
Balance-driven Self-Reconfiguration Algorithm
for Programmable Matter

Ikrame Yazidi, Benôıt Piranda, Morvan Ouisse and Julien Bourgeois

FEMTO-ST Institute, Université de Franche-Comté, CNRS
firstname.lastname@femto-st.fr

Abstract. In this paper, we propose a fully distributed method for
scheduling the movements of modular robots in a set while maintain-
ing its balance. We explore self-reconfigurable modular robots, which
are robots that can change their shape and behavior on their own. We
focus on the important problem of verifying their stability and keeping
these robots stable while they change shape.
Our approach involves developing an algorithm that help the robots stay
balanced in real-time, even when they are changing shape. At the heart
of this algorithm is the mechanical notion of the ”support polygon” and
the concept of ”Mobile Object ” in message data, which enables a fast
stability verification. We test this algorithm using a programmable mat-
ter simulator called VisibleSim, we show that it works well for validating
a current static situation and for predicting the status after one or more
movements. Additionally, we introduce the concept of dimensional re-
duction from 3D to 2D, simplifying stability analysis while maintaining
accuracy. By addressing stability challenges, our research aims to make
self-reconfigurable modular robots more useful in various applications.
Keywords: Self-reconfiguration, Modular robots, Distributed algorithms,
Stability, Programmable Matter.

1 Introduction

Self-reconfigurable modular robots represent a revolutionary advance in modern
robotics [1,2,3]. These innovative robots are designed to be adaptable, flexible
and capable of autonomous reconfiguration to meet a variety of situations and
requirements. Their potential is immense, covering a wide range of applications,
from space research and manufacturing to medicine and logistics.
The growing interest in self-reconfigurable modular robots lies in their ability
to solve complex problems efficiently, and reduce the need to design specific
robots for particular tasks. Indeed, these robots can adjust their behavior and
hardware configuration to adapt to constantly changing environments, while op-
timizing their performance to achieve their objectives. This adaptability makes
them particularly attractive for situations where traditional robots would be lim-
ited or ineffective. A system of this kind would be a realization of the futuristic
concept of Programmable Matter [4,5].
However, despite their potential, self-reconfigurable modular robots also present



2 Ikrame Yazidi, Benôıt Piranda, Morvan Ouisse and Julien Bourgeois

considerable challenges. One of the major challenges is the stability of these set
of robots, both in terms of mechanical stability, ensuring that the robot does not
accidentally come apart during its operations, and the stability of the algorithm
itself, ensuring that reconfiguration processes run reliably and consistently.
The ability to reconfigure can sometimes lead to instabilities or control problems,
which can compromise their usefulness in critical applications. This stability is-
sue represents a key area of research in the development of these robots, and its
resolution is essential for realizing their full potential.
The main objective is to develop distributed algorithms and control methods
that are fast and extensible across a large number of modules, enabling modular
robots to assess and maintain their stability in real time, based on self-control.
Self-control refers to the robot’s ability to verify its stability and to adjust its
actions to maintain balance. This involves analyzing the various possible config-
urations of the modules, assessing the weight distribution, and determining the
measures needed to correct any instabilities identified. Hence, the introduction
of the notion of ”support polygon”and ”Mobile Object ”.

The purpose of this article is then to focus on the crucial issue of stability,
examining the challenges, advances and future prospects in this field and to
propose solutions based on self-control to verify the stability of the set of robots,
and predict stability of possible configurations reached after several motions of
robots. We will also show that robot self-reconfiguration, which is a complex 3D
problem, can be simplified to a 2D problem if it is driven by the mechanical
balance of the set of modules.

