding the relative influence of 
both geometrical and material properties on the vibrational dynamics of the violin. By conducting a 
screening analysis, using finite element method based computations of a complete violin, we explore 
impact of maker’s choices during the construction process. The results highlight that the dynamical 
behavior of the violin is mainly depending on geometrical choices, such as thickness of back and top 
plate or f-holes shapes, rather than the complete variability of properties of tonewoods. Therefore, 
the wood selection appears to be a second order effect compared to other luthier’s choices, supporting 
a craftsmanship practice and can pave the way to the use of lower grade woods, which are more in 
adequacy with what the resource can offer. This work offers new insights that can assist violin makers 
in optimizing their design choices and adapting to sustainable material use without compromising 
subsequent behavior.
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Almost forty years separate the “Acoustics of stringed instruments” article1 and “The acoustics of the violin: a 
review”2. In this time interval, most of the elements proposed by the first reference have been rigorously studied, 
and more detailed models of, among others, bowed strings, violin acoustic radiation, and violin vibratory 
response have been developed. The development of physics-based numerical models of musical instruments 
has grown along with the computational capacities. However, methodological gaps remain for the study of the 
complex phenomena, such as the interactions between all the components of the violin.

From the operational point of view, the excitation is applied through a non-linear phenomenon of stick 
slip by the bow’s hair on the string. The motion of the strings is coupled with the dynamic behavior of the 
bridge and the violin body which is made of numerous parts glued together as shown on Fig. 7. Among all the 
solids assembled together, many are carved or bent to complex shapes, that cannot all be studied by traditional 
analytical approaches or usual material characterization devices. Beyond the global shape of the violin, numerous 
inner elements and more specific designs have evolved through the centuries, such as the angle of its neck, the 
type of strings, and the bass bar shape.
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It is considered that the acoustic modes of the violin are particularly important on the projected sound below 
1 kHz, and the violin behaves in this frequency range as a monopole3. But the overall response of the violin is not 
only linked to its acoustical modes, that are related to the acoustic behavior of its cavity4,5, but also to the radiated 
sound of its structural components. The radiation of the instruments has been studied widely as reported in6. 
Almost fifty years ago, quantitative measurements have been performed on a violin, and the structural mode 
shapes at different frequencies have been described7. The experimental modal analysis, that has grown in 
popularity in the last decades, has therefore been widely applied to the violins. The laser speckle interferometry 
has been used for decades to observe the vibration modes of the components of the violin, especially its top and 
back shells8 and the bodies9. Therefore, numerous experimental studies have identified vibroacoustic modes of 
the violin5,10–14. Finally, for more than 30 years, modal analysis has provided a nomenclature to different specific 
deformed shapes. These modes have been at the basis of the transfer of research results and had a favorable 
echo from the instrument makers, known as the plate-tuning method. A full detailed list of these modes and 
their indication for instrument making are given in15–17 (Table 1 gives the nomenclature and brief description 
of modes) and studies propose correlations between the frequency of these signature modes and the sound and 
preference of violins4,18

Above and beyond the structural dynamics of the violin, numerous other features have been proposed, such 
as the sound radiation of the violin that has been proposed in20, which defines the ratio between radiated sound 
field and the force applied on the bridge by the string, which is in the continuity of21. The frequency spectrum 
and directivity of the sound of the violin, which is a step beyond the acoustical and structural modes has also 
been studied22. In a more mixed analysis targeting a concrete application for violin makers, some parts of the 
response have been both experimentally and analytically linked to modifications of the violin components, such 
as the position of the soundpost, whose effect is given in23, and simulated using a finite elements model of 
violin in19. This last study has also used the finite element models to determine the impact of the shape of the 
f-holes of the violin, which have been largely documented through centuries, with more and more advanced 
devices24. For higher frequency domains, the first studies focusing on the violin bridge vibrational properties 
have been performed several decades ago9,25. Thus, the bridge, by its own dynamics, filters the components 
of the motion of the string. Along with the different measures of the bridge admittance, this feature has been 
increasingly considered as a signature for violins, as the bridge admittance exhibits the dynamics of the bridge, 
but also of the soundboard it is attached to, i.e., the violin body. The study of violin bridge admittance26 has 
shown a peak of response between 2000 and 3000 Hz. This feature has been called the “bridge hill” effect and is 
associated with motions of the violin bridge, especially in-plane bending, as shown in27,28. For assembled and 
finished instrument, violin varnishes influence the vibrational properties of of thin plates of wood, and their 
impact on dynamics has been studied this last decade, quantifying variations according to varnish type and 
wood preparation and grounding selected29,30.

