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Abstract— Fuel cell hybrid electric vehicles (FCHEVs) play
an important role in driving the transition towards more
environment-friendly transportation and electric mobility.
Their powertrain efficiency hinges on the effective distribution
of power demands between the fuel cell (FC) and the battery,
facilitated by an Energy Management System (EMS). In the
literature, diverse strategies are utilized to handle the power
allocation within the FCHEV. Unlike existing work, this paper
breaks new ground by incorporating a Fuel Cell Management
System (FCMS) into the EMS. This FCMS improves FC
performance by simultaneously monitoring FC operational
conditions: temperature and oxygen excess ratio. The proposed
optimal FCMS is combined with the Nonlinear Model Predictive
Control (NMPC) EMS and simulated across urban, suburban,
and highway driving scenarios. The simulation results demon-
strate the effectiveness of the proposed method, by achieving
up to 4% enhancement in the overall efficiency.

Index Terms— Fuel Cell Hybrid Electric Vehicle, Energy
Management System, Nonlinear Model Predictive Control, Fuel
Cell Management System.

I. INTRODUCTION

The quest for a sustainable transportation sector is be-
ing paved by fuel cell hybrid electric vehicles (FCHEVs)
due to their zero-emission capabilities [1]. The architecture
of a FCHEV typically centers around a proton exchange
membrane fuel cell, henceforth designated as the FC, as the
primary power source. This FC is complemented by a battery
as a supplementary source, forming a hybrid configuration
that capitalizes on the strengths of both technologies [2].

The energy management system (EMS), a high-level con-
troller in FCHEV, optimizes power flow and transitions
between different sources [3]. EMS employs strategies,
from rule-based to learning-based approaches, including
notable examples such as State Machine Control (SMC)
[4], Equivalent Consumption Minimization Strategy (ECMS)
[5], Reinforcement Learning (RL) [6], etc. For real-time
and online control, Model Predictive Control (MPC) is a
preferred option due to its versatility in handling multiple
constraints simultaneously [7]. Nonlinear MPC (NMPC), a
variant of MPC, deals with complex nonlinear systems and
optimizing custom cost functions with both linear and non-
linear constraints. In [8], an experimental implementation of
NMPC was conducted using a FCHEV real-time hardware-
in-the-loop setup. Despite its computational demands, NMPC
successfully achieved reductions in hydrogen consumption
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and mitigated FC degradation when compared to linear MPC.
In [9], a comprehensive overview is presented regarding
the design and application of different types of MPC-based
EMS for hybrid electric vehicles. The effectiveness of the
EMS strategies has been widely demonstrated, but their
scope is restricted to electric power management, leaving
out consideration of FC operating conditions.

The optimization of the operating conditions, with a
specific focus on temperature and air flow rate, relies on
the accurate design and control of the auxiliary subsystems
[10], often referred to as the Balance of Plant (BoP). The
BoP encompasses vital auxiliary subsystems essential for FC
operation, including hydrogen storage and supply, air sup-
ply, cooling system, water management system, and power
electronics. In a FC system, the BoP can draw up to 20%
of the gross power, thus leading to a decrease in overall
efficiency [11]. To limit this efficiency loss and maintain
peak performance, the implementation of a refined fuel cell
management system (FCMS) becomes imperative. In [12],
a dual loop coordinated management has been proposed to
enhance the net power of a FC system, the results have
shown an improvement of about 6% comparing to a manual
guided control. In [13], it was demonstrated that optimizing
both oxygen excess ratio and cathode pressure within the air
system, identified as the primary energy consumer within the
BoP, can result in a significant increase in efficiency of ap-
proximately 2% compared to conventional one-dimensional
optimization.

This study investigates the impact of integrating an optimal
FCMS into a NMPC-based EMS for a FCHEV. Unlike
the other similar works, this control strategy is composed
of three hierarchical levels: at the high-level, the EMS
distributes electric power demand between sources, the mid-
level focuses on optimizing FC system efficiency through
operating condition adjustments, and the low-level ensures
the control of the auxiliary subsystems.

The rest of this paper is organized as follows: the modeling
of the hybrid system and the BoP is detailed in section II, the
development of EMS and FCMS is addressed in Section III.
Section IV carries out the simulation results and discussions.
Conclusions and perspectives are drawn in Section V.