2 Related Works

Many previous works have put the accent on the stability verification problem
for self-reconfigurable modular robots, such as [6] and [7]. An approach using the
Finite Element Method [8] and related spring-mass discretization has been used
to study mechanical properties of modular structures in [9]. In [10] and [11], the
authors investigated scalable collective actuation in a special class of modular
structures. In [12], Bray and Groß used a distributed control strategy to recon-
figure self-assembled structures that fills a void while incorporating local force
measurements to build structures that do not colapse under their own weight.
In [13], Piranda et al. propose an algorithm based on a distributed solution of
mechanical equilibrium equations derived from a simplified model of the robot.
However, it takes a long time to verify the balance, even for small configurations.
In this paper we address the same objective as in [12] of maintaining stability
while moving, but we use a different approach based on weight distribution. We
have developed the approach introduced in [13], in the case where the robot is
rigid and stands on a flat ground, but using a different method for verification.
The method used in this specific case in [13], is to calculate the center of gravity,
distribute the x and y coordinates, determine the safe angular ranges for each
support module, add them up, and conclude that the structure is stable if the
aggregated angular range is equivalent to a full angle, which is 360 degrees. This



Balance-driven Self-Reconfiguration Algorithm for Programmable Matter 3

method takes a long time to converge, even if we have a small number of support
modules, as the calculation time depends on the number of support modules.

3 Context

In this work we address two distinct scenarios: The first involves a modular
robot with improper weight distribution, similar to construct a table with one
leg. Meanwhile, the second scenario concerns to a modular robot capable of
changing shape, like constructing a bridge over a river starting from one bank
and arriving to the other. The main difference between the two lies in the fact
that the first remains in a fixed shape, while the second reconfigure itself. In the
first case, the problem lies in the risk of the robot tipping over during assembly
due to unbalanced weight distribution, while in the second case, the challenge is
to prevent the robot from losing balance as it changes shape.
Thus, verifying the stability of modular robots, both during their movement and
when they are not actively moving, is essential to ensure their stability to oper-
ate safely in real-life environments. Thorough mechanical analysis is required to
identify and resolve potential stability problems before deployment, thus reduc-
ing the risk of critical hardware damage and malfunction. Before going into the
details of the algorithm, we must first give a few definitions:

Definition 1. The definition of the Mobile Object concept is proposed by Michel
Raynal in [14]. It consists of defining a computer object such as a data structure
that is exchanged sequentially by different modules via messages. In our case,
this Mobile Object is made up of a list of the positions of modules in contact
with the ground and the data used to calculate the center of mass of a sub-tree
(i.e. the sum of the centers and the number of modules in the sub-tree).

Definition 2. The support polygon S is defined as the convex envelop (CE) of
the set of vertices V of the robots in contact with the ground. In our situation,
the ground is the horizontal plane with z = 0 only.

S = CE(vi ∈ V |vi · z = 0) (1)

Definition 3. Consider the graph G(R,L), where the vertices are all the robots
R and L is the list of point-to-point connections between two neighboring robots.
We define a spanning tree of the undirected connected graph G by a tree included
in G that connects all the vertices R.

Lemma 1. A configuration C is stable if and only if the projection of the gravity
center G in the ground is placed inside the support polygon S.

stability(C) = P (G.x,G.y, 0) ∈ S

Theorem 1. Let P (V,E) a polygon defined by its N CCW oriented vertices
V = {v0..vN−1} and edges E = {(v0, v1), (v1, v2) . . . (vn−2, vn−1), (vn−1, v0)}. A
point M is inside a convex polygon if it is at the left of all edges.

M ∈ P ⇐⇒ ∀i ∈ [0..n],
(−−→
viM ×

−→
Ei

)
· z < 0 (2)



4 Ikrame Yazidi, Benôıt Piranda, Morvan Ouisse and Julien Bourgeois

Proof. To prove this by contradiction, considering that the polygon is CCW
oriented, if M is to the right of a line passing through an edge, it is obvious that
M cannot be inside the polygon.

4 Contribution

To determine the static state of a configuration, our solution is to propagate
geometric information from the tree’s leaves to the root in a spanning tree,
enabling this module to determine whether or not the set of robots is stable.
Secondly, in order to predict the stability of the system after a displacement of
a module, we transfer the mechanical data to the module concerned, and locally
compute a new potential stability for each of the displacements envisaged for
the module.
We consider that we have previously applied a leader election algorithm to our
set of robots and built a spanning tree (cf. Definition 3) from this module. Each
robot Ri get its position Ci relatively to the leader, applying Disco algorithm
presented in [15].