Even though all these methods may provide a complete characterization of the dynamical behavior of the 
instruments, they cannot be used directly to determine the impact of modifications of the geometrical and/or 
material properties that form the violin, due to strong aleatory uncertainties: the variability of the material31 
and surrounding conditions32,33, and the properties of the glued interfaces that prevent consistent experimental 
studies with few samples, and the coarseness of analytical models. Moreover, experimental campaigns that study 
the impact of geometrical choices on finished instruments can be costly or particularly hard to achieve as the 
perceived sound can be attributed to many factors for which a geometrical or material choice is only a part34,35. 
In consequence, experimental and analytical studies have not yet consolidated knowledge about the link 
between specific maker choices and the resulting dynamical behavior of the instruments. Nevertheless, during 
the last decade, more and more studies have combined both experimental, analytical and numerical approaches 
to study musical instruments and to compare different shapes36. A study has used reverse engineering methods, 
experimental devices and numerical models of complete violin37 to create a vibro-acoustic model of the violin 
the “Titian” made in 1715 by Antonio Stradivari. This approach combining geometry, material and sound in a 
detailed way is now in constant expansion. The finite element method has been used to calculate eigenmodes 
of a violin38, modal frequencies on free violin plates after removal of wood on the bridge39, and the influential 
material properties on violin plate frequencies40 which was an important starting point to predict the impact of 
instrument maker crafting on the eigenfrequencies of the plates, as proposed in41,42 using optimization methods. 

Mode and usual frequency bandwidth Description

TP (120–150 Hz) Tailpiece frequency (vertical or twisting motion)

B-1 (145–190 Hz) Body motion

A0 (260–290Hz) “Coupled Helmholtz mode” or breathing acoustical mode

B0 (250–300 Hz) Bending of neck

CBR (390–430 Hz) Center bout rotation

B1- (or C2) (430–480 Hz) Breathing of the body

A1 (430–490 Hz) Internal cavity acoustical mode

B1+ (or C3) (510–580 Hz) Bending of the body

W (450–550 Hz) Main structure resonance when bowed

W’ (225–275 Hz) Subharmonic of W

Table 1. Nomenclature of the signature modes of the violin below 800 Hz, according to17,19.
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Using a finite element model, in free conditions, the link between structural eigenfrequencies and the material 
properties has been established in43, which has also been studied for clamped conditions in19 that studied the 
evolution of the mode shapes, from free to fixed conditions. Considering pragmatic expectations of violin 
makers, the impact of the f-hole shape has been investigated44. In45,46, modeling and experimental approaches 
highlighted the impact of the shape of the f-hole on the acoustic radiation of the violin. Another perspective 
proposed early during the development of the finite element method was the capability of such methods to 
evaluate the material properties of the wooden parts used for violin making, in parallel with the modal analysis 
of these parts47, which has been applied to tonewood (spruce quarters48, and bear claw spruce49) or back and 
soundboard in50,51 using both dynamical response and a finite element model.

Research aim
The aim of this study is to highlight which material or geometrical parameters impact the most the complex 
response of the violin, in the same way as proposed for guitar soundboards in52. To this end, a numerical model 
is developed for the study of the usual criteria used in the experimental and analytical characterization of the 
violins, namely the resonance mode shapes and frequencies, and the bridge admittance response amplitude 
(associated with the bridge hill effect). The complete numerical model proposed in this study aims at displaying 
full dynamical response of the violin up to 4000 Hz, even though the low frequency response will be emphasized 
with specific modes. This work is novel in its approach as it performs a systematic screening analysis that 
highlights the dominant influence of geometrical choices over material properties. This work also aims at 
offering practical results to violin makers, allowing them to prioritize steps during the crafting process and 
considering objectively materials without adversely affecting dynamical behavior.

Results
Computed vibrational modes and bridge admittance
The computed eigenmodes shapes and frequencies are displayed and the preliminary results are given. Figure 
1 displays the deformed shapes of the violin body below 800 Hz (the chinrest and tailpiece of the violin are 
not displayed for better readability). The frequencies of the CBR (Center Bout Rotation, a torsion-like motion 
between the top and back plate with relatively low acoustic radiation53), B1−, B1+ (modes involving the in- and 
out-of-phase combinations of a bending and breathing mode19), and C4 modes are in accordance with the 
measured modes on real violins, given in Table 1 and that have been measured for decades in the acoustics of 
the violin domain2,8,37,54. The presented modes are considered in the screening analysis details and the most 
influential parameters on each mode separately are given. The maximum bridge admittance in the [1600 3000 
Hz] frequency range is given in Fig. 2 and show that the mean bridge admittance maximum value is close to 
0.022 mm/N, and its standard deviation is equal to 0.006 mm/N. The bridge admittance values vary by ±35% (± 
standard deviation σ), but can shift up to +250 % for several cases. Such particular configurations mostly involve 
the f-holes length and soundboard thickness, which are clues for the screening analysis of this features, and will 
be focused quantitatively below. The maximum value generally appears at 2400 ± 300 Hz. This frequency is 
coherent with the usual values of the center of the bridge hill55–57 which supports these results.

Fig. 1. Eigenmode shapes of the numerical modes of the violin body, no prestress included.
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Screening analysis results
The results of the screening analysis based on the 211 computations are presented in Figs. 3, 4, 5, 6. All the 
parameters are ranked according to their normalized elementary effects on the associated feature. The 
nomenclature is given in Table 6. It is shown that, according to the feature, the ranking of the parameters varies.