II. SYSTEM STRUCTURE AND MODELING

The global structure of the studied system is illustrated in
Fig. 1.



Fig. 1: Energy Management system based fuel cell management system general structure

A. Vehicle Modeling
As shown in Fig. 1, the powertrain of the vehicle under

consideration comprises the FC as the primary power source
and the Li-ion battery as a secondary source. Both sources
must fulfill the total propulsion power (Pveh), which can be
estimated based on the total forces (FT ) acting on the vehicle,
its velocity (ν), and the efficiencies of the electric motor
(ηm = 90%) and inverter (ηi = 95%), using (1)

Pveh =
FT ν

ηmηi
(1)

where FT is the sum of accelerating force (Fa), rolling force
(Fr), drag force (Fd) and grading force (Fg), given as follows:

FT = Mv
dν

dt︸ ︷︷ ︸
Fa

+ γrρrMvgcosθ︸ ︷︷ ︸
Fr

+Mvgsinθ︸ ︷︷ ︸
Fg

+
1
2

ρaγdSvν
2︸ ︷︷ ︸

Fd

(2)

where Mv is the vehicle mass, g is the gravity, γr is the rolling
coefficient, θ is the road slop angle, ρa is the air density, γd
is the drag coefficient, Sv is the vehicle chassis area.

The overall requested power (Preq) is determined by adding
the vehicle’s power needs to the power required by the
auxiliary systems (Paux) using (3)

Preq = Pveh +Paux (3)

where Paux covers the power of the air supply system
and thermal management system, and can be calculated as
follows:

Paux = Pcm +Ppump +Pradiator (4)

where Pcm, Ppump, and Pradiator represent the power consumed
by the motor-compressor system, water pump, and radiator,
respectively. These components are the primary auxiliary
systems influencing the overall electric net power output.

B. Fuel Cell

The central component of the system is the FC stack,
which facilitates the conversion of hydrogen and oxygen’s
chemical energy into electrical power. In the vehicle under
investigation, a 65 kW FC stack is utilized, capable of
producing currents of up to 310 A. This study focuses on
three parameters that impact FC system performance:

1) Voltage: noted (Vf c), is approximated using a semi-
empirical model to characterize the electrical behavior of the
FC stack using (5)

Vf c = Ncell [Eocv − (v0 + v1(1− e−c1I f c))

−RmI f c − (c2
I f c

imax
)c3 I f c]

(5)

where Ncell denotes the number of FC cells (381), Eocv
represents the open-circuit voltage, v{0,1} are parameters
related to activation loss, Rm stands for membrane resistance,
c{1,2,3} denote semi-empirical coefficients, and imax indicates
the maximum current generated by the stack. For a thorough
understanding of modeling and parameters, readers may refer
to [14].

2) Temperature: Maintaining an optimal temperature is
crucial for maximizing the efficiency of the stack. This
involves regulating the cooling system, which comprises a
water pump, radiator, and heater. Here, the temperature of
the FC can be equated to that of the output water, with a
temperature difference of approximately 5◦C between the
inlet and outlet. Given the control-oriented study, a simplified
model for stack temperature (Tf c), can be derived based on
the principle of mass conservation using (6)

M f cC f c
dTf c

dt
= Qproduced −Qwater −Qamb (6)



where M f c represents the mass of the FC stack (60 kg), C f c
denotes the specific heat of the stack (710 J/kg.K), Qproduced
signifies the heat generated by the stack, Qwater accounts for
the heat absorbed by the water, and Qamb indicates the heat
released to the ambient environment, the heat absorbed by
the gases is neglected in this study. These various quantities
can be calculated based on (7)

Qproduced = (
Ncell ·MH2

2 ·F
∆H −Vfc)× Ifc

Qwater = ṁw ·Cw · (Tfc −Tin), Qamb = k1 · (Tfc −Tamb)
(7)

where MH2 denotes the molar mass of hydrogen (2 g/mol),
∆H is the hydrogen enthalpy (285.5 kJ/mol), F is Faraday’s
constant (96485 C/mol), ṁw represents the water flow (the
control variable of the cooling system, with a maximum
flow of 3 L/min), Cw stands for the specific heat of water
(4200 J/kg.K), Tin indicates the inllet water temperature, k1
denotes the stack radiation coefficient (180 W/K), and Tamb
represents the ambient temperature (298.15K). These param-
eters are derived from a scaling of the system investigated
in [15].