4.1 Process of Stability Verification

The process of checking the stability of a modular robot can vary according to its
configuration and its condition. In the case of a static modular robot, meaning
one that stays immobile on the ground, the verification is carried out once by
the leader by verifying the Lemma 1.
At start, robots Ri at the leaves of the spanning tree create the Mobile Object
({(Sum.C, Sum.N), listBase}) with listBase the list of modules on the ground
(here listBase is equal to Li the list of vertices of Ri in contact with the ground),
Sum.C = Ci the local center of mass and Sum.N = 1 the number of modules. Ri

sends these data to its parent neighbor by message. At reception at Rj the data
of all children are combined to get the Mobile Object of the sub-tree defined by
Rj and its children. Once the leader receives the required data (Sum, listBase),
it calculates the robot’s center of gravity G and creates the support polygon S
defined in Definition 2 using listBase.

Once the calculations are completed, the leader verifies the Lemma 1 to check
the stability which requires the use of Theorem 1 to verify whether (G.x,G.y)
is inside S or not. If it lies within the polygon, this means the robot is stable. If
not, it indicates an imbalance and therefore an instability.
It’s interesting to be able to check whether the current state of the robots is
stable, but in a second step, we’ll show that we can also use the data collected to
predict the stability of the assembly after a self-reconfiguration step. The module
attempting to move needs the mechanical data and requests it from the leader
via modular navigation by Mobile Object . Upon acquiring the Mobile Object ,
this module Rm becomes the new leader, then, It calculates the prediction of G1

from G0 by removing its position C0
m and adding the position of its potential



Balance-driven Self-Reconfiguration Algorithm for Programmable Matter 5

destination C1
m. It is worth mentioning that the mass of the 3D Catoms does

not play any role into the calculations since all the 3D Catoms have the same
mass. Then, it verifies whether the polygon will change or not to predict the new
polygon. G1 = G0 +

C1
m − C0

m

Sum ·N
S1 = S0 + {Pi ∈ R1

m ∧ Pi.z = 0} − {Pi ∈ R0
m ∧ Pi.z = 0}

(3)

After that, the module Rm checks whether the modular robot will remain stable
in this new configuration. If so, it is authorized to proceed with its reconfigura-
tion. If not, it cancels its movement. To simplify in this work, we consider that
when moving from one stable position to another, the modular robot remains
stable. It would be interesting to verify that the balance of the system for the two
extreme positions leads to stability for all intermediate positions and this for the
two different types of relative motion (along hexagonal and octagonal paths cf.
[16]). This process repeats each time a module attempts to change its position. In
this way, the stability verification process is continuous and adaptive, ensuring
that the modular robot maintains its stability while undergoing configuration
changes, and avoiding any risk of falling over or becoming unstable.

4.2 Fully Distributed Algorithm

The proposed algorithm is designed as a fully distributed tree-based partitioning
algorithm that is based on the idea that modular robots can communicate with

Start

Send "Request" to 
all children

Create Mobile Object MO; 
MO.Sum(C,n) :=((0,0,0),0);

MO.listbase := empty;
myAnswers:=0;

isLeader?

Yes

Receive "Request"

#children 
== 0?

Send "Request" to 
all children

No

MO.listBase.add(position);

Position.z==0

Yes

Yes

isLeader?

Send "Result" MO to 
parent

No

Is 
(G.x,G.y,0) in 

S?

Calculate G;
Create S;

Yes

Modular robot 
is not stable

Modular robot 
is stable

Yes

Receive "Result" MO

No

MO.Sum+=msg.Sum;
MO.listbase.add(msg.listbase);

myAnswers--;

myAnswers:=#children;

myAnswers
==0?

ObjectPresent=True;
Predict G and S 
after movement;

Remains 
stable after 
movement

Move;

Yes

Goal 
attended

No

isLeader = False;

Yes

Send message to activate 
the new leader

Yes

MO.Sum.C+=position;
MO.Sum.n++;

Fig. 1: Distributed Algorithm for Stability Verification.