Global behavior
The maximum admittance per band is mainly sensitive to the soundboard (9.4 %) and back (12.5 %) thickness 
and associated densities, respectively 6.3 and 12.5 %. As these parts behave like vibrating plates, this result was 
expected, but a relative influence of each parameter is a new result. Moreover, this feature is also sensitive to the 
bridge cuts (6.3 %), which is coherent with the previous results and the f-holes length (13.5 %) which changes the 
global stiffness of the bridge/soundboard/f holes area. The remaining elastic parameters are weakly influential 
with respect to the thickness parameters especially, and in the same order of influence as density and small 
geometrical and presets changes. The global matched eigenfrequencies error (MEE) are mainly sensitive to the 
thickness (soundboard 24 %, back 14 %) and density (soundboard 8.3 %, back 12.5 %) of the plates, as expected, 
and the Young’s modulus of the back in R direction (6.2 %), and the shear modulus of the soundboard (5.2 
%). The maximum global admittance, which occurs near 400 Hz is sensitive to the position in the X direction 
and diameter of the soundpost (8.3 and 5.2 % respectively). Thus, the soundpost is a good way of tuning of the 
violin bridge admittance in this frequency domain, which is its usual but not necessarily explicated purpose. 
Thus, it seems that the position in the X direction of the soundpost is more important than the position in the 
Y direction on the dynamics of the violin. For better readability, the parameters are gathered into families and 
the results are given in Fig. 4. This Figure shows the higher impact of usual geometrical changes with respect to 
the material full variability for maximum admittances values in both [1600-3000] and [20-4000] Hz bands, and 
matched eigenfrequencies (46.3 to 56.8 % compared with 38.9 %). In addition, the movable presets also play a 
non-negligible role (5.3 to 14.7 %).

Signature modes
The parameters ranking for body, soundboard and back modes below 800 Hz are given in Fig. 5, and grouped 
in Fig. 6. It is shown that according to the considered modes, the parameter ranking differs. For the center bout 
rotation (CBR) mode, the density of the back is mainly significant (25 %), followed by the specific modulus in 
radial direction of the soundboard (18.7 %). The thickness of both back and soundboard are influential (11.5 
% for each one). For the mode B1-, The thickness of the soundboard is mainly influential (33 %), followed by 

Fig. 2. Maximum frequency response function (FRF) amplitude (a) and frequency (b) in the [1600–3000 Hz] 
band.
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its density (15.5 %) and the soundpost position in X direction (7.2 %, across the width of the instrument). The 
back thickness and density are less influential (6.2 and 5.1 %). The longitudinal and radial specific moduli of 
soundboard are equally influential ( 5.1 %) . The B1+ (or C3) mode is influenced by soundboard and back 
thicknesses respectively (20.7 and 19.6 % respectively). Their densities are also influential (13 and 7.6 %). Finally, 
the radial specific modulus of the back (7.6 %) and longitudinal specific modulus of the soundboard (5.4 %) 
are also influential. The thickness of the back and soundboard are mostly influential on the eigenfrequencies 
of the presented modes. These results are in agreement with the propositions of Carleen Hutchins to tune the 
frequency of such modes17 and thus can be a starting point for a more effective and focused plate tuning during 
the violin making, avoiding the uncertainty seen in the assembly process which was highlighted for a lute in58. 
The radial elastic modulus of the soundboard seems to have an impact on the frequency of the CBR mode, thus 
the utilization of bear claw spruce which exhibits a much higher stiffness in radial direction has been studied49. 
The eigenfrequencies are mainly sensitive to the thickness and density of the soundboard and the back, and 
the Young’s modulus of the back in R direction and the LR shear modulus of the soundboard, and longitudinal 
rigidity of soundboard, which is consistent with the results of59. Finally, the length of the f-holes seems to be the 
most influential geometrical parameter (aside fromthe thicknesses) on the eigenfrequencies, as proposed in46.

Discussion
Based on the proposed numerical model, the eigenfrequencies of a violin are mainly sensitive to the thickness 
and density of the plates, and the Young’s modulus of the back in R direction and the shear modulus of the 
soundboard. In addition, the presets also play a significant role. The dominant influence of the geometry and 
preset choices of the instrument maker has thus been pointed out through this study. However, other factors, such 
as the arch height and shape, can also significantly influence the violin’s dynamical behavior. These parameters 

Fig. 3. Ranking of the parameters according to: (a) the maximum admittance in the bridge hill band [1600-
3000 Hz] (b) all the matched eigenfrequencies (MEE) (c) overall maximum admittance [20–4000 Hz].
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were not included in the numerical model for two reasons. Primarily, the feasibility of changing arch shape 
in a parameterised model can lead to issues during the geometrical reconstruction. Secondly, the instrument 
maker generally uses templates to reach a desired arching shape and height. Therefore, for a given model, these 
parameters are less likely to change than those that have been studied here. However, the existing literature 
highlights that variations in arch height and shape do indeed affect the vibrational modes and sound projection 
of the instrument60,61. Future research should incorporate these factors to provide a more comprehensive 
understanding of the violin dynamics, whereas the focus of this study was to evaluate the instrument makers’ 
choices. It has to be pointed out that including these parameters would increase the impact of geometry at the 
expense of material properties, supporting the importance of geometry rather than material. When considering 
separately the geometry, irreversible changes like thickness, and the presets, it is shown that presets also show an 
effect, which is a key to understanding impact of the instrument maker at different steps of construction process, 
especially the last one where tunable parts are added, as a mean to adapt the instrument. Finally, the violin in 
its final state is varnished and latter studies should also include the impact of varnish and wood preparation or 
grounding on the dynamics, increasing the variability of a violin body in its final step.