3) Oxygen Excess Ration (OER): denoted as λO2 , is
pivotal for evaluating the oxidation reaction efficiency in-
side the FC. By optimizing λO2 , net power is maximized
while operating issues related to oxygen starvation/saturation
and excessive power consumption by the compressor motor
system are avoided. The OER can be calculated as the ratio
between absorbed oxygen (W in

O2
) and reacted oxygen (W react

O2
),

as shown in (8)

λO2 =
W in

O2
W react

O2
=

kmxO2(pm − pca)
NcellMO2Ifc

4F

(8)

where km is the supply manifold constant, xO2 is the oxygen
fraction, pm is the supply manifold pressure (Pa), pca is the
cathode pressure (Pa), and MO2 is the oxygen molar mass
(32 g/mol).
To regulate the OER, we can derive a control-oriented model
from the reduced-order model of the motor-compressor sub-
system proposed in [16], as depicted in (9).

ω̇cp =−m1ωcp−
m2

ωcp

[(
pca

m3

)m4

−1
]

Wcp(ωcp, pca)+m5Vcomp

(9)
where ωcp is the angular velocity of the air compressor
(rad/s), Wcp(ωcp, pca) represents the air flow rate through
the compressor, mi{i = 1, ...,5} are empirical parameters of
the air supply subsystem and Vcomp serves as the control
signal representing the voltage supplied to the motor.
Finally, for a set of operating conditions {I f c,Tf c,λO2}, the
efficiency of the FC system (E f cs) is calculated using (10).
This efficiency is defined as the ratio of the net electric power
(Pnet = Pf c−Paux) to the chemical energy of hydrogen, along
with the efficiency of the DC-DC boost converter, denoted
as Edc.

E f cs(I f c,Tf c,λO2) =
Pf c −Paux

LHV × ṁH2
·Edc (10)

where ṁH2 is the hydrogen mass flow rate (g/s), and is
linearly proportional to the FC power, and LHV stands for
low heating value of the hydrogen (241.8 kJ/mol).

C. Battery:

In this study, Li-ion battery technology is used owing to its
high energy density and low self-discharge rate. The battery’s
behavior is studied using an equivalent circuit model. This
model helps understanding how the battery’s state of charge
(SOC) changes with power. The current integral method is
employed to calculate the battery’s SOC as (11)

SOC(t) = SOC(0)−
∫ t

0 Ibat(τ)dτ

Qn
(11)

where SOC0 is the initial SOC of the battery, Qn is the
rated battery capacity (6.5 Ah), and Ibat battery charging/
discharging current which is calculated using

Ibat =
Vbat,ocv −

√
V 2

bat,ocv −4RbatPbat

2Rbat
(12)

where Vbat,ocv, Rbat and Pbat are the battery’s open-circuit
voltage (V ), equivalent resistance (Ω) and power (W ), re-
spectively.

III. EMS BASED FUEL CELL MANAGEMENT SYSTEM

A. Energy management system

NMPC-based EMS is used to allocate power between the
two sources by using the plant model to predict the system
behaviour and then improve future system performance by
solving an optimal control problem at each sampling time.
The plant prediction model as described in (12), revolves
around a single state variable x = SOC, the control input of
the plant is designated as u = I f c, while the requested power
and auxiliary power are assumed to be measurable distur-
bances (d = Preq). The discrete-time state-space formulation
of the plant, with a sampling period of ∆T = 1s, is expressed
as given in equation (13).

xk+1 = xk −
Vbat,ocv −

√
V 2

bat,ocv −4Rbat(
dk

Edc
−Pf c(uk))

2QnRbat
∆T

(13)
In this study, a series of control inputs (uk =
{u(0),u(1), . . . ,u(N − 1),u(N)}) is evaluated over a
finite prediction horizon consisting of 10 samples (N=10),
with the control horizon set equal to the prediction horizon
for simplicity. The optimal length of the prediction horizon
was established through simulations involving different N
values, aiming to achieve an optimum compromise between
computational cost and control performance. The NMPC
EMS determines the optimal trade-off between the following
performance metrics: hydrogen consumption (ṁH2), FC
current variation (∆I f c = I f c(k)− I f c(k − 1)), and battery’s
SOC deviation from a predefined reference (SOC−SOCre f ).
Thus, the rationalized cost function can be expressed as