6 Ikrame Yazidi, Benôıt Piranda, Morvan Ouisse and Julien Bourgeois

each other, exchanging information such as their position. This communication
is crucial for effective cooperation between modules. In this context, the use of
a spanning tree becomes of great importance and the first thing to start with.
Fig. 1 shows the first part of the distributed algorithm which is dedicated to
stability verification before any movement. The sent messages are in dark colors,
while the received messages are in light colors. A notable aspect of this part is
that it clearly displays whether the modular robot is stable or unstable in each
of the simulated scenarios. The part that follows displaying results shown in
red connects Fig. 1 with Fig. 2. Moreover, the green-colored message response
and its subsequent actions are illustrated in Fig. 2 that is focusing on the mes-
sage exchange between modules to acquire the Mobile Object . At the beginning,
the leader possesses the Mobile Object and employs it to verify stability before
each movement until it attends its final position. Then, Each module wishing
to initiate a movement should request the Mobile Object from the leader. Upon
acquiring it, this module becomes the new leader, replacing the former leader.

In this section, we detail the algorithm by presenting two pseudo codes.
The stability verification is presented in Algorithm 1, while the stability predic-
tion is detailed in Algorithm 2. In Algorithm 1 the Startup function initializes
the process sending a ”request” message from the leader to all its neighbors.
myBroadcastFunc handles incoming ”request” messages where each module for-
wards, the request message, to all its children and if no children, transmits the
desired response to its parent. myAcknowledgeFunc handles incoming ”response”
messages. When a module receives the expected response from all its children, it

MO.Sum+= NextC-C;
Calculate G;

NextC.z==0

C.z==0

MO.listBase.add(NextC);
Create S;

MO.listBase.remove(C);
Create S;

Yes

Yes

Is
 (G.x,G.y,0)

 in S?

Move to NextC;

Yes

Goal attended

No

isLeader = False;Yes

Send message to 
activate the new 

leader;

ObjectPresent=True;Receive
"Request Object" 

ObjectPresent

ObjectPresent = False;

Send "Grant 
Object" MO to 

Parent

Parent = Sender;

Yes

Send "Request 
Object" to all 

neighbors

Receive 
"Grant Object" MO

isLeader

Send "Grant 
Object" MO to 

Parent

No

MO = msg.MO;

Yes

No

No

No

Receive message 
to activate leader

Parent = 0;
isLeader = True;

Send "Request 
Object" to all 

neighbors

Fig. 2: Distributed Algorithm for Stability Prediction.



Balance-driven Self-Reconfiguration Algorithm for Programmable Matter 7

Algorithm 1: Stability Verification Algorithm.

1 Function Startup():
2 if isLeader then
3 nbWaitedAnswers ← sendMessageToAllNeighbors(”Request”);

4 Msg Handler myBroadcastFunc(msg, sender):
5 if parent=∅ then
6 parent ← sender;
7 nbWaitedAnswers ← sendMessageToAllNeighbors(”Request”);
8 if nbWaitedAnswers=0 then
9 Calculate MO.Sum and MO.listbase;

10 sendMessage(”Result”, MO, parent);

11 else
12 sendMessage(”Result”, empty, sender);

13 Msg Handler myAcknowledgeFunc(msg, sender):
14 nbWaitedAnswers−−;
15 if ¬msg.empty() then
16 Add msg.Sum to MO.Sum and Insert msg.listbase to MO.listbase;
17 if nbWaitedAnswers=0 then
18 Calculate MO.Sum and MO.listbase;
19 if parent=∅ then
20 Calculate G and S, Verify stability and display result;
21 else
22 sendMessage(”Result”, MO, parent);

Algorithm 2: Modular Navigation Algorithm by Mobile Object.