Application of findings to violin making
The findings have practical implications for violin craftsmanship. By demonstrating that geometrical parameters 
have a more significant impact on the violin’s dynamical behavior than the variability of tonewood properties, 
luthiers can prioritize precise control over these dimensions during the construction process. This insight 
supports interest for alternative, more readily available, wood species or samples, without compromising the 
instruments acoustics, potentially reducing material costs and promoting sustainable practices in violin making. 
By understanding the influence of geometrical choices, material properties, and presets, luthiers can make more 
informed decisions about where to focus their craftsmanship efforts to achieve a desired dynamical behavior. 
Although plate tuning is common in violin making for plates in free boundary conditions, the proposed 
approach also helps to better anticipate and control clamped conditions. The significant impact of plate 

Fig. 4. Ranking of the grouped material, preset and geometrical parameters according to: (a) the maximum 
admittance in the band [1600-3000 Hz] (b) all the matched eigenfrequencies (MEE) (c) overall maximum 
admittance [20–4000 Hz].
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thickness reinforces the need for thickness calipers, arching templates, and gauges that luthiers have widely used. 
Additionaly, technologies such as 3D scanners, which are features present in smartphones with Light Detection 
And Ranging (LiDAR) or using photogrammetry, can be employed for fine geometry checks.

Regarding wood, affordable moisture meters can help assess wood moisture content, which is known to 
affect density and rigidity, and evaluate changes in these parameters in typical playing environments. Integrating 
knowledge of dynamical behavior can assist in measuring material properties based on longitudinal or flexural 
waves at the state of the wedge or samples, or even at the plate stage using the Finite Element Model Updating 
approach, which is already spreading in the violin-making community through online platforms with finite 
element computations. Variations in density or stiffness are common in instrument making, but as long as the 
geometric parameters are adapted, the overall impact will be less significant.

Elements such as the soundpost position, bridge shape, and other tunable parts also affect the behavior but 
are considered less influential than the primary geometric factors. However, these presets are crucial for final 
adjustments and fine-tuning after the main construction is complete. To influence the bridge hill effect and adjust 
the response of the violin in the [1600-3000 Hz] range, several parameters have been identified as particularly 
influential. Regular testing of the bridge’s fitting and shape adjustments can be guided by the study’s insights into 
bridge admittance. Moving the soundpost slightly adjusts the response of the instrument, and results show that 
the effect is more pronounced on B1- and B1+ modes, which can be controlled by makers.

Conclusion
The objective of this study was to highlight the usefulness of detailed physics-based models of musical 
instruments as a tool to test claims made by instrument makers or researchers. The dedicated model and 
associated computations showed that the geometrical choices of the maker represent dominant influence on the 
violin dynamics. The full variability of the material properties has a smaller impact on the dynamics than the 
several tenths of a millimeter changes that are dependent on the instrument maker choices, habits, experience 

Fig. 5. Screening analysis of the parameters on the soundboard, back and body modes of the violin below 800 
Hz. (a) CBR 390 Hz (b) B1- 432 Hz (C) B1+ 492 Hz (d) C4 top 680 Hz.
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or crafting uncertainties. Nevertheless, the importance of these choices depends on the features considered. One 
of the main perspectives of such models, and considering the main influence of the thickness, is to optimize 
the thickness distribution of the parts to attain the desired acoustical properties, as proposed in62 and applied 
in41,42,63 for the optimization of free plates. In addition, it would also be possible to adapt the geometry in 
the case of wood modifications or substitution64 or the proposal of new materials, thus requiring a geometry 
update. This study is pertinent in a dynamical domain allowing the clear identification of eigenmodes. At higher 
frequencies, the observation of single modes is complicated by the frequency and/or the damping coupling, 
which prevents the study of the violin behavior with modal analysis. Therefore, the study of bridge admittance 
in a broad frequency range would be more fruitful, as a broader indicator. In addition, descriptors used in the 
statistical energy analysis (SEA) method would also be useful when mixing both approaches. Finally, a main 
application of this approach would be the correlation with perception like in34,65, and the use of sound synthesis 
based on these models to achieve a repeatability that can hardly be achieved with real instruments and players.

Fig. 6. Ranking of the grouped material, geometry and presets parameters according their influence on the 
back and body eigenfrequencies of the modes of the violin below 800 Hz.  (a) CBR 390 Hz (b) B1- 432 Hz (C) 
B1+ 492 Hz (d) C4 top 680 Hz.
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Material and methods
Computer aided design
The model developed corresponds to a fully mounted violin, and includes the tailpiece, bridge, chinrest and 
tuning pegs. The computer aided design (CAD) of the model is based on wooden molds and jigs of an instrument 
maker of the earliest twentieth century, Maurice Fauconnier. All the different solids used for the making of the 
violin are detailed in Fig. 7. Figure 8a displays the same model in a non-rendered view. The splines used for the 
making of the model are clearly visible on the soundboard and sides. Once the CAD of the violin has been made, 
different parts have been configured.

Configurable geometry
Two different kinds of tunable geometrical parameters are considered in this study. First, there are the parameters 
that cannot be easily changed once the violin is built (e.g., the thickness of the soundboard, the properties of 
the bass bar and the shape of the f-holes). Secondly, there are the parameters that are considered as presets 
and adjustable by the instrument maker, such as the position of the soundpost and the shape of the bridge. 
This set of geometrical modifications is not exhaustive but constitutes a starting point, as the effects of these 
parameters have long been a source of intrigue for instrument makers. Figure 10 (a) displays a cutaway view of 

Fig. 8. (a) Computer aided designs of the violin as displayed in the CAD software ; (b) tetrahedral meshing of 
the violin and close up of the soundboard.