Fig. 2: Characterization of FC system for various current
values: 57A, 113A, 168A, 224A, 280A.

follows:

min
uk

J =
k+N−1

∑
i=k

[
σ1

∣∣∣∣∣∣∣∣ ṁH2

ṁmax
H2

∣∣∣∣∣∣∣∣2 +σ2

∣∣∣∣∣∣∣∣ ∆I f c

∆Imax
f c

∣∣∣∣∣∣∣∣2]
+σ3

∣∣∣∣∣∣∣∣SOC(k+N)−SOCre f

2(SOCmax −SOCmax)

∣∣∣∣∣∣∣∣2
(14)

where ṁmax
H2 is the maximum hydrogen mass flow rate (1.8

g/s), ∆Imax
f s is the maximum FC current variation (50 A),

SOCre f is the reference SOC set at 60%, SOCmax is the
maximum SOC set at 80%, and SOCmin is the minimum
SOC set at 45%, σ{1,2,3} are the weighting factors of the
cost function.
In the optimization stage, the following constraints should
be considered:

subject to:

EdcPf c +EdcPbat = Paux +Pveh

45% ≤ SOC ≤ 80%
0kW ≤ Pf c ≤ 70kW

−20kW ≤ Pbat ≤ 20kW
0A ≤ ∆I f c ≤ 50A

(15)

B. Fuel Cell management System

The FCMS serves as an intermediary control unit, produc-
ing temperature and OER references based on current inputs
from the EMS. The process for designing the FCMS entails
the following steps:

1) FC system characterization: To assess the efficiency
of the FC system, an off-line simulation was carried. The
characterization covered a range of operating conditions,
including current varying from 5A to 280A, temperature
from 340K to 363K, and OER fluctuations between 1.5 and
5. Fig. (2) illustrates the results for a set of current inputs.

2) Efficiency fitting model: For each value of the current,
the efficiency can be expressed using the two variables
second-order polynomial fitting model expressed in matrix

form, as shown in (16)

E f cs,k(Tf c,λO2) =


ξ1,1 ξ1,2 · · · ξ1,6
ξ2,1 ξ2,2 · · · ξ2,6

...
...

. . .
...

ξNtest,1 ξNtest,2 · · · ξNtest,6


︸ ︷︷ ︸

ξ



1
Tf c
λO2

Tf cλO2

T 2
f c

λ 2
O2


for all k = {1, . . . ,Ntest}

(16)
where Ntest is the length of the test current set (Ntest = 55),
each row of the matrix ξ represents the the fitting parameters
matrix for a single test current.

3) Optimal operating condition: Once the fitting model
is established, the optimal references for both temperature
(T ⋆

f c) and OER (λ ⋆
O2

) are derived by solving the system of
equations shown in (17)

(T ⋆
f c,λ

⋆
O2
) = min

(Tf c,λO2 )∈{T,B}


∂E f cs,⋆(Tf c,λO2 )

∂Tf c
= 0

∂E f cs,⋆(Tf c,λO2 )

∂λO2
= 0

T : Tf c ∈ [T min
f c ,T max

f c ]

B : λO2 ∈ [λ min
O2

,λ max
O2

]

(17)

where {T,B} represents the set of potential temperature and
OER values, chosen to prevent potential faults: starvation
(λ min

O2
= 1.5) and saturation (λ max

O2
= 3.5), and ensure oper-

ation within recommended temperature ranges from T min
f c =

333K to T max
f c = 363K.

4) Operating condition control: Consequently, the op-
erating conditions are controlled to track the obtained ref-
erences using low-level control blocks. For simplicity, PID
controllers are designed to facilitate implementation. The
response times order for the electric, air supply system,
and cooling system are about O(10−1) seconds, O(10−1)
seconds, and O(102) seconds, respectively.

IV. RESULTS AND DISCUSSION

The proposed EMS underwent an evaluation using the
Worldwide harmonized light vehicles test cycles (WLTC)
cycle, a standardized protocol encompassing various driving
conditions such as urban, suburban and highway scenarios.
The primary findings of this test are depicted in Fig. 3,
showcasing the driving cycle/power request (Fig. 3a), power
allocation between the FC and battery (Fig. 3b), and certain
performance metrics (Fig. 3c). From the results, the FC
predominantly fulfills power demands, with the battery serv-
ing as a supplementary power source during peak periods.
The total hydrogen consumption amounted to approximately
163 grams, resulting in an fuel consumption coefficient of
0.71kg/100 km.