1 Function RequestMobileObject():
2 SendMessageToAllNeighbors(”Request Object”);
3 Msg Handler myBroadcastFunc2(msgMO, sender):
4 parent = sender;
5 if object present then
6 object present = false;
7 sendMsg(”Grant Object”, MO, parent);

8 else
9 SendMessageToAllNeighbors(”Request Object”);

10 Msg Handler onMessageReceived(msgMO, sender):
11 MO = msgMO;
12 if parent=∅ then
13 object present = true;
14 Calculate new G and Create new S if it changes;
15 Check stability and try to move;

16 else
17 sendMessage(”Grant Object”, MO, parent);

forwards it to its parent, until the leader that calculates G and S and performs
the stability verification.



8 Ikrame Yazidi, Benôıt Piranda, Morvan Ouisse and Julien Bourgeois

In the Modular Navigation Algorithm by Mobile Object, outlined in Algorithm 2,
each module seeks to coordinate its movement within the others. Once initiating
a movement request and requiring the mobile object, the module broadcasts a
’Request Object’ message to its neighbors. Upon receiving this message, neigh-
boring modules either grant the requested object or continue propagating the
request. Once a mobile object is obtained, the leader computes necessary param-
eters, checks for stability and initiates the movement accordingly. This process
is repeated each time a module attempts to move.
Regarding the complexity in time of the algorithm, it is directly associated with
the number of communications produced during the computation of the sta-
bility. It depends on the height of the spanning tree, which is essentially the
eccentricity of the root node. This distance is majored by the diameter of the
graph representing the configuration of the modules. Hence, we can conclude
that the time complexity is O(diameter).

5 Experiments and Results

The proposed algorithm was implemented in VisibleSim [17], a framework for
creating behavioral simulators for lattice-based distributed modular robotic sys-
tems in a normal 3D environment. There are many modular robots currently sup-
ported by VisibleSim, these include 3D Catoms [16] which are quasi-spherical
micro-robots able to stick to each other and to move around each other. 3D
Catoms are placed in a regular FCC grid and each of them can have up to 12
neighbors. Our algorithm was implemented in VisibleSim to simulate the behav-
ior of modular robots and to assess their stability in different scenarios. In this
experiment we draw a 3D mark at the center of mass position and the edges of
the support polygon, at green if the configuration is stable and red otherwise.
We have addressed the two examples outlined in section 3: A table, to study the

(a) Unstable Table with only 1 Leg. (b) Stable Table with 4 Legs.

Fig. 3: Detection of Balance of 2 Configurations, lines drawing the center of mass
position and support polygon is green if stable red otherwise.



Balance-driven Self-Reconfiguration Algorithm for Programmable Matter 9

(a) Initial Shape. (b) Bridge Over a River.

Fig. 4: Self-Reconfiguring 3D Catoms Constructing a Bridge Over a River.

stability of a static case, and a modular robot self-reconfiguring into a bridge
over a river to examine the step by step verification.

For our first example, we check in Fig. 3a that a table with only one leg is an
unstable configuration, leading us to conclude that such a configuration cannot
be built in reality. To address the stability problem, we added the other three
legs. The simulations depicted in Fig. 3b show how adding ground modules can
expand the support polygon, ensuring the robot’s stability.
In the second example, we intentionally considered a river below, complicat-
ing the task since we cannot use modules on the ground to widen the support
polygon, and the challenge of reaching the other side safely remains. Fig. 4a
shows the initial state of the modular robot before any movement. Ultimately,
we successfully constructed our bridge safely, as shown in Fig. 4b, by using an-
other approach to address the stability issue, which is adding counterweights
during reconfiguration. The addition of these counterweights can adjust the po-
sition of the gravity center, thus helping to stabilize the modular robot. The
red-highlighted section in Fig. 4b represents the modules that acted as counter-
weights and which can be removed once we have achieved our goal.

6 Discussion

As part of our approach, we will be taking a close look at the concept of step-
by-step stability verification. One of the key aspects we will delve into is 3D
to 2D Dimensional Reduction. Consider the 3D representation of the robot in
Fig. 5a, where the white module is drawn at its successive predefined positions
during reconfiguration. Throughout this journey, there is a risk of the modular
robot losing its balance. To get a clearer view of how we ensure stability, we
switch from a 3D to a 2D view, by ignoring the third dimension (z-axis). This
simplification is possible because we only need to focus on two factors, Gx and
Gy, along with the support polygon, to check for stability. This transition to
a 2D representation enables us to visualize more clearly the changes occurring
during the module’s movement.