 

Fig. 7. Nomenclature of the violin.
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the violin in the XY plane. This Figure displays the different parameterized elements, such as the position of the 
soundpost in the X and Y direction and the length, width and position of the bass bar. The f-holes are displayed 
in Fig. 10(b). The width and length of the f-holes are also parameterized. The mean values of the parameters and 
their variation range are given in Table 2. The geometry is parameterized using a SOLIDWORKS feature called 
family tree. During the preparation of the CAD, some dimensions are selected to be dependent on the values 
gathered in an EXCEL sheet. The cells of this document are then modified during the study via MATLAB. After 
changes in the cells of the EXCEL table linked with SOLIDWORKS, the model is opened and reconstructed 
automatically, considering the modifications. A script, written in Python 2.7 is executed to send instructions to 
SOLIDWORKS. This method uses Pywin32 which is a Python extension for Windows application programming 
interface (API), that uses the component object model (COM) method. This step serves to export the updated 
model to a CAD format, parasolid (.x_t) that will be imported in the software MSC-PATRAN, the pre-processor 
used for the application of the finite element method.

Numerical model and mesh
Once the CAD model is prepared, configured and exported, a numerical model is automatically constructed 
using the finite elements method based on the commercially available software MSC-PATRAN. The mesh is 
created using quadratic tetrahedral elements of 5 mm as global edge length, whose dimensions are no more 
than a sixth of the wavelength for plate flexural waves at 4000 Hz and 3.5 mm thickness in longitudinal (E = 12 
GPa) and radial (E = 1 GPa) directions, respectively 9 and 5 centimeters. Orthotropic material parameters are 
defined based on the results of48,66,67. Following the preprocessing of the model and the corresponding mesh, 
the number of elements is equal to 106000 which gives 300000 degrees of freedom. The mesh is created with 
a feature of MSC-PATRAN that creates elements with coincident faces for matched faces rather than adding 
contact parameters. The mesh refinement was performed automatically around the edges and near the purflings 
as represented in Fig. 8 (b). The modal basis is computed using the SOL103 solution in MSC-NASTRAN, which 
correspond to Normal Modes/Eigenvalue Analysis using the Lanczos Method68 an iterative algorithm used for 
finding the eigenvalues and eigenvectors of large, sparse matrices The equation of motion for the violin structure 
undergoing free vibration is given by:

 [M ]{ü(t)} + [K]{u(t)} = 0 (1)

With [M] and [K] the mass and stiffness matrices respectively and u(t) the displacement. Assuming a harmonic 
solution {u(t)} = {ϕ}eiωt, we get:

 [M ]{−ω2{ϕ}} + [K]{ϕ} = 0 (2)

With ϕ the eigenvectors of the system and ω the pulsation. This leads to the eigenvalue problem that is solved:

 ([K] − ω2[M ]){ϕ} = 0 (3)

Orthotropic material behavior laws and properties
All of the violin parts are assumed here to be made of wood, mainly spruce and maple for the body and the neck, 
and ebony for the fingerboard, chinrest, tailpiece and tuning pegs. The material parameters associated with the 
different parts of the violin are the Young moduli in i direction Ei, the shear moduli  Gij  and the Poisson ratios 
νij . A linear elastic orthotropic definition for each part of the violin is used, which gives 9 elastic parameters + 
density for each set of parts (the same material is considered for sides or ribs as if it was made from the same 
part of wood which is usually the case). The orthotropic consideration was the minimum that could be used to 
correctly consider the wood directions (L: longitudinal, R: radial and T: tangential). They are implemented in 

Parameter Nom. value (mm) Min value (mm) Max. value (mm) Min. relative value (%) Max relative value (%)