The proposed EMS effectively stabilized the battery’s SOC
within the prescribed operational limits. Typically, an MPC-
based EMS would ensure the final SOC value matches the
reference. However, as shown in Fig. 3c, the final SOC
is approximately 80%. This discrepancy can be attributed
to the inherent characteristics of the extra-high phase of
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Fig. 3: Results of NMPC Energy Management System

the WLTC driving cycle, where deceleration occurs. During
this phase, the power demand is negative, and with the FC
being irreversible and no regenerative braking available, all
generated power is directed to the battery, resulting in an
increase in the battery SOC.

To quantify the efficiency enhancement facilitated by the
FCMS, we maintain identical power sharing settings of the
EMS. Consequently, for identical current references, two
distinct scenarios are compared. In Case A, the FCMS,
elaborated in subsection III.B, dynamically adjusts temper-
ature and OER references to optimize FC performance.
Conversely, Case B employs manually fixed references: a
temperature reference of 345K and an OER reference of 2.
Fig. 4 depicts the measured operational conditions and the
corresponding variations in overall FC system efficiency for
both cases. The efficiency curves reveal distinct enhance-
ments across varying power consumption levels. Notably,
efficiency improvements range from approximately 1-2% at
low power demands, escalate to around 2-3% at medium
power demands, and peak at up to 4% for high power
demands. When considering the mean efficiency, represented
in dashed lines, across the WLTC driving cycle, our anal-
ysis reveals an improvement of about 1.5%/cycle. Table I
offers a comprehensive analysis of efficiency enhancements
across various driving conditions, demonstrating that the
implemented FCMS notably improves efficiency, especially
in medium to high power ranges.
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Fig. 4: Impact of variable operating conditions on FC System
Efficiency: Case A - Optimal references vs. Case B - Fixed
References

V. CONCLUSION

This study investigated the integration of the FCMS into
the EMS of a FCHEV to evaluate and quantify efficiency
enhancement. A model encompassing the FC stack, the auxil-
iaries (air supply/cooling), and the battery was developed. An
NMPC-based energy management system was established
for power allocation. Lastly, an offline characterization-based
FCMS was deployed. The FCHEV system was simulated
under a complete WLTC driving cycle considering two
scenarios: optimal and fixed operating conditions (tempera-
ture, oxygen excess ratio). The results demonstrated that the
optimal FCMS enhanced the FC system efficiency by up to
4% compared to the scenario with fixed operating conditions.

Future work can extend this research by incorporating
FC dynamics to refine the model’s accuracy and operational
responsiveness. Additionally, examining the degradation ef-
fects on both the FC and the battery could provide deeper
insights into the long-term performance and reliability of the
FCHEV system.
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VI. APPENDIX

Table II outlines the simulation parameters utilized to
derive the results presented in this study.



TABLE I: FCHEV system efficiency improvement across various driving scenarios.

Driving Scenario Time Span (s) Max Speed (km/h) Mean FC Power Peak Efficiency (%) Mean Efficiency (%)
(W) Case A Case B Case A Case B

City 0-600 56.6 25,818.2 59.32 56.52 36.31 35.67
Suburban 600-900 76.6 37,522.7 59.85 57.56 42.85 41.25

Rural 900-1500 97.4 45,992.6 60.74 57.46 40.82 39.44
Highway 1500-1800 131.3 56,800.3 60.49 57.61 44.03 41.06

TABLE II: Vehicle Parameters Description and Values.

Component Parameter Value

Vehicle

Mass (kg) 1950
Frontal area (m2) 2.1

Air density (kg/m3) 1.202
Rolling coefficient 0.0015

Drag coefficient 0.29
Gravity acceleration (m/s2) 9.81

Inverter efficiency (%) 90
Motor efficiency (%) 90

Fuel Cell

Type PEMFC
Rated power (kW) 65
Number of cells 381

Maximum current (A) 310

Battery

Type Li-ion
Capacity (Ah) 6.5

Nominal voltage (V) 245
Internal resistance (Ω) 0.019
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