10 Ikrame Yazidi, Benôıt Piranda, Morvan Ouisse and Julien Bourgeois

(a) 3D Modular Robot Trajectory.

0
1

2 3 4 5 6
7

Support Polygon border

(b) GC Projection Trajectory.

Fig. 5: Self-Reconfiguration Process.

Clearly, the center of gravity G moves with each module movement, as shown in
Fig. 5b. As observed, the projection of the center of gravity remains within the
support polygon throughout the movements. Consequently, the module success-
fully reaches its final position.

Let us consider another scenario where we add two modules as shown in
Fig. 6a. In this new situation, the 4th displacement of the white module causes
a loss of stability for the set. The mobile module can anticipate this problem
and abort the movement. For a better comprehension, let us examine the 2D
representation in Fig. 6b that shows that in the case where the module moves,
the center of gravity, shown in red, will no longer be inside the support polygon.
The last position that the module can reach while maintaining the stability of
the modular robot is the position of the white module shown in Fig. 6a. The
movements of the white module in both scenarios presented in this section are
clearly shown in the video1 it shows in simulation the several steps of the self-

1 Video link: https://youtu.be/sg5ef-wanKo

(a) Safe positions for 2nd configuration.

0
1

2 3 4

Support Polygon border

(b) Unsafe Position Detection.

Fig. 6: Detection of Unsafe Motion.

https://youtu.be/sg5ef-wanKo


Balance-driven Self-Reconfiguration Algorithm for Programmable Matter 11

reconfiguration into a bridge too, displaying the addition of counterweight when
it is needed, while clearly illustrating the changes in center of gravity positions
and support polygon with each movement. According to Fig. 5b and 6b, we no-
tice that the center of gravity moves in translation by 2 distances, either ∆G1

or ∆G2, between each positions. Thus, let us demonstrate where ∆G1 and ∆G2

come from and how we can determine them.
Upon analyzing the movements of the 3D Catoms, we observe that each module
can only perform a maximum of 8 displacements. Consequently, we concluded
that the possible positions to which a module (x, y) can move are summarized
in : (x± 1, y), (x, y ± 1) and (x± 1

2 , y ±
1
2 ).

After determining the possible positions for each movement of the 3D Catoms
and since the number of modules N remains constant, we have all the parame-
ters necessary to predict the possible values of the center of gravity after each
displacement. In our analysis, we will focus only on (Gx, Gy). Considering G0

the center of gravity of the modular robot before movement and G1 the center
of gravity of the modular robot after the displacement of any module.

G0
x =

∑
xi

N and G0
y =

∑
yi

N

Let us proceed and calculate the possible values of (G1
x, G

1
y):

(a) The first possibility where the next position is (x± 1, y):
G1

x =

∑
xi − x+ x± 1

N
= G0

x ± 1

N

G1
y =

∑
yi

N
= G0

y

(4)

(b) The second possibility where the next position is (x, y ± 1), we obtain:

G1
x = G0

x and G1
y = G0

y ±
1

N
.

(c) The Third possibility where the next position is
(
x± 1

2 , y ±
1
2

)
, so we get:

G1
x = G0

x ± 1

2N
and G1

y = G0
y ±

1

2N
.

As a consequence, after any motion the center of gravity can move into 8 different
positions only. Therefore, we can generalize and say that, with each movement of
a module, the center of gravity will have one of the predefined values. According
to these calculations, we can express the variation of the projection of the center
of gravity as ∆G1 = d

N or ∆G2 = d√
2N

where d is the diameter of the 3D

Catom. Knowing this distance is crucial since it will allow us to determine if
the projection of the center of gravity will remain within the support polygon
or not. Thus, it will open the way for a new method of stability prediction.
According to all that precedes, we can thus create a grid that represents all the
possible positions of the center of gravity while respecting the possible distances
∆G1 and ∆G2. The Fig. 7 shows how our proposed grid is made. Even and
Odd grid are d

N large and interleaves to create the list of possible positions
for the projection of the center of mass. We have shown that the process of



12 Ikrame Yazidi, Benôıt Piranda, Morvan Ouisse and Julien Bourgeois

even z level

odd z level

∆G1=d/N

∆G2

Fig. 7: Grid of possible positions of the center-of-mass projection on the ground.

verifying stability after one displacement is O(1) complex, which is advantageous
compared to the complete recalculation of stability (O(diameter) complex), since
the diameter can be important in the case of programmable matter.

7 Conclusion and Future Work

In this article, we delved into the world of self-reconfigurable modular robots,
focusing particularly on the crucial issue of stability. Throughout our exploration
we investigated various stability verification methods and proposed a new ap-
proach based on the creation of support polygons and modular navigation by
mobile object using distributed algorithms.
In our research, we developed a simulation model to study the behavior of mod-
ular robots and assess their stability in different scenarios. Through experiments
and results analysis, we show the effectiveness of our approach in ensuring sta-
bility, both in static configurations and in predicting status after movements.
Furthermore, we explored the concept of dimensional reduction from 3D to 2D
to simplify stability analysis.
We have proposed a new method for rapid stability prediction, which qualifies
as stable or not the various displacements of the center of gravity according to
the possible movements. Looking ahead, our research opens up other avenues for
future work in the field of self-reconfigurable modular robots. One promising di-
rection is the development of more advanced stability algorithms, incorporating
multiple movements where several 3D Catoms move simultaneously, Combined
movements meaning one movement balancing another and continuous trajectory
calculation between two positions.
In conclusion, our research contributes to advancing the field of self-reconfigurable
modular robots by addressing critical stability challenges and proposing innova-
tive solutions. By further exploring the avenues outlined in this article, we can
continue to enhance the stability, adaptability, and efficiency of modular robots
for a wide range of practical applications.

Acknowledgement

This work has been supported by the EIPHI Graduate School (SELF-CONTROL
Project ”ANR-17-EURE-0002”).



Balance-driven Self-Reconfiguration Algorithm for Programmable Matter 13

References

1. A. Kamimura, S. Murata, E. Yoshida, H. Kurokawa, K. Tomita, and S. Kokaji,
“Research on self-reconfigurable modular robot system: (experiments on reconfig-
uration and locomotion with several modules),” Nippon Kikai Gakkai Ronbunshu,
C Hen/Transactions of the Japan Society of Mechanical Engineers, Part C, vol. 68,
no. 3, pp. 886–892, Mar. 2002.

2. M. Yim, W.-m. Shen, B. Salemi, D. Rus, M. Moll, H. Lipson, E. Klavins, and
G. Chirikjian, “Modular self-reconfigurable robot systems [grand challenges of
robotics],” Robotics Automation Magazine, IEEE, vol. 14, pp. 43 – 52, 04 2007.

3. J. Lengiewicz, M. Kursa, and P. Ho lobut, “Modular-robotic structures for scalable
collective actuation,” Robotica, vol. 35, no. 4, p. 787–808, 2017.

4. S. C. Goldstein, J. D. Campbell, and T. C. Mowry, “Programmable matter,”
IEEE Computer, vol. 38, no. 6, pp. 99–101, June 2005. [Online]. Available:
http://www.cs.cmu.edu/∼claytronics/papers/goldstein-computer05.pdf

5. J. Bourgeois, B. Piranda, A. Naz, T. Tucci, H. Mabed, D. Dhoutaut, N. Boillot,
and H. Lakhlef, “Programmable matter as a cyber-physical conjugation,” in Inter-
national Conference on Systems, Man, and Cybernetics, Budapest, Hungary, Oct.
2016.

6. P. Holobut and J. Lengiewicz, “Distributed computation of forces in modular-
robotic ensembles as part of reconfiguration planning,” in 2017 IEEE International
Conference on Robotics and Automation, ICRA 2017, Singapore, Singapore,
May 29 - June 3, 2017. IEEE, 2017, pp. 2103–2109. [Online]. Available:
https://doi.org/10.1109/ICRA.2017.7989242

7. P. Holobut, S. P. A. Bordas, and J. Lengiewicz, “Autonomous model-based
assessment of mechanical failures of reconfigurable modular robots with a
conjugate gradient solver,” in IEEE/RSJ International Conference on Intelligent
Robots and Systems, IROS 2020, Las Vegas, NV, USA, October 24, 2020
- January 24, 2021. IEEE, 2020, pp. 11 696–11 702. [Online]. Available:
https://doi.org/10.1109/IROS45743.2020.9341232

8. S. Zhang and E. Fasse, “A finite-element-based method to determine the spatial
stiffness properties of a notch hinge,” Journal of Mechanical Design - J MECH
DESIGN, vol. 123, 03 2001.

9. P. J. White, S. Revzen, C. E. Thorne, and M. Yim, “A general stiffness model
for programmable matter and modular robotic structures,” Robotica, vol. 29, no.
Special Issue 01, pp. 103–121, 2011.

10. P. Holobut, M. Kursa, and J. Lengiewicz, “A class of microstructures for
scalable collective actuation of programmable matter,” in 2014 IEEE/RSJ
International Conference on Intelligent Robots and Systems, IROS 2014, Chicago,
IL, USA, September 14-18, 2014. IEEE, 2014, pp. 3919–3925. [Online]. Available:
https://doi.org/10.1109/IROS.2014.6943113

11. J. Lengiewicz, M. Kursa, and P. Holobut, “Modular-robotic structures for scalable
collective actuation,” Robotica, vol. 35, no. 4, pp. 787–808, 2017. [Online].
Available: https://doi.org/10.1017/S026357471500082X

12. E. Bray and R. Groß, “Distributed optimisation and deconstruction of
bridges by self-assembling robots,” June 2022, © 2022. [Online]. Available:
https://eprints.whiterose.ac.uk/187863/

13. B. Piranda, P. Chodkiewicz, P. Ho lobut, S. P. A. Bordas, J. Bourgeois, and
J. Lengiewicz, “Distributed prediction of unsafe reconfiguration scenarios of modu-
lar robotic programmable matter,” IEEE Transactions on Robotics, vol. 37, no. 6,
pp. 2226–2233, 2021.

http://www.cs.cmu.edu/~claytronics/papers/goldstein-computer05.pdf
https://doi.org/10.1109/ICRA.2017.7989242
https://doi.org/10.1109/IROS45743.2020.9341232
https://doi.org/10.1109/IROS.2014.6943113
https://doi.org/10.1017/S026357471500082X
https://eprints.whiterose.ac.uk/187863/


14 Ikrame Yazidi, Benôıt Piranda, Morvan Ouisse and Julien Bourgeois

14. M. Raynal, Distributed algorithms for message-passing systems. Springer, 2013,
vol. 500.

15. B. Piranda, F. Lassabe, and J. Bourgeois, “Disco: A multiagent 3d coordinate
system for lattice based modular self-reconfigurable robots,” in IEEE International
Conference on Robotics and Automation (ICRA 2023), London, England, may
2023.

16. B. Piranda and J. Bourgeois, “Designing a quasi-spherical module for a huge
modular robot to create programmable matter,” Autonomous Robots, vol. 42,
no. 8, pp. 1619–1633, dec 2018. [Online]. Available: http://link.springer.com/10.
1007/s10514-018-9710-0

17. P. Thalamy, B. Piranda, A. Naz, and J. Bourgeois, “Visiblesim: A behavioral
simulation framework for lattice modular robots,” Robotics and Autonomous
Systems, p. 103913, 2021. [Online]. Available: https://www.sciencedirect.com/
science/article/pii/S0921889021001986

http://link.springer.com/10.1007/s10514-018-9710-0
http://link.springer.com/10.1007/s10514-018-9710-0
https://www.sciencedirect.com/science/article/pii/S0921889021001986
https://www.sciencedirect.com/science/article/pii/S0921889021001986

	Balance-driven Self-Reconfiguration Algorithm for Programmable Matter