Length f-hole 73 69 77 - 5.5 + 5.5

Width f-hole 42.5 40 45 - 6 + 6

Width bar 6.1 5 6.5 - 0.22 + 6.5

Position bass bar 9.5 8 11 - 16 + 16

Length bass bar 270 290 250 - 7.4 + 7.4

Height bass bar 11.1 9 16 - 23 + 31

Radius soundpost 3 2.5 3.25 - 16 + 8

Position X soundpost 15.6 14 18 - 10 +15

Position Y soundpost 8 5 11 - 37 + 37

Thickness soundboard 2.8 2.4 3.2 - 14 + 14

Thickness back 2.95 2.7 3.4 -8 +15

Profile bridge 10 7 11 -30 +10

Table 2. Mean and relative values of the configurable parameters, and relative variation in comparison with 
nominal (nom.) value.
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the model and a previous screening analysis has been performed in an earlier study59 to determine the most 
influential material parameters. Out of a total of more than 100 material parameters, a subset of 8 parameters 
has been retained for the sensitivity analysis (soundboard and back EL, ER, GLR and their specific gravity).  
The remaining parameters displaying a relatively weak impact have been fixed and taken from67. The subset 
of influential parameters has been identified from 40 wood samples using a numerical-experimental inverse 
method48. Table 3 gives the initial material properties for all the elements of the violin in their respective local 
coordinate frame. These parameters are taken from67 and the results of48. For tropical woods, those values 
are extrapolated from67 and can be refined using the ones proposed in69. Numerous different orientations are 
implemented, and the violin is generally made of solids in five different orientations and three wood species. The 
orientation is considered, since the anisotropy ratio of the wood is high and can reach a value of 20 or more, 
for softwoods. The components are oriented in different ways, for both aesthetic, structural and workability 
considerations. The orientation and wood species of each solid are given in Table 4 and represented in Fig. 9. 
On usual violins, the parts are carved except for ribs and sides that are bent. The orientation of the material 
properties is defined through the local coordinate frames of the elements inside each solid and oriented to match 
the correct orientation in the global coordinate frame, and the cut of the grain is considered for carved parts. The 
sides and linings of a violin, represented in Fig. 7 are made of bent wood. The sides are made with maple and the 
linings with spruce. These wood parts are briefly immersed in water and bent using a hot iron at a temperature 
ranging between 200 and 250◦C, depending on instrument maker habits and the wood properties. Thus, only 

LRT Ebony

Material parameter Value

EL  (MPa) 17000

ER  (MPa) 1960

ET  (MPa) 1110

νLR 0.37

νRT 0.65

νT L 0.032

GLR  (MPa) 1370

GRT  (MPa) 360

GT L  (MPa) 950

ρ (g/cm3) 1

LRT spruce

Material parameter Value

EL  (MPa) 13350

ER  (MPa) 1080

ET  (MPa) 680

νLR 0.38

νRT 0.49

νT L 0.02

GLR  (MPa) 930

GRT  (MPa) 40

GT L  (MPa) 812

ρ (g/cm3) 0.44

LRT Maple

Material parameter Value

EL(MPa) 14920

ER  (MPa) 1960

ET  (MPa) 1110

νLR 0.37

νRT 0.65

νT L 0.032

GLR  (MPa) 1370

GRT  (MPa) 360

GT L  (MPa) 950

ρ (g/cm3) 0.64

Table 3. Fixed material properties values for different wood species and orientations. The values for ebony are 
taken from67 and the results for spruce and maple are taken form48,66.
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Fig. 9. Scheme of the material orientation of the parts in the violin.

 

Solid Material Orientation (LRT) Remark

Back Maple RLT Often carved, factory instruments may be bent

Bass bar Spruce RLT Carved and adjusted to soundboard

Bridge Maple LTR Carved from a shaped part

Button Ebony RLT Part provided by supplier

Chinrest Ebony LRT Part provided by supplier

Corners Spruce TRL Carved to fit with outer shape

Fingerboard Ebony RLT Carved to create an ergonomic shape

Heels Spruce RTL Carved to fit violin shape and neck heel

Linings Spruce LRT Bent and glued on sides

Neck Maple TLR Carved to create a scroll and ergonomic shape

Nut Ebony LRT Carved to support strings

Pegs Ebony LRT Part provided by supplier and adjusted

Purflings Maple LRT Bent and glued in the soundboard and back

Saddle Ebony LRT Carved to support tailgut

Sides Spruce LRT Bent to fit outer shape

Soundboard Spruce RLT Often carved, factory instruments may be bent

Soundpost Spruce TRL Adjusted to fit between soundboard and back

Tailpiece Ebony RLT Part provided by supplier

Tailgut (tailpiece string) Nylon Isotropic Part provided by supplier

Table 4. Wood species and orientation of the components of the violin in the global coordinate frame XYZ. 
Longitudinal: L, Radial: R, Tangential: T.
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the sides and linings are the bent parts of the model. For 3D tetrahedral elements, the orientation of the material 
constituting the bent parts is a non-trivial step. The software MSC-PATRAN®contains an option labeled “align 
solid elements” that enables the orientation of the numerous solid elements of a piece according to the normal of 
a surface and the alignment with a curve.

Material variability implementation
The variations of the spruce and maple properties are taken from the results of48, and (67). The elastic parameters, 
highlighted to be particularly influential on the vibratory behavior of the violin body in59, are given as a function 
of the density for spruce wood (at 10 % MC) in the Eq. (4):

 ELρ0
= 13000 + 45000 × (ρ0 − 0.45); ERρ0

= 1000 + 5500 × (ρ0 − 0.45); GLRρ0
= 840 + 1320 × (ρ0 − 0.45) (4)

In the case of the maple wood, the mechanical parameters are expressed as a function of the density by the Eq. 5 
(67):

 
ELρ0

= EL0 × ( ρ0

0.64)1.30; ERρ0
= ER0 × ( ρ0

0.64)1.03 (5)

In practice, wood exhibits significant variability in mechanical properties, even for a given density, due to 
different characteristics, natural growth patterns, microstructural characteristics such as the orientation of 
microfibrils, subtle variations in grain structure or special patterns used in musical instrument making (like 
bear claws spruce, or bird’s eye or flamed maple). This is particularly relevant when modeling tonewood, which 
is sensitive to these variations across longitudinal, and radial (or tangential) directions. It is a common fact that 
Longitudinal and (to a lower extent) radial elasticity moduli can be expressed as a function of density linearly. 
The variations in wood stiffness are indeed due to density at first order and microfibril angle (MFA) at second 
order but there remain variations that can still persist even for a given density and MFA. This study consists of a 
one at a time analysis to evaluate effects at first order. To avoid high density and very low EL which would not be 
physical, the variations on EL

ρ  are applied then ρ is set, either at its nominal value or changed according to the 
values sampled by the method. The variations of specific moduli, for a given density is therefore implemented to 
explore the full spectrum of possible mechanical responses that might arise from such variations.

To ensure coherence in the orthotropic elasticity matrix when varying the elastic moduli, the Poisson’s ratios 
are adjusted in a manner that maintains the required physical relationships. In particular, the relationships 
between Poisson’s ratios and Young’s moduli in each direction are preserved to satisfy the symmetry conditions 
inherent in orthotropic materials, specifically with the following conditions:

 
νLR

EL
= νRL

ER
,

νLT

EL
= νT L

ET
,

νRT

ER
= νT R

ET

 This ensures that when either EL or ER is modified, the Poisson’s ratios νLR and νRL are adjusted accordingly. 
This proportional relationship between Poisson’s ratios and elastic moduli ensures that the components of the 
elasticity tensor remain congruent and physically meaningful. Similar relationships are also maintained for the 
other directions.

Screening analysis
The model is used to perform a screening analysis of the different materials and geometrical parameters detailed 
above. The Morris method is used70, and 12 geometrical parameters, 8 material parameters (the material 
properties of neck and fingerboard are not considered) are studied. The bounds of the parameters are given 
in Table 5. The geometrical entities that are considered are given in Table 6 and their correspondence with the 
violin geometry schematized in 10.

In total, 20 parameters are activated. The number of runs is equal to : ((20 + 1) ∗ Nt) + 1, with Nt the 
number of trajectories. In this study, ten trajectories and six levels are considered, which lead to a total of 
211 runs. The number of levels defines the discretization of the input space and impacts the resolution of the 
elementary effects for each parameter. As the number of levels is a balance between computational efficiency 
and sensitivity resolution, 6 levels are commonly used in the Morris method when the primary goal is to identify 
influential factors as this study aims at providing results at first order rather than conduct a full factorial analysis. 
Highlighting more subtle results would require more sophisticated approaches, as an example to highlight 
coupling effects, in this case combining Morris with sequential sampling strategy71 would be more adapted and 
enable to search for finer effects for some sets of parameters that change drastically the behavior.

Dynamical features
A linear modal analysis labeled as sol103 in the software is performed. The duration of a run is generally equal to 
1 hour, on a core i3 with 8 GB RAM. For the post-processing of the model and application of Morris sensitivity 
analysis method, features and metrics are required, which are more detailed below.

Bridge admittance
The admittance of the bridge consists in the ratio between the output displacement on a point resulting from an 
input force as a function of the frequency. It is a frequency response function (FRF) based on the displacement. 
The FRF that is synthesized is based on the modal basis, and the modal superposition method is used which 
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involves summing the contributions of individual vibration modes, each represented by its corresponding 
eigenfrequency and mode shape. The equation governing the FRF is given by:

 
F RF (ω) =

N∑
n=1

ϕnϕT
n

ω2
n − ω2 + 2iζnωnω

 where ϕn is the mode shape (eigenvector) of the n-th mode, ωn is the natural frequency of the n-th mode, ζn is 
the damping ratio for the n-th mode, and ω is the excitation frequency. The modal damping that has been used 
is based on the modal damping evaluated with the data of real violins by means of laser 3D vibrometry66, whose 
average value is ζn = 0.9%. Once the modal basis of the full mounted violin is computed, the screening analysis 

Label Description Remarks

Sbth Soundboard thickness Adjusted by violin maker generally before assembly

Backth Back thickness Adjusted by violin maker generally before assembly

fholeL
f-holes length Adjusted before assembly

fholeW
f-holes width Adjusted before assembly

Barpos Position of the bass bar Glued after carving the soundboard

Barh Height of the bass bar Adjusted on the soundboard

BarW Width of the bass bar Adjusted before assembly

BarL Length of the bass bar Adjusted before assembly

Bridge cut Opening on each side of the arm Cut by the luthier during fitting

Sppos.X Soundpost position in X direction Adjusted with a soundpost setter

Sppos.Y Soundpost position in Y direction Adjusted with a soundpost setter

SpdiamY Soundpost diameter Diameter selected before fitting

SbELspec Specific rigidity of top in L direction Wood selection

SbERspec Specific rigidity of top in R direction Wood selection

SbGLRspec. Specific rigidity of top in GLR plane Wood selection

Sbρ Density of soundboard Wood selection

BackELspec. Specific rigidity of back in L direction Wood selection

BackERspec. Specific rigidity of back in R direction Wood selection

BackGLRspec. Specific rigidity of back in GLR plane Wood selection

Backρ Density of back Wood selection

Misc. Miscellaneous All weakly influential parameters gathered

Table 6. Nomenclature of the parameters used for the screening analysis results display.

 

Parameter Mean Relative min. Relative max. Actual min. Actual max.

[MPa] [%] [%] [MPa] [MPa]

Maple
EL

ρ
(MP a) 23282 -20 +20 18643 27980

ER
ρ

(MP a) 3062 -28 +30 2205 3981

GLR
ρ

(MP a) 2148 -23 +30 1655 2792

Density 0.64 -20 +12 0.512 0.717

Spruce
EL

ρ
(MP a) 12790 -30 +22 20350 35463

ER
ρ

(MP a) 980 -34 +65 1470 3675

GLR
ρ

(MP a) 820 -33 +32 1248 2459

ρ(g.cm−3) 0.44 -11 +15 0.39 0.504

Table 5. Variability of the materials implemented for Morris screening analysis, with actual, min and max 
values, based on67 (maple) and48,66 for spruce.
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applies the variations of the geometry and material parameters and the updated model is used to compute a new 
modal basis, and thus new bridge admittance.

Maximum FRF amplitude per frequency band
The maximum value of the Frequency Response Function (FRF) is computed by identifying the highest 
amplitude of the FRF over the frequency range of interest, either the maximum value from 20 to 4000 Hz, and 
between 1600 and 3000 Hz that is the usual domain of investigation of the bridge hill) it is calculated as follows:

 
FRFmax = max

ω
|F RF (ω)|

Along the maximum amplitude value, the corresponding frequency is also given. These two outputs give the 
variability of the maximum amplitude that can be measured on a bridge of a violin made with variable geometry 
and materials. The frequency response dispersion highlights the overall amplitude domain that is reached by the 
many FRF that are computed. It gathers the mean and max values and gives an envelope of the way the material 
and geometry variability affects the frequency response function of the studied structure. Moreover, the average 
FRF of all the runs is also given.

Matched eigenfrequency, eigenfrequencies and eigenvector errors
Some features are directly dependent on the modal basis. The eigenmodes of each modal basis of the study 
are compared with a nominal modal basis of the violin, made with the mean values of each parameter that are 
changed during the analysis (both material and geometry parameters). The eigenmodes are correlated with a 
Modal Assurance Criterion (MAC)72 used to assess the correlation between mode shapes of different cases. It is 
defined as follows:

 
MAC(ϕa, ϕb) = |ϕH

a ϕb|2

(ϕH
a ϕa)(ϕH

b ϕb)
 (6)

 Where:

• ϕa and ϕb are the mode shape vectors (eigenvectors) of the two cases being compared.
• ϕH  denotes the conjugate transpose of the eigenvectors
• The numerator |ϕH

a ϕb|2 represents the squared magnitude of the inner product of the two mode shapes, 
indicating their correlation.

• The denominator (ϕH
a ϕa)(ϕH

b ϕb) normalizes the result using the norms of the mode shape vectors, ensuring 
that the MAC value ranges from 0 to 1.A MAC value of 1 indicates that the mode shapes are identical for all 
the eigenvector components. 0 indicates that the mode shapes are completely different (orthogonal).

To ensure consistency in the comparison of different geometrical configurations within the finite element model 
(FEM), we implemented a procedure that aligns geometrical points in the global coordinate frame with the 
FEM mesh whose indexes may change between each geometrical configuration. These points were paired with 
corresponding nodes in the FEM mesh with a positional tolerance of less than 5 mm. This tolerance ensures that 
nodes used for mode shape comparisons remain in close proximity across different geometrical configurations, 
despite any variations in the mesh. The selected tolerance is much smaller-by a factor of 10 to 20-than the 
smallest wavelengths of flexural waves in the back and top plates, which range between 5 cm and 10 cm at the 
highest frequency considered (4000 Hz). These wavelengths correspond to the radial and longitudinal directions 
of the wood, respectively. The minimum value that is retained for the matching of two modes is 0.6.. Considering 

Fig. 10. Close up of the violin soundboard in the XY plane and of the f-holes, the red arrows represent the 
dimensions that have been modified in the study.
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the main changes that can occur between two numerical cases and the sensitivity of the MAC criterion, this 
allows the matching of many modes between two studies. When the nominal modal basis and the current modal 
basis with initial values are compared, all the modes are matched. The matched eigenfrequencies are used to 
study the sensitivity of the parameters in regard to the eigenfrequency of each mode that is computed. This gives 
a non-normalized value for each eigenfrequency. The matched eigenfrequencies error (MEE) is used to compare 
many eigenfrequencies of eigenmodes at the same time. The MEE is a normalized evaluation of the sensitivity 
of one parameter in relation to one or many eigenfrequencies. The matched eigenvector error (MEVE) is used 
to compare the eigenvectors of a given mode of a modal basis to another. In this case, this gives a normalized 
evaluation of the difference in the shape of the modes, through the error of the MAC criterion.

Results post processing
The screening analysis results are post processed to be displayed in Figs. 3, 4, 5, 6. The elementary effects of each 
parameters for each observable previously described are normalized. EEi represent the elementary effect of 
parameter i for a given mode/ observable. The percentage contribution of parameter i is calculated as:

 
Pi = EEi∑N

i=1 EEi

× 100

 where:

• EEi is the elementary effect of the i-th parameter,
• 

∑N

i=1 EEi is the sum of the elementary effects for all (N) parameters i considered for the given mode/ob-
servable,

• Pi is the normalized percentage contribution of the ith parameter.This normalization ensures that the sum of 
all percentages for a given mode or observable equals 100%. Therefore it is used to assess the relative impor-
tance of each parameter.

Data availability
The datasets used and/or analyzed during the current study available from the corresponding author on reason-
able request.
